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Abstract: In this article, we report on numerical simulations of laminar Rayleigh–Bénard convection
of air in cuboids. We provide numerical evidence of the existence of multiple steady states when the
aspect ratio of the cuboid is sufficiently large. In our simulations, the Rayleigh number is fixed at
Ra = 1.7 × 104. The gas in the cube is initially at rest but subject to random small-amplitude velocity
perturbations and an adverse temperature gradient. When the flow domain is a cube, i.e., the aspect
ratio is equal to unity, there is only one steady state. This state is characterized by the development
of a single convective roll and by a symmetric normalized temperature profile with respect to the
mid-height. On the contrary, when the aspect ratio is equal to 2, there are five different steady states.
Only one of them exhibits a symmetric temperature profile and flow structure. The other four steady
states are characterized by two-roll configurations and asymmetric temperature profiles.

Keywords: natural convection; low-Mach-number flow; convective instabilities; multiple steady
states

1. Introduction

Rayleigh–Bénard convection (RBC) constitutes a common configuration of convective
heat transfer and has been studied extensively over the years. The classical RBC problem
involves a fluid between two horizontal solid boundaries which are maintained at uniform
but different temperatures. The temperature at the bottom boundary is higher than in the
top one and, therefore, convective motions are developed by the interplay between the
buoyancy and gravity forces. A review of numerical and experimental studies of turbulent
RBC can be found in [1].

RBC is characterized by three dimensionless numbers, the Rayleigh and Prandtl
numbers and the aspect ratio, Γ. For cuboids, Γ is the width-to-height ratio, whereas
for circular cylinders it is the diameter-to-height ratio. In the past, several authors have
studied the influence of the aspect ratio on RBC [2–4]. Regarding steady states, Gelfgat [5]
numerically studied RBC in rectangular enclosures just above the instability threshold and
showed that multiple steady states can be obtained, depending on the perturbation of
the initial condition. In the experimental study [6] of laminar RBC of water in cylindrical
domains with large aspect ratios, it was reported that five different steady states can develop.
Subsequently, the authors of [7] studied experimentally and numerically the RBC of water
in a cylindrical domain and constructed a bifurcation diagram of the solution branches in
terms of the Rayleigh number and in the range of Ra = 2 × 103 and Ra = 3 × 104. In [8], a
more extensive bifurcation diagram was proposed for water in cylindrical geometries with
Γ = 2 and for the same range of Ra. Also, the authors of [9] considered the 2D laminar RBC
of air in a square and proposed a stochastic approach for the final steady state in terms of
the initial condition. In the same study, the authors predicted that the most probable steady
state arising from a low-wave-number perturbation is a single-roll configuration. Further,
the authors of [10] conducted numerical simulations of turbulent RBC in a cylindrical
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domain (Ra = 108, Pr = 103 and Γ = 0.5) and predicted that multiple states can also be
developed in that turbulent regime. Multiple states in natural convection have also been
observed in settings different than the classical RBC. Examples include rectangular cavities
with heated vertical walls [11] and natural convection of Bingham fluids [12].

With regard to classical RBC, the vast majority of studies on multiple steady states have
focused on cylindrical domains whereas steady-state solutions in cuboids have received
much less attention. However, it is well known that the shape of the container plays a
significant role in the flow patterns developed in RBC [13].

The objective of this article is to provide numerical evidence of the existence of multiple
steady states in laminar Rayleigh–Bénard convection in cuboids with large aspect ratio.
In order to compute the various steady states, the initial condition that we consider is that
of a fluid at rest in which we superimpose different random small-amplitude perturbations
and an adverse temperature gradient. Herein, we present results for domains with two
different aspect ratios Γ, namely, Γ = 1 (cube) and Γ = 2.

2. Governing Equations

We consider the natural convection of air enclosed in a cuboid. The system of govern-
ing equations is the low-Mach-number approximation of the compressible Navier–Stokes–
Fourier equations [14,15]. In dimensionless form, this system reads

∂ρ

∂t
+∇ · (ρu) = 0 , (1)

∂ρu
∂t

+∇ · (ρuu) = −∇p′ +
1

Re
∇ · (µS) + Ri y∇ρ , (2)

cp
∂ρT
∂t

+ cp∇ · (ρuT) =
γ − 1

γ

dp0

dt
+

1
Re Pr

∇ · (λ∇T) . (3)

The various flow variables and thermophysical properties are non-dimensionalized by
those of a reference state of the working gas. The reference physical parameters are denoted
by the subscript r.

In the above equations, ρ, u = (u, v, w) and T stand, respectively, for the density,
velocity vector and temperature of the working fluid. Further, γ is the adiabatic ratio,
and p0 is the first-order term of the low-Mach-number expansion of the pressure which is
referred to as the “thermodynamic pressure” [15]. In closed domains of fixed volume V,
as in the present study, p0 is evaluated by combining the expression for the (constant) mass
of the working medium, m =

∫
ρdV, with its equation of state. In our study, air is treated

as a perfect gas, p0 = ρT. Therefore, in dimensionless form we have that

p0 =

∫
ρdV∫ 1
T dV

. (4)

Also p′ stands for the piezometric pressure [16,17], p′ = p + ρRiy with p being the sum
of the dynamic and bulk-viscous pressures [18]. In (2), y is the spatial coordinate in the
vertical direction and opposite to gravity, and S is twice the deviatoric part of the strain-rate
tensor, S = (∇u +∇u⊤)− 2

3 (∇ · u)I, with I being the identity matrix. Further, cp, µ, and λ
stand, respectively, for the specific heat capacity under constant pressure, dynamic viscosity
and thermal conductivity of the gas. The transport coefficients µ and λ are assumed to
follow a Sutherland-type law. In dimensionless form, the presumed law reads

µ(T) = T0.7 , λ(T) = T0.7 . (5)

With regard to the left-hand side of the energy Equation (3), we have used the fact that,
for a perfect gas, the specific enthalpy is given by hs = cpT + const. Moreover, β is the
thermal expansion coefficient; for a perfect gas, β = 1/T.
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The top and bottom walls of the domain are maintained at temperatures Tc and
Th, respectively, with Th > Tc. For non-dimensionalization purposes, the height of the
domain, H, is the reference length and Tr = (Th + Tc)/2 is the reference temperature. Then,
the reference thermodynamic state is that at Tr and the initial thermodynamic pressure
p0. Also, the free-fall velocity, uff, serves as the reference velocity, uff =

√
gHβr∆T with

βr = 1/Tr and ∆T the difference between the fixed temperatures at the bottom and top
walls, ∆T = Th − Tc. Then, the free-fall time, tff = H/uff, is set as the reference time scale
of the problem in hand. The relevant dimensionless groups are the Rayleigh (Ra), Prandtl
(Pr), Reynolds (Re) and Richardson (Ri) numbers,

Ra =
gβr∆TH3

νrαr
, Pr =

νr

αr
, Re =

Huff
νr

, Ri =
gH
u2

ff
, (6)

with αr = λr
ρr cpr

being the thermal diffusivity of air at the reference state, νr = µr
ρr

the
reference kinematic viscosity and g the gravitational acceleration.

The governing system (1)–(3) is integrated numerically via the time-accurate algorithm
for low-Mach-number flows [15]. This algorithm is based on a second-order accurate
predictor–corrector scheme for integration in time. Further, it involves a projection method
for the evaluation of the piezometric pressure p′. The projection step amounts to taking
the divergence of the momentum equation which, in conjunction with the continuity
equation, leads to a constant-coefficient Poisson equation for p′. This Poisson equation
is then discretized and solved numerically via a linear-system solver. Discretization of
spatial derivatives is performed via second-order centered differences. The algorithm
is implemented in a collocated grid arrangement because this arrangement offers ease
of implementation and straightforward applicability to curvilinear coordinate systems.
In order to avoid the problem of pressure odd–even decoupling that is often encountered in
such grids, the algorithm is supplemented with a flux-interpolation technique [15] which is
the generalization of the original scheme [19] to variable-density flows.

This algorithm has been implemented in a parallel code in C/C++ and uses the PETSc
suite of data structures and routines [20]. Parallelization is performed via a Message Passing
Interface (MPI). Also, the Poisson equation for p′ is solved with the PETSc routine of PFMG
which is a parallel semicoarsening multigrid solver. Validation tests of the algorithm
and comparisons with numerical results and experimental data can be found in [15,21],
respectively. In the past, this algorithm has been used in numerical studies of forced [22]
and natural [23] convection and in a variety of simulations of reacting flows.

3. Numerical Setup

As mentioned above, the computational domain is a cuboid. Its width is denoted by W
and is the same in the horizontal (x and z) directions. Thus, the aspect ratio of the domain
is given by Γ = W/H. Herein, we present results for two different cases. In case 1, the flow
domain is a cube, i.e., Γ = 1. In case 2, the aspect ratio is increased to Γ = 2. In both cases,
the height of the domain is set at H = 2.25 cm.

All boundaries of the domain are no-slip rigid walls. The side walls are adiabati-
cally isolated whereas the top and bottom walls are maintained at uniform temperatures,
Tc = 298.15 K and Th = 313.5 K, respectively. Accordingly, the bottom–top temperature
difference is ∆T = 15.35 K, while the reference temperature is Tr = 305.8 K. For air at Tr,
the Prandtl number is Pr = 0.73. With regard to reference values, the free-fall velocity is
uff = 0.11 m/s, the free-fall time is 0.21 s, and the product between the thermal expansion
and temperature difference is βr∆T = 0.05. With these values, the Rayleigh number is
Ra = 1.7 × 104, which corresponds to the supercritical but laminar regime. It is also worth
adding that the total temperature variation ∆T is in the order of 5% of the reference tem-
perature Tr. This means that the total variation of the density is also close to 5%, while
the total variation of the viscosity µ is approximately 4%. Such variations are not a priori
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negligible. Accordingly, for purposes of computational accuracy, we opted to employ the
low-Mach-number equations in our numerical study.

In terms of initial conditions, we assume that the gas is at rest and impose a linear
temperature profile between Th and Tc. The initial thermodynamic pressure p0 is 1 bar.
Also, as noted above, we apply random perturbations to the initial zero-velocity field.
The amplitude of the applied perturbations is quite small, namely, 1% of the free-fall
velocity uff. On the other hand, the initial temperature profile is left unperturbed.

Regarding grid resolution, we have employed a mesh size of 603 cells. The mesh is
refined in the near-wall regions and stretched away from the walls following a hyperbolic
tangent distribution. The height of the largest computational cell ∆y (which is located in the
center of the domain) is ∆y = 0.022 H. This mesh conforms to the resolution criteria [24–26]
in the bulk and the near-boundary regions for direct numerical simulations of turbulent
RBC at Ra = 106. Since this mesh is sufficiently fine to resolve all turbulent scales of RBC
at Ra = 106, then we can safely assume that it can also resolve all the flow structures of
the cases of laminar convection treated herein, in which Ra = 1.7 × 104. Moreover, we
have performed simulations with a coarser grid, consisting of 303 cells, and observed only
very minor differences in the numerical results. This is another indication that the mesh of
603 cells is appropriate for the purposes of our study.

Each simulation is first conducted for a time period of 600 tff, before assuming that a
steady state has been reached. This time period is sufficient to wash out all transient effects.
Subsequently, each simulation is run for an additional period of 400 tff. In all cases, it has
been confirmed that the flow profiles remained constant during this additional period.

4. Results and Discussion

With regard to notation, the horizontal-area (xz) average of a generic quantity U is
denoted by ⟨U⟩. Also, U′ is the deviation of U from ⟨U⟩ in horizonal planes. Results for the
thermal field are shown in terms of the normalized temperature, θ = (T − Tr)/∆T. In order
to compute multiple steady states, we have performed several simulations of the two cases
by solving the low-Mach-number Equations (1)–(3) with different random perturbations of
the initial condition of the velocity field. In other words, for each simulation, a separate
field of random velocity perturbations is generated.

4.1. Case 1: Aspect Ratio Γ = 1

According to our numerical experiments, only one steady state is developed when
the aspect ratio is equal to unity. In Figure 1, we have plotted the profile of the area-
averaged normalized temperature ⟨θ⟩ for this case. We can readily deduce that the profile
is practically symmetric with respect to the mid-height. In principle, the profile cannot be
completely symmetric due to the variation of the fluid properties (density, viscosity and
conductivity) with the temperature. However, as mentioned above, the total (bottom-to-
top) variation of the temperature ∆T is in the order of 5% and therefore the variations of
ρ, µ and λ with T are approximately linear. Consequently, the emerging profile of ⟨θ⟩ is
practically symmetric.

−0.4 −0.2 0.0 0.2 0.4
⟨θ⟩

0.0

0.2

0.4

0.⟩

0.8

⟨.0

y

Figure 1. Case 1, aspect ratio Γ = 1; profile of the area-averaged normalized temperature ⟨θ⟩.
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In Figure 2, we present plots of the streamlines colored by θ for case 1. We observe that
the flow is organized into a single large roll which is aligned in one horizontal direction.
Also, the streamlines are practically symmetric with respect to the vertical (yz) mid-width
plane. As mentioned above, this is due to the small variation of the fluid properties
with temperature.

Figure 2. Case 1, streamlines colored by the normalized temperature θ.

In the context of our study we also performed a simulation of this case by invoking
the Boussinesq approximation. According to it, ρ is constant and equal to ρr everywhere in
the governing system except for the gravity term in (2) in which ∂ρ

∂y = −βrρr
∂T
∂y . Also, λ

and µ are constant. Our simulation with the Boussinesq approximation produced nearly
identical results for ⟨θ⟩ and the streamlines.

In fact, the only discernible non-Boussinesq effect in our simulation based on the
low-Mach-number Equations (1)–(3) is a non-zero mean vertical velocity ⟨v⟩. Its presence is
explained as follows. The mass flux ⟨ρv⟩ is decomposed according to ⟨ρv⟩ = ⟨ρ⟩⟨v⟩+ ⟨ρ′v′⟩.
For steady flow, ⟨ρv⟩ = 0; thus, ⟨v⟩ = −⟨ρ′v′⟩/⟨ρ⟩. In general, ⟨v⟩ is not zero. In Figure 3,
we present profiles of ⟨v⟩ for case 1, by solving the low-Mach-number Equations (1)–(3),
i.e., without the Boussinesq approximation. According to this figure, the amplitude of ⟨v⟩
is small, albeit non-zero, and peaks at mid-height. On the other hand, under the Boussinesq
approximation ρ′, hence ⟨v⟩, are zero.

Figure 3. Case 1, profile of the area-averaged vertical velocity ⟨v⟩. The establishment of a vertical
velocity component is the only discernible non-Boussinesq effect.
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4.2. Case 2: Aspect Ratio Γ = 2

In this section, we examine the case that corresponds to the higher aspect ratio, Γ = 2.
By considering different random perturbations on the initial velocity, we were able to
compute five different steady states. The profiles of ⟨θ⟩ for case 2 are shown in Figure 4.
Therein, the various steady solutions are referred to as ‘2a’, ‘2b’ and so on.

−0.4 −0.2 0.0 0.2 0.4
⟨θ⟩

0.0

0.2

0.4

0.⟩

0.8

⟨.0
y

2a
2b
2c
2d
2e

Figure 4. Case 2, aspect ratio Γ = 2: profiles of ⟨θ⟩ for the 5 different steady states. These states are
referred to as ‘2a’, ‘2b’ and so on.

In the steady state 2a, the profile of ⟨θ⟩ is practically symmetric with respect to the
mid-height and close to those in case 1. However, the profiles of the other four steady
states are asymmetric and shifted either to the left or to the right, i.e., they are shifted either
towards the cold top wall or the warmer bottom one. This asymmetry has been observed in
different types of natural convection [11,12] and is associated with the development of more
than one convective structure in domains with high aspect ratio. More specifically, this
asymmetry is a result of the particular orientation of the flow structures. Our simulations
confirm that this is true in classical RBC as well.

We further note that the profiles of ⟨θ⟩ are not monotonic but exhibit overshoots at
the edges of the thermal boundary layers. Such overshoots have already been predicted in
simulations of turbulent RBC [3,27]. In laminar RBC, we attribute these overshoots to the
strong ascending and descending plumes which bring substantial amounts of warm gas
near the top wall and cold gas near the bottom one, respectively. But since the flow is not
turbulent, thermal mixing is not strong enough to reduce the temperature gradients in the
bulk of the domain, thereby resulting in such overshoots.

Next, we examine the flow structures in the five different steady states. In Figure 5,
we present the streamlines for the steady state 2a, colored by the normalized temperature θ.
The flow is organized into a single large roll which is aligned in one horizontal direction.
Further, similarly to the ⟨θ⟩ profile, the streamlines are symmetric with respect to the
vertical mid-width plane.

In Figure 6, we have plotted the streamlines of the steady states 2b and 2c. In these
states, the flow is organized into two large counter-rotating rolls. These rolls have different
sizes but are both aligned in a diagonal plane. The particular diagonal plane of alignment
may vary, depending on the perturbation of the initial condition for the velocity. As a result,
the streamlines are no longer symmetric with respect to the mid-width plane, which in turn
explains the shift of the corresponding ⟨θ⟩ profiles. Globally, the flow patterns in 2b and 2c
are the same but with opposite direction of rotation of the large rolls.
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Figure 5. Case 2, streamlines colored by the normalized temperature θ for the steady state 2a.

Plots of the streamlines of the steady states 2d and 2e are presented in Figure 7.
According to these plots, the flow is organized again into two large counter-rotating rolls.
However, these rolls now have equal sizes and are aligned in a horizontal direction, instead
of being aligned in a diagonal plane. Further, the flow patterns in 2d and 2e are the same,
but with opposite direction of rotation of the large rolls. Upon comparison of the plots
in Figures 6 and 7, we infer that in the steady states 2b and 2d, in which the ⟨θ⟩ profile is
shifted towards the hot bottom wall, the fluid in contact with the side walls is mostly hot
whereas in the other two states, 2c and 2e, the ⟨θ⟩ profile is shifted towards the top cold
wall while the fluid in contact with the side walls is mostly cold.

(a) (b)

Figure 6. Case 2, streamlines colored by the normalized temperature θ for the steady states: (a) 2b
and (b) 2c.



Fluids 2024, 9, 7 8 of 11

(a) (b)

Figure 7. Case 2, streamlines colored by the normalized temperature θ for the steady states (a) 2d and
(b) 2e.

Additional information about the differences between the emerging steady states can
be obtained by examining the profiles of the area-averaged horizontal velocity
ū =

√
⟨u⟩2 + ⟨w⟩2. The plots of ū for the steady states of case 2 are shown in Figure 8.

Globally, these profiles are M-shaped, with a local minimum near the mid-height and two
peaks at y ≈ 0.2 and y ≈ 0.8, respectively. As with the other flow variables, only the profile
of the single-roll state 2a is symmetric. In the other four states, the profiles are asymmetric
and the peak values are different. More specifically, in the two-roll states 2b and 2d (whose
⟨θ⟩ profile is shifted towards the hot bottom wall), the highest peak is the lower one. As
will be shown below, the same is true for the vertical velocity component. This in turn
implies that, in 2b and 2d, convective motions and heat transfer are stronger in the lower
part of the domain.

On the contrary, in the two-roll states 2c and 2e (whose ⟨θ⟩ profile shifted towards the
top cold wall), the highest peak of ū is the upper one. In these states, the vertical velocity
also peaks at the top part of the domain. Therefore, in steady states 2c and 2e, convective
motions are stronger in the upper part of the domain.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
⟨ ̄u⟩

0.0

0.2

0.⟨

0.̄

0.⟩

1.0

y

2a
2b
2c
2d
2e

Figure 8. Case 2, profiles of the area-averaged horizontal velocity ū for the 5 different steady states.

Plots of the mean vertical velocity component, ⟨v⟩, are presented in Figure 9. Accord-
ing to those, the values of ⟨v⟩ are the highest in states 2d and 2e, i.e., when the flow is
organized in two rolls aligned in a horizontal direction. Next, in descending order, are the
values of ⟨v⟩ in cases 2b and 2c which are characterized by two rolls aligned in a diagonal
plane. Finally, the smallest values are predicted in the single-roll state 2a. As mentioned
above, these observations imply that the flow arrangement of cases 2d and 2e exhibits the
strongest convective motions.
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Figure 9. Case 2, profiles of the area-averaged vertical velocity ⟨v⟩. The establishment of a vertical
velocity component is the only discernible non-Boussinesq effect.

Next, we present results for the Nusselt number. The area-averaged Nusselt number
Nuy is given by

Nuy =
√

Ra Pr < ρ v θ >︸ ︷︷ ︸
Nuconv

− < λ
∂θ

∂y
>︸ ︷︷ ︸

Nudiff

. (7)

In the above equation, Nuconv represents the convective contribution and Nudiff the diffusive
one. At steady state, Nuy should be constant and equal to the global Nusselt number. This
was indeed predicted by our simulations. The profiles of Nuconv and Nudiff are shown
in Figure 10a and Figure 10b, respectively. We observe that Nudiff takes small negative
values near the center of the domain. This is due to the fact that the profiles of ⟨θ⟩ are not
monotonic but instead exhibit two overshoots.

As expected, the profile of Nuconv in steady state 2a is symmetric whereas in states
2b and 2d the profile is shifted downwards. This further corroborates that in 2b and 2d,
convective heat transfer is stronger in the lower part of the domain. The opposite is true for
the steady states 2c and 2e, i.e., the Nuconv profile is shifted upwards because convection
is stronger in the upper part of the domain. These findings are in accordance with the
predicted velocity profiles. Further, from the plots of Figure 10 we infer that the states
2d and 2e (characterized by two rolls aligned in a horizontal direction) have the highest
Nusselt number, whereas the single-roll state 2a has the lowest one.

0.0 0.5 1.0 1.5 2.0 2.5
Nuconv

0.0

0.2

0.4

0.6

0.8

1.0

y

2a
2b
2c
2d
2e

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Nudiff

0.0

0.2

0.4

0.6

0.8

1.0

y

2a
2b
2c
2d
2e

(b)

Figure 10. Case 2, profiles of the Nuy components. (a) convective component, (b) diffusive component.

For this case, we also performed a simulation by invoking the Boussinesq approxima-
tion. The results were once again very similar to those based on the low-Mach-number
Equations (1)–(3). More specifically, the only discernible non-Boussinesq effect is the es-
tablishment of a non-zero mean velocity component⟨v⟩, as shown in Figure 9. Meanwhile,
under the Boussinesq approximation, ⟨v⟩ is exactly zero.

Finally, it is worth adding that a given random perturbation of the initial condition
for the velocity does not always result in the same steady state with and without the
Boussinesq approximation. Accordingly, in order to compute the various steady solutions



Fluids 2024, 9, 7 10 of 11

with the Boussinesq approximation, we had to employ different random perturbations
than those in the simulations without it. This implies that even though non-Boussinesq
effects are not significant in the steady states, such effects can play a role in the transient
regime, i.e., during the formation and growth of the convective structures. More specifically,
the variation of the fluid properties with the temperature can favor the establishment of
one steady state over another.

5. Conclusions

In this article, we presented a numerical study of the different steady states in laminar
Rayleigh–Bénard convection in cuboids. In the case of a cube, our simulations predicted
a single steady state: the flow is organized in a single convective roll and the mean flow
variables are symmetric with respect to the mid-height. On the other hand, for aspect
ratio Γ = 2, there are five different steady states. One of them consists of a single-roll
configuration whereas in two other steady states, the flow is organized in a two-roll
configuration with rolls of different sizes that are aligned in one diagonal plane. In the
remaining two states, the flow is organized in two rolls of equal size that are aligned in
one horizontal direction. In the two-roll configurations, the profiles of the area-averaged
flow variables are asymmetric with respect to the mid-height and the convective motions
are stronger either in the lower or upper part of the domain. The states with two rolls of
equal size exhibit the strongest convective motions and highest Nusselt number, whereas
the single-roll configuration has the lowest Nusselt number. Finally, the only noticeable
non-Boussinesq effect is the development of a vertical velocity component which only
mildly enhances the intensity of fluid motion in the bulk.
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