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Abstract: While clinical and pre-clinical trials indicate efficacy of histone deacetylase (HDAC)
inhibitors in disease mediated by dynamic lysine modification, the impact on the expression
of non-coding RNAs (ncRNAs) remains poorly understood. In this study, we investigate high
throughput RNA sequencing data derived from primary human endothelial cells stimulated with
HDAC inhibitors suberanilohydroxamic acid (SAHA) and Trichostatin A (TSA). We observe robust
regulation of ncRNA expression. Integration of gene expression data with histone 3 lysine 9 and
14 acetylation (H3K9/14ac) and histone 3 lysine 4 trimethylation (H3K4me3) datasets identified
complex and class-specific expression of ncRNAs. We show that EP300 target genes are subject to
histone deacetylation at their promoter following HDAC inhibition. This deacetylation drives
suppression of protein-coding genes. However, long intergenic non-coding RNAs (lincRNAs)
regulated by EP300 are activated following HDAC inhibition, despite histone deacetylation. This
increased expression was driven by increased H3K4me3 at the gene promoter. For example, elevated
promoter H3K4me3 increased lincRNA MALAT1 expression despite broad EP300-associated histone
deacetylation. In conclusion, we show that HDAC inhibitors regulate the expression of ncRNA by
complex and class-specific epigenetic mechanisms.

Keywords: non-coding RNA; epigenetics; HDAC inhibitors; histone acetylation; histone methylation;
endothelial cells; vascular

1. Introduction

Once thought to be functionally inert, non-coding RNAs (ncRNAs) are now considered key
regulators of chromatin structure and gene function [1]. They represent the majority of the human
transcriptome by number [2]. They are essential for physiological development and more recently
have been implicated in human disease, including cancer and heart disease [3,4].

Importantly, ncRNAs are highly diverse in their structure and function and include both short and
long ncRNAs. Long ncRNAs are divided into multiple subclasses based on their genomic locations
and DNA sequence [5]. For example, long intergenic non-coding RNAs (lincRNA) are transcribed
from segments of DNA located outside of protein-coding genes. Other classes of long ncRNA include
sense intronic genes that are transcribed from introns of protein-coding genes without overlapping
exons. In contrast, sense overlapping ncRNA transcripts contain a coding gene with its intron on the
same strand, whereas antisense ncRNA are transcribed from the opposite strand of a protein-coding
gene and can span across both exons and introns. Pseudogenes are also classified as long ncRNAs,
non-coding duplications of functional protein-coding genes with mutations that result in disruptions to
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the open reading frame (ORF). Some, though not all, pseudogenes have promoters and can transcribe
ncRNA. Long ncRNAs that cannot be classified and do not contain an ORF are referred to as processed
transcripts [2].

Recently, a study of 111 reference epigenomes by the National Institute of Health (NIH)
Roadmap Epigenomics Project identified complex interactions of histone modifications with lincRNA
expression [6]. Chromatin modifications at lincRNAs were highly tissue-specific: histone 3 lysine 4
monomethylation (H3K4me1) was more variable across tissue types compared to histone 3 lysine
4 trimethylation (H3K4me3). Histone 3 lysine 27 trimethylation (H3K27me3) is a key regulator
of lincRNA gene silencing during lineage commitment. Histone acetylation, which is written by
histone acetyltransferases (HATs) and erased by histone deacetylases (HDACs), is enriched at active
transcription start sites. This includes both histone 3 lysine 9 acetylation (H3K9ac) and histone 3 lysine
27 acetylation H3K27ac. These profiles suggest that the expression of ncRNAs can potentially be
targeted by pharmacological manipulation of the epigenome.

Histone deacetylase (HDAC) inhibitors are a diverse group of clinically used pharmacological
compounds [7,8]. While the paradigmatic mechanism of action suggests increased histone acetylation
mediating gene activation, more recent profiling studies show broad histone deacetylation at gene
promoters implicated in the regulation of gene suppression [9]. HDAC inhibitors are also known to
regulate other histone modifications, including trimethylation of H3K4me3, which is a key driver of
gene expression [9,10]. However, the extent to which HDAC inhibitors can control the expression of
ncRNA classes remains unclear.

To investigate gene regulation of ncRNA by HDAC inhibition, we examined gene expression
changes mediated by histone acetylation (H3K9/14ac) and histone methylation (H3K4me3) in primary
human aortic endothelial cells (HAECs) stimulated with trichostatin A (TSA) and the structurally
related and clinically used suberanilohydroxamic acid (SAHA, also known as vorinostat) [9]. Recent
evidence indicates that ncRNAs are important regulators of endothelial cell function [11]. For example,
the lincRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) regulates blood vessel
growth and MALAT1 inhibition prevents human endothelial cell proliferation and reduces vascular
growth [11]. Our findings confirm that HDAC inhibition regulates the expression of non-coding RNAs
dependent on chromatin modifications.

2. Results

2.1. Pharmacological Inhibitors of HDAC Activity Regulate the Expression of ncRNAs

To investigate whether HDAC inhibitors can broadly regulate the expression of ncRNA
genes, we re-analysed publically available RNA-seq and H3K9/14ac and H3K4me3 chromatin
immunoprecipitation sequencing (ChIP-seq) data from primary HAECs stimulated with the
hydroxamic acid HDAC inhibitors SAHA and TSA. While ncRNAs represent approximately 64% of all
known and predicted genes (Figure 1a), over 20% of the transcripts detected in HAECs are ncRNA
(Figure 1b). Stimulation of HAECs with SAHA (Figure 1c) and TSA (Figure 1d) induced differential
expression of ncRNAs.

Pseudogenes, lincRNA, antisense RNA, processed transcripts, sense overlapping and sense
intronic transcripts were highly represented in the dataset (Figure 1e). These six classes were included
for further analysis. Other transcript classes, such as miRNA, were not adequately captured by this
protocol and were excluded from further class-specific analysis of RNA-seq data.

We identify robust changes in gene expression induced by SAHA and TSA in all gene classes
(Figure S1a). In response to HDAC inhibition, 1498 ncRNA genes were differentially expressed
by SAHA and 1274 ncRNA genes by TSA (false discovery rate (FDR) p value < 0.05) (Figure S1b).
Consistent with previous reports [9], gene expression changes induced by SAHA are strongly correlated
with gene expression changes in response to TSA (Figure S1c).
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Figure 1. HDAC inhibitors regulate the expression of ncRNAs. Pie charts comparing (a) relative 

number of known mRNA and ncRNA; (b) relative number of mRNA and ncRNA genes detected in 

HAECs by RNA-seq, and relative number of mRNA and ncRNA differentially expressed in HAECs 

stimulated with HDAC inhibitors (c) SAHA and (d) TSA (FDR p value < 0.05); (e) A stacked bar chart 

compares percentages of known ncRNA classes, ncRNA classes detected in HAECs by RNA-seq, and 

the percentage of ncRNA classes differentially expressed by SAHA and TSA in HAECs (FDR p value 

< 0.05). Abbreviations: Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial transfer 

RNA; LRG gene: Locus Reference Genomic gene; rRNA: ribosomal RNA; snoRNA: Small nucleolar 

RNA; snRNA: small nuclear RNA; misc RNA: Miscellaneous RNA; miRNA: microRNA; lincRNA: 

long intergenic non-coding RNA.  

2.2. Chromatin Modifications Drive ncRNA Gene Activation and Suppression 

Because HDAC inhibitors alter histone modifications at gene promoters of coding genes [9], we 

investigated whether SAHA and TSA induce changes to H3K9/14ac and H3K4me3 at ncRNA gene 

promoters. We observe strong histone acetylation and deacetylation at gene promoters (Figure 2a), 

including ncRNA genes (Figure 2b). In particular, strong histone deacetylation was observed at 

promoters of genes that were highly acetylated prior to stimulation with SAHA or TSA. Promoters 

with a low to moderate level of histone acetylation prior to stimulation are subject to increased 

histone acetylation. Furthermore, we identify strong changes to H3K4me3 by SAHA at gene 

promoters (Figure 2c), including ncRNA gene promoters (Figure 2d). In contrast to histone 

acetylation, we found increased H3K4me3 at gene promoters that have a moderate to high level of 

H3K4me3 prior to HDAC inhibition, whereas decreased H3K4me3 is more likely to occur at genes 

with low promoter H3K4me3 in untreated cells. 

Because the promoters of ncRNA genes are subject to altered chromatin modifications by 

HDAC inhibitors, we investigated whether H3K9/14ac and H3K4me3 were associated with 

differential gene expression. To do this, we integrated the expression of ncRNA transcripts with 

H3K9/14ac and H3K4me3 profiles at gene promoters in response to SAHA and TSA stimulation in 

HAECs. We identify a positive correlation for gene expression and histone acetylation in response to 

SAHA stimulation (Pearson’s r = 0.63) (Figure 3a). A consistent trend was observed for HAECs 

stimulated with TSA (Pearson’s r = 0.68) (Figure S2a). Differential H3K4me3 integrated with ncRNA 

gene expression changes show a weak correlation in response to SAHA (Pearson’s r = 0.29) (Figure 

3b) and TSA (Pearson’s r = 0.24) (Figure S2b). However, increased histone methylation was 

Figure 1. HDAC inhibitors regulate the expression of ncRNAs. Pie charts comparing (a) relative
number of known mRNA and ncRNA; (b) relative number of mRNA and ncRNA genes detected in
HAECs by RNA-seq, and relative number of mRNA and ncRNA differentially expressed in HAECs
stimulated with HDAC inhibitors (c) SAHA and (d) TSA (FDR p value < 0.05); (e) A stacked bar
chart compares percentages of known ncRNA classes, ncRNA classes detected in HAECs by RNA-seq,
and the percentage of ncRNA classes differentially expressed by SAHA and TSA in HAECs (FDR
p value < 0.05). Abbreviations: Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial
transfer RNA; LRG gene: Locus Reference Genomic gene; rRNA: ribosomal RNA; snoRNA: Small
nucleolar RNA; snRNA: small nuclear RNA; misc RNA: Miscellaneous RNA; miRNA: microRNA;
lincRNA: long intergenic non-coding RNA.

2.2. Chromatin Modifications Drive ncRNA Gene Activation and Suppression

Because HDAC inhibitors alter histone modifications at gene promoters of coding genes [9], we
investigated whether SAHA and TSA induce changes to H3K9/14ac and H3K4me3 at ncRNA gene
promoters. We observe strong histone acetylation and deacetylation at gene promoters (Figure 2a),
including ncRNA genes (Figure 2b). In particular, strong histone deacetylation was observed at
promoters of genes that were highly acetylated prior to stimulation with SAHA or TSA. Promoters
with a low to moderate level of histone acetylation prior to stimulation are subject to increased histone
acetylation. Furthermore, we identify strong changes to H3K4me3 by SAHA at gene promoters
(Figure 2c), including ncRNA gene promoters (Figure 2d). In contrast to histone acetylation, we found
increased H3K4me3 at gene promoters that have a moderate to high level of H3K4me3 prior to HDAC
inhibition, whereas decreased H3K4me3 is more likely to occur at genes with low promoter H3K4me3
in untreated cells.

Because the promoters of ncRNA genes are subject to altered chromatin modifications by HDAC
inhibitors, we investigated whether H3K9/14ac and H3K4me3 were associated with differential gene
expression. To do this, we integrated the expression of ncRNA transcripts with H3K9/14ac and
H3K4me3 profiles at gene promoters in response to SAHA and TSA stimulation in HAECs. We identify
a positive correlation for gene expression and histone acetylation in response to SAHA stimulation
(Pearson’s r = 0.63) (Figure 3a). A consistent trend was observed for HAECs stimulated with TSA
(Pearson’s r = 0.68) (Figure S2a). Differential H3K4me3 integrated with ncRNA gene expression
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changes show a weak correlation in response to SAHA (Pearson’s r = 0.29) (Figure 3b) and TSA
(Pearson’s r = 0.24) (Figure S2b). However, increased histone methylation was associated with 2814
activated ncRNA genes. Furthermore, while 923 genes were associated with both increased H3K9/14ac
and H3K4me3, we identify 2499 genes with increased H3K4me3 and reduced H3K9/14ac (Figure 3c).
A similar trend was observed in response to TSA stimulation (Figure S2c).

1 
 

 

Figure 2. Dynamic histone acetylation changes at the ncRNA promoters by HDAC inhibition.
Mean-Average (MA) plots show the fold changes (logFC, log2 of the fold change) and the relative
read concentration (logCPM) for histone acetylation (H3K9/14ac) at (a) all genes and (b) ncRNA gene
promoters, as well as histone methylation at (c) all genes and (d) ncRNA gene promoters. Red points
indicates FDR p value < 0.05, and black indicates FDR p value > 0.05. The number of genes FDR < 0.05
is shown in parenthesis on top of each plot.

To investigate the relationship between histone modifications and gene expression in more detail,
we determined the percentage of activated or suppressed genes associated with increased or decreased
histone modifications for the different ncRNA groups (Figure 3d). We selected six ncRNA classes
that were detected by RNA-seq: pseudogenes, lincRNA, antisense RNA, processed transcripts, sense
overlapping and sense intronic transcripts. Protein-coding genes were analysed as a reference group.
The results are represented as the percentage of activated or suppressed genes that are associated
with the specified histone modification change. Corresponding odds ratios based on Fisher’s test are
summarised in Figure S3.

We show that histone modifications of processed transcripts and antisense genes correlate strongly
with protein-coding genes (Figure 3d). In particular, 86% of suppressed protein-coding genes also
had gene promoter histone deacetylation, which is also observed for processed transcripts (69%) and
antisense genes (71%). In contrast, 53% of suppressed lincRNA gene promoters are deacetylated, with
even lower representation of sense intronic (11%), sense overlapping (38%) and pseudogenes (26%).

Furthermore, activated protein-coding, processed transcripts and antisense genes are strongly
associated with increased histone methylation (47%–50%) (Figure 3d). In contrast, we show a
moderate relationship between gene suppression and decreased histone methylation for sense intronic
(33%), sense overlapping (25%), pseudogenes (17%) and lincRNA (14%), but a weak relationship for
protein-coding (2%), antisense (9%) and processed transcripts (11%) (Figure 3d).
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horizontal axis) for protein-coding genes and six ncRNA classes (vertical axis). 
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and is highest for protein-coding genes (16%) and processed transcripts (16%) compared to all other 
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with increased gene expression associated with promoter H3K4me3. 

Figure 3. Epigenetic regulation by SAHA is dependent on ncRNA type. Scatterplots plots of the
fold changes (logFC) show the correlation between ncRNA expression (FDR p value < 0.05) and
corresponding promoter (a) H3K9/14ac and (b) H3K4me3 (FDR p value < 0.05) in response to SAHA
stimulation; (c) A scatterplot of the fold changes (logFC) shows the correlation between differential
promoter H3K9/14ac and H3K4me3 (FDR p value < 0.05) for ncRNA genes that are either activated
(blue) or suppressed (red) (FDR p value < 0.05). Linear model is shown in red and the Pearson’s
correlation value is reported for each plot; (d) A heatmap showing the percentage of activated or
suppressed genes that overlap with increased or decreased histone modification (defined on horizontal
axis) for protein-coding genes and six ncRNA classes (vertical axis).

Co-occurrence of increased histone acetylation and methylation at activated genes is infrequent
and is highest for protein-coding genes (16%) and processed transcripts (16%) compared to all other
classes (3%–8%). Decreased histone acetylation and methylation at suppressed genes was almost
undetectable (between 0% and 3%). Similar findings were observed for HAECs stimulated with TSA
(Figure S2d).

Next, we combined GSEA with transcription factor binding site gene sets derived from the
ENCODE project to study the role of chromatin-modifying enzymes in regulating gene suppression and
activation following HDAC inhibition (summarised in Table S1). Protein-coding gene activation and
increased histone acetylation and methylation were strongly enriched at genes generally suppressed
by Enhancer of zeste homolog 2 (EZH2) (Figure 4a). In contrast, ncRNAs and lincRNAs regulated by
EZH2 were associated with increased acetylated and methylation, but not gene activation.

Consistent with our previous reports [9], protein-coding genes regulated by the histone
acetyltransferase EP300 were generally suppressed by SAHA (Figure 4a) and TSA (Figure S4)
stimulation and subject to promoter histone deacetylation. Strikingly, we show that EP300 target genes
were also associated with an increase in H3K4me3 at the gene promoter. In contrast, while lincRNAs
regulated by EP300 are also subject to histone deacetylation, these genes are associated with increased
gene expression associated with promoter H3K4me3.
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Figure 4. ENCODE-TFBS analysis identified enrichment of EP300 at deacetylated ncRNA
promoters. GSEA-ENCODE analysis was used to determine enrichment of transcription factors
and chromatin-modifying enzymes at genes regulated by SAHA in HAECs. (a) A heatmap showing
the normalised enrichment score (NES) for gene sets of EZH2 and EP300 target genes in multiple cell
types for coding and non-coding gene expression and histone modifications in HAECs stimulated
with SAHA; (b) Heatmaps showing logFC of the top EP300 target genes (protein-coding and lincRNA)
deacetylated by SAHA and the logFC of the corresponding gene expression and H3K4me3 at gene
promoters. H3K9/14ac (blue) and H3K4me3 (yellow) profiles are plotted for the lincRNAs (c) NEAT1
and MALAT1 and (d) TP53 in control HAECs and those stimulated with SAHA and TSA. Profiles are
plotted as the normalised read count and the horizontal axis represents the region surrounding the
gene promoter in base pairs.
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We identified complex interactions between histone modifications, chromatin-modifying enzymes
and ncRNA gene expression induced by HDAC inhibition (Figure 4b). For example, we observe
increased expression of EP300-dependent lincRNAs MALAT1 (Figure 4c) and NEAT1 (Figure 4d)
despite a strong reduction in histone acetylation both at the gene promoter and across the gene body.
The activation of MALAT1 and NEAT1 was associated with increased histone methylation rather than
a classical acetylation-dependent pathway. In contrast, the protein-coding gene TP53, also regulated
by EP300, is subject to gene suppression associated with histone deacetylation, despite an increase in
histone methylation (Figure 4d).

3. Discussion

Pharmacological HDAC inhibitors are a diverse group of drugs that regulate gene expression.
SAHA, romidepsin and panbinostat are currently Food and Drug Administration (FDA) approved
for the treatment of haematological malignancies [7]. In addition, HDAC inhibitors have potential
applications for non-malignant disease: initial pre-clinical studies show efficacy of multiple HDAC
inhibitors for the treatment of cardiovascular disease and diabetes [12–14].

The advent of multiple consortiums extensively profiling histone modifications and transcription
factors across diverse human cells and tissues have advanced the study of chromatin modifications
and their impact on gene expression. Recently, the complex epigenetic mechanisms involved in
the regulation of lincRNA were profiled across diverse human tissue types as part of the National
Institutes of Health (NIH) Roadmap Epigenomics Project [6]. While there have been reports that
HDAC inhibitors can modulate the expression of individual ncRNAs, the genome-wide expression
patterns and epigenetic mechanisms involved remain poorly understood. In this study, we show that
HDAC inhibitors SAHA and TSA are potent regulators of ncRNA expression, which is driven by
complex epigenetic mechanisms that are dependent on the ncRNA class.

In particular, HDAC inhibitor mediated epigenomic regulation of antisense and processed
transcript ncRNA groups is similar to the regulation of protein-coding genes, but differs from lincRNA,
sense overlapping genes, sense intronic genes and pseudogenes. Histone deacetylation is a stronger
driver of gene suppression for antisense, processed transcript and protein-coding genes compared to
other ncRNA classed.

Surprisingly, we show that bivalency following HDAC inhibition occurs infrequently. Instead,
we often find opposing histone modifications occurring together. For instance, we show that the
expression of the lincRNA MALAT1, which is regulated by EP300, is increased despite a strong
reduction in histone acetylation across the gene promoter and gene body. This is associated with
an increase in promoter histone methylation instead. MALAT1 is a key regulator of endothelial cell
function and vascular growth [11], and though its expression is activated by HDAC inhibition in
primary endothelial cells, the mechanisms involved are more complex than the classical paradigm
of histone hyperacetylation. Furthermore, while this study has focused on endothelial cell biology,
modulation of ncRNA expression by HDAC inhibition has been observed in multiple cell types [15–17].
In particular, TSA modulates the expression of ncRNAs in hypertrophic cardiac tissue [18], and has
also been shown to regulate histone acetylation at cardiac gene promoters [13]. However, the direct
modulation of ncRNA expression by altered histone acetylation in TSA-mediated reversal of cardiac
hypertrophy has yet to be investigated.

Consistent with recent studies, we identify that the effects of SAHA and TSA on gene expression
and histone modifications are very similar [9]. This is possibly because these drugs are both hydroxamic
acids and therefore share similar structures. It is not yet clear whether other HDAC inhibitor drug
classes would exert a similar effect. Furthermore, while public databases such as the ENCODE project
can be useful to determine transcription factors associated with gene expression changes, there is
limited data available about the genome-wide binding profiles of HDAC enzymes. In particular, public
consortiums may be informative of HDAC inhibitor-mediated histone independent mechanisms of
gene expression and suppression, especially the altered activity of transcription factors.
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While we explored changes to H3K9/14ac and H3K4me3, other histone modifications, such as
H3K4me1 and H3K27ac, have been implicated in the regulation of lincRNA expression, specifically at
gene enhancers [6]. In particular, H3K4me1 was identified as a key histone modification involved in
the regulation of tissue-specific lincRNA expression [6]. Furthermore, H3K27me3 is often associated
with the suppression of lincRNA during cell differentiation [6]. Further studies exploring changes to
these histone modifications, coupled with RNA sequencing, will be highly informative.

In summary, we have identified complex histone modifications involved in the regulation of
ncRNA expression mediated by HDAC inhibition. Given the importance of ncRNAs in the regulation
mechanisms relevant to human disease and the increasing use of HDAC inhibitors in the clinic, a better
understanding of the regulatory mechanism may enhance rational drug design and development of
new therapeutic targets and applications.

4. Materials and Methods

Data access and preliminary analysis: RNA-seq and ChIP-seq datasets were accessed from Gene
Expression Omnibus (accession number: GSE37378). In this study, primary human aortic endothelial
cells were stimulated with 500 nM TSA or 2 µM SAHA for 12 h. Reads with quality scores of less
than 30 were trimmed from the fastq file. Fastq files were aligned to the hg19 genome from Ensembl
(GRCh37 release 75) using STAR for RNA-seq and Burrows-Wheeler Aligner (BWA) [19] for ChIP-seq.
For RNA-seq, a matrix was generated to summarise total gene reads and edgeR software was used
to determine differential gene expression [20]. For ChIP-seq, a matrix was generated based on reads
located within gene promoters (defined as 2 kb either side of the transcription start site, TSS) and
changes to histone modifications were determined using edgeR [20]. Significance is defined as FDR
p value < 0.05.

Gene classes: gene classes (protein-coding and the various non-coding classes) were defined using
the Ensembl gene biotype classification [2].

Statistics: Pearson’s correlation coefficient (r) was calculated in R using the ‘cor’ function. Fisher’s
exact test was used to determine the relationship between histone modifications and gene expression
for different classes. The four quadrants were defined as: (1) genes in defined class with defined
histone modification; (2) genes in defined class without defined histone modification; (3) genes not in
class with defined histone modification; and (4) genes not in class without defined histone modification.
Results are reported as the log2 of the odds ratio with 95% confidence intervals.

Transcription Factor Analysis Gene Set Enrichment Analysis (GSEA) was used to determine
enrichment of transcription factor and chromatin binding protein at genes regulated by HDAC
inhibition [21]. For each gene transcript, expression, histone acetylation and histone methylation
were assigned a score based on the negative log10 of the p value multiplied by the sign of the fold
change (–logP x signFC). GSEA was run using classical scoring with 1000 permutations. Only gene
sets between 30 and 7000 genes were included in the analysis. Gene sets of transcription factor target
genes were generated from ENCODE transcription factor binding site (TFBS) ChIP-seq bed files [22].
TFBS bed file represents a list of genome regions targeted by transcription factor binding. Target genes
were defined as possessing a TFBS within 3 kb either side of the TSS.

Plot generation: MA plots were generated in R by plotting the fold change against the logCPM.
The logCPM represents the relative expression of the gene (or, for ChIP-seq, relative level of histone
modification in the defined region) across all samples and is the logged counts-per-million. Correlation
plots were generated in R by plotting the logFC of two different experiments. Pearson’s correlation
coefficient and a linear model are also included. Heatmaps were produced in R using the bioconductor
package ComplexHeatmap. Histone modification profiles were plotted in R from read counts extracted
from bedGraph files.

Supplementary Materials: The following are available online at www.mdpi.com/2311-553X/2/2/4/s1, Figure S1.
Stimulation by SAHA and TSA lead to robust ncRNA expression, Figure S2. Epigenetic regulation by TSA is
ncRNA class-specific, Figure S3. Epigenetic regulation of ncRNA by HDAC inhibition is class-specific, Figure S4.
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ENCODE-TFBS analysis identified enrichment of EP300 at deacetylated ncRNA promoters, Table S1: Summary of
results for ENCODE-TFBS results for EP300 and EZH2 dataset in HAECs stimulated with SAHA and TSA.
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Abbreviations

The following abbreviations are used in this manuscript:

ChIP-seq Chromatin immunoprecipitation sequencing
ENCODE Encyclopedia of DNA Elements
FDA Food and Drug Administration
FDR False Discovery Rate
GSEA Gene Set Enrichment Analysis
H3K27ac Histone 3 lysine 27 acetylation
H3K27me3 Histone 3 lysine 27 trimethylation
H3K4me1 Histone 3 lysine 4 monomethylation
H3K4me3 Histone 3 lysine 4 trimethylation
H3K9/14ac Histone 3 lysine 9 and 14 acetylation
H3K9ac Histone 3 lysine 9 acetylation
HAECs Human Aortic Endothelial Cells
HAT Histone acetyltransferase
HDAC Histone deacetylase
lincRNA long intergenic non-coding RNA
logCPM Log of the counts per million
logFC log of the fold change
miRNA microRNA
ncRNA non-coding RNA
NIH National Institute of Health
ORF Open Reading Frame
RNA-seq RNA sequencing
SAHA Suberanilohydroxamic acid
TFBS Transcription Factor Binding Sites
TSA Trichostatin A
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