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An Analysis of CFD-DEM with

Coarse Graining for Turbulent

Particle-Laden Jet Flows. Fluids 2023,

8, 215. https://doi.org/10.3390/

fluids8070215

Academic Editors: D. Andrew S. Rees

and Hasan Sajjadi

Received: 3 June 2023

Revised: 8 July 2023

Accepted: 12 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

An Analysis of CFD-DEM with Coarse Graining for Turbulent
Particle-Laden Jet Flows
Dustin Steven Weaver * and Sanja Mišković *
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Abstract: This paper presents the results of simulations of particle-laden air–solid jet flow in long
straight tubes using CFD-DEM, along with an analysis of coarse-graining. Although previous studies
have used CFD-DEM for similar flows, these have typically been in a dilute flow regime where
uncoupled simulations can be used effectively. However, fully coupled simulations can introduce
issues, necessitating validation studies to ensure that all coupling parameters are effectively used
and that the physics is accurately represented. This paper validated the simulations against two
different experimental studies, with fluid Reynolds numbers between 10,000 and 40,000 and Stokes
numbers between 5.6 and 50. Interestingly, the profiles of the mean particle velocity exhibited fewer
discrepancies as the Stokes number increased, but more discrepancies for the root-mean-squared
velocity compared to the experiments. The particle number flux was consistent with the experiments
after the nozzle exit. Coarse-graining was also applied to the same simulations, achieving relatively
accurate results. However, as expected, the scaling of contact collision frequencies, forces, and
stresses could not be achieved, meaning that coarse-graining may be useful for comparing designs
or operating parameters on an industrial scale, but falls short when measuring the total energy
dissipation of one experiment.

Keywords: jet flow; CFD; turbulence; CFD-DEM

1. Introduction

Two-phase dense particle-laden jets are found in many modern industrial applications,
including jet mills, sandblasting, cold spray additive manufacturing, and a new innovative
method for particle comminution called the High-Pressure Slurry Ablation (HPSA) unit
by Disa™ (US Patents [1–4]). Such systems can be costly, both in equipment and time, to
monitor and evaluate experimentally. Traditional experimental techniques may involve
many design iterations and consider several operating parameters, where valuable infor-
mation for optimization is collected at the end of the experiment or test, and midstream
phenomena are difficult to measure and quantify. Monitoring particle collision statistics
and the fluid flow fields inside industrial units is difficult, further decreasing the amount
of information available for optimization.

For simple, diluted two-phase air–particle and water–particle flows, there are a few
methods that can be used to quantify the particle and fluid flow fields, such as Laser
Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV), and Planar Nephelometry
(PN) [5–10]. All of these methods are limited to simplified flow problems, where it is
required to have a predictable path or sampling location for the particles and transparent
containers and carrier fluids. Furthermore, once an additional phase is added to a flow,
such as in air-liquid-particle flows, light refraction occurs at the free surface, making these
methods ineffective [11]. In summary, the experimental methods presented here can be
used to collect results to validate this current work and provide insights into the numerical
coupling methods; however, they cannot be used when opaque three-phase systems and
industrial flow optimization problems are considered.
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Fully coupled CFD-DEM solvers have been well developed and validated across many
different flow regimes [12–14]. Although many CFD-DEM studies exist for two-phase jet
flows, most are for applications in wear in which they implemented a dilute flow regime
that was uncoupled [15–18]. In a dilute flow regime, with reasonable accuracy, it is possible
to perform an uncoupled numerical simulation where only fluid-particle interactions
are considered. The uncoupled approach drastically increases the simplicity of the flow
problem, primarily because of fewer limitations of the mesh cell size and the absence of
forces, and therefore models acting on the fluid and particles, which can bring forth both
instabilities and more complexity to the flow problem. Furthermore, one can track particles
as a post-carrier-phase-solution process with an uncoupled simulation. Other two-phase
CFD-DEM numerical solutions found in the literature are for combustion applications,
where the particles are assumed to be droplets [19].

In our preliminary study [20], a long straight tube was considered with a fully devel-
oped particle-laden air jet at a Reynolds number of 15,000 and a mass loading up to 0.86,
which was simulated using a fully coupled un-resolved CFD-DEM approach. Samples of
particle flux at the axial and radial locations along the jet were compared to the experimen-
tal data of Hardalupas et al. [5]. The primary consideration for this work was the effect
of the particle volume fraction on the fluid flow field because of the concern for accurate
momentum coupling between the two phases. It was concluded that a CFD cell minimum
side length of 1.86 particle diameters could be used without changing the results.

One should ideally use large eddy simulation (LES) turbulence models to model
anisotropic turbulence whenever possible. However, using a coarse mesh in the simulation
requires a RANS turbulence model to satisfy the previously stated requirement for mini-
mum cell side length. This inability to use a LES turbulence model is because in implicitly
filtered LES simulations, the mesh cell size needs to be sufficiently refined to allow more
than 80% of the kinetic energy to be resolved by turbulent kinetic energy. This severely re-
stricts the mesh cell sizes, and thus particle size, with a fully coupled high-speed jet flow (in
which there is a high amount of turbulence modulation). Although RANS models solve the
issue of momentum coupling between the Eulerian and Lagrangian approaches, all of them
are intrinsically inaccurate in isotropic turbulent kinetic energy, along with round/plane
jet anomaly issues in the context of the two-phase problem. As explained at length in
Wilcox’s well-known book Turbulence Modeling for CFD [21], using the k-ε turbulence model
for standard and plane jets produces agreeable results. Still, a spreading rate as high as
40% over the measured experimental values can be seen for round jets. Many solutions
have already been proposed to solve this issue, such as adding a vortex stretching term by
Pope [22] and changing the empirical coefficients in the works of Faghani et al. [23], Givi
and Ramos [24], and Morgans et al. [25], but no nozzle domain was included in the flow
profiles presented in these works.

Because this work was used as a foundation for the study of industrial flow systems
with fully coupled two-phase CFD-DEM simulations, it was required that the nozzle profile
shape be included in the solution domain. This was partly due to the required location
and initial parameters for particle insertion: particles could be inserted at the nozzle exit.
However, this would require experimental data for each change in nozzle shape, which
would be impractical for an industrial flow problem. To solve the issue of round/plane jet
anomoly in the context of CFD-DEM, extensive work was prevously performed to slightly
modify the empirical constants in the standard k-ε turbulence model of Launder and
Spalding [26] from Cε1 = 1.44 and Cε2 = 1.92 to Cε1 = 1.52 and Cε2 = 1.90. This approach
circumvents the issue with spreading rates and was used in the works by Faghani et al. [23]
and also validated extensively in our previous work [27] by comparing the numerical
results to the well-cited works of Bogusławski and Popiel [28] and Hardalupas et al. [5].
Therefore, in this current work, we used the modified k-ε model for our [5] test cases and
also performed an analysis comparing unmodified to modified k-ε for the test cases of Lau
and Nathan [11] for additional validation.
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For CFD-DEM to be deemed an effective method, it is important to first ensure the
accuracy of the numerical models and methods by comparing the numerical results to
known experimental quantitative data. After validation for the numerical methods is
achieved for the simplified flows, more solver development into three-phase flows can be
performed with the end goal of the optimization of an industrial unit. Therefore, this work
presents a validation study for CFD-DEM in the application of turbulent high-speed jets
with a look into coarse-graining to help with the computational expense.

Initially, a comprehensive description of the numerical methodology is undertaken,
incorporating an in-depth description of the CFD, DEM, and coupling methods. Addition-
ally, a detailed analysis of the coarse-graining technique is provided. Subsequently, the
simulation setup is expounded upon, encompassing the accompanying numerical methods,
meshing strategies, and DEM configurations. Lastly, an in-depth discussion is conducted
on the obtained results, followed by a conclusion of the findings.

2. Numerical Methodology

The Computational Fluid Dynamics (CFD) portion of the simulations was performed
by discretization of the fluid domain into computational cells, where the incompressible
Navier–Stokes equations were solved given the boundary conditions. The Navier–Stokes
equations are highly nonlinear partial differential equations and, therefore, require numeri-
cal models to be solved. This Eulerian framework for flow calculation was coupled with
Newton’s equation of motion, using the velocity Verlet algorithm, for particle tracking in
a Lagrangian framework of the Discrete Element Method (DEM). The two frameworks
exchange momentum as the simulation runs using averaging and interpolation methods.

2.1. CFD

The carrier phase is described by the multi-phase fully coupled Navier–Stokes equa-
tions given by

∇
(

ε f ρ f u f

)
= 0 (1)

∂
(

ε f u f

)
∂t

+∇ ·
(

ε f u f u f

)
= −switch · ∇p− Ksl

(
u f − us

)/
ρ f +∇ · (switch · τ) + f (2)

where ε f is the liquid-phase volume fraction, defined as the ratio of the volume of fluid
to the volume of the cell, u f is the liquid velocity, us is the mean solid particle velocity,
τ is the liquid-phase stress tensor, and f is an explicit force term, which can be used to
exchange momentum between the solid and carrier phase directly. The variable switch
becomes either the void fraction, switch = ε f , or one, switch = 1, depending on whether
Set I (Model B full or B) or Set II (Model A) is used for coupling [29,30] under the CFDEMr

code, which will be explained further in Section 2.3 [14]. The implicit momentum coupling
term, Ksl , is given by

Ksl =

ε f ∑
i

F̄d

Vc ·
∣∣∣u f − us

∣∣∣ (3)

where Vc is the volume of the cell and ∑
i

F̄d is the summation of all the forces acting on the

fluid by the particles, which are defined in Section 2.3.
The liquid-phase volume fraction, ε f , is calculated by determining the volume of par-

ticles inside of the cell. The volume of particles inside the cell can be calculated exactly, but
this would be extremely computationally expensive [31,32]. Therefore, the particles’ vol-
ume is calculated using a model that divides the particles into 29 non-overlapping regions
of equal volume. The centroid of the particle is then used to determine the respective cell in
which the new region exists. The approach allows accurate modeling while also providing
a decreased computational expense. Finally, the volumes of all regions inside a cell are
added to obtain the total volume of the particles, from which the liquid-phase volume
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fraction can be calculated given the cell volume. There are errors associated with using
a model for volume fraction calculation in an unresolved coupled CFD-DEM simulation.
However, they are kept at a minimum with a sufficiently large cell size compared to the
particle size. The calculation of the volume fraction is critical for accurate momentum
coupling, so through our previous work, where similar simulations were performed for jet
flow, it was realized that a minimum cell side length of 1.87 particle diameters provided
consistent results [20].

Turbulence is modeled using the “standard” k-ε model of Launder and Spalding [26]
with slight modifications to the empirical coefficients. The turbulence model is given by

∂(k)
∂t

+
∂
(
ujk
)

∂xj
= τij

∂uj

∂xj
− ε +

∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
+ Lk (4)

∂ε

∂t
+

∂(uiε)

∂xj
= Cε1

ε

k
τij

∂ui
∂xj
− Cε2

ε2

k
+

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+ Lε (5)

where eddy viscosity is given by νt = Cµ fµk2/ε and the Boussinesq assumption is used to
obtain

τij = νt

(
2Sij −

2
3

∂uk
∂xk

δij

)
− 2

3
kδij (6)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
= symm(∇U) (7)

The turbulent kinetic energy is given by k; the variable ε is the turbulent dissipation rate;
u is the fluid velocity; the turbulence length scale is given by l = Cµk3/2

/
ε [27]. The first

term in Equation (6) is the deviatoric part, and the second term is the isotropic part of
the fluid stress tensor. The last term, k, is the kinetic energy, which in OpenFOAM and
most other CFD codes is absorbed into pressure. Since we were exclusively considering
incompressible flow, the following term becomes

−2
3

∂uk
∂xk

δij = 0 (8)

but is still included on the CFD side for solution boundedness. It is worth noting that
Equation (8) is not used to calculate the viscous particle force, as shown in Section 2.2.
Instead, the deviatoric part of the fluid stress tensor is used for this calculation.

The most widely accepted empirical coefficients for the k-ε turbulence model of
Launder and Spalding [26] are given by Cε1 = 1.44 and Cε2 = 1.92, which are changed
to Cε1 = 1.52 and Cε2 = 1.90 to provide agreeable results for a long straight tube nozzle
single-phase flow regime [24,27].

2.2. DEM

Lagrangian particle translations through time are governed by Newton’s Second Law.

mp
dup

dt
= mpg + f∇·τ + f∇p + fl + ∑

Np

fp−p + ∑
Np

fp−w + fd (9)

Ip
dωp

dt
= Tp (10)

where mp is the mass of the particle, up is the particle velocity, Ip is the moment of inertia,
ωp is the rotational velocity, and Tp is the torque applied to the particle. The terms f∇·τ ,
f∇p, fl , and fd are the viscous, pressure, lift, and drag force, respectively, and fp−p and fp−w
are the particle contact forces. Velocity Verlet integration is then used on these equations
to calculate the new particle positions and velocities [33,34]. This method is conditionally
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stable with very few truncation errors as long as the time step is below the Hertzian
oscillation and Rayleigh wave speed critical time steps [34,35]. It is shown in the Results
Section that the simulations were well within this time step criterion. The pressure force is
given by

f∇p = −Vs∇p (11)

where Vs is provided by the divided void fraction model to be the total volume of solid
particles (both whole and partial particle volumes) inside the cell when the force is applied
to the fluid, and it is the particle volume when the force is applied to the particles.

The viscous force models the inter-molecular forces between the particle and fluid and
is given by

f∇·τ = −(∇ · τ)Vs (12)

where τ = ρ f ν
(
∇u + (∇u)T

)
and, therefore,

f∇·τ = −∇ ·
(
∇u + (∇u)T

)
ρ f ν = −ρ f ν(∆u)− ρ f ν

(
∇ · (∇u)T

)
(13)

as indicated in the CFDEMr code [14].
The lift force is calculated from Archimedes’ principle by stating that a solid body

(particle) in a fluid will experience an opposing force to gravity because of the density
disparity between the particle and fluid. It is given by

fl = ρ f gVs (14)

The particle–particle interaction force, fp−p, has the contribution of normal and tan-
gential forces:

∑
Np

fp−p = ∑
Np

(
Fn

c,i + Ft
c,i
)

(15)

The CFDEMr software (version 21.11) uses LIGGGHTSr for particles, and the particle–
particle contact model used is a nonlinear dashpot type known as the Hertz–Mindlin model [14].
Details about this contact model can be found in Di Renzo and Di Maio [36,37]. The normal
and tangential forces are the contributions of the spring and damping forces given, respec-
tively, by

Fn
c,i = (Knδn − γnvrn) (16)

Ft
c,i = (Ktδt − γtvrt) (17)

where Kn,t is the stiffness coefficient, δ is the overlap distance, vr is the relative velocity
between the two particles, and γ is the damping coefficient. Further information on these
coefficients can be found in Appendix A.

The contact model used for particle–wall normal and tangential interactions, ∑
Np

fp−w,

is the same as the particle–particle contact model given by Equations (15)–(17), which are
further defined in the Coarse-Graining Section 2.4.

The force due to drag is given by

fd =
βp

1− ε f
Vsur

ur = u f − us

(18)

βp

1− ε f
=

0.75ρ f ε f Cd|ur|(
dg/ fcg

)
ε2.65

f
, ε f > 0.8 (19)

Cd|ur| =
24ν f(

dg/ fcg
)
ε f

(
1 + 0.15 Re0.687

p

)
(20)
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βp

1− ε f
=

150ν f ρ f

(
1− ε f

)
ε f
(
φpdg/ fcg

)2 +
1.75ρ f |ur|
φpdg/ fcg

, ε f ≤ 0.8 (21)

where ur is the relative velocity, u f is either the cell or interpolated fluid velocity (depending
on if point forcing or volume averaging is chosen for the fluid–particle coupling force),
and us is the solid velocity. It should be noted that the solid velocity, us, is the individual
particle velocity when applying the force to the particles, but is the average solid velocity
of all particles inside a cell when applying the force to the fluid.

2.3. CFD-DEM Coupling

CFD-DEM coupling can be classified into unresolved and resolved methods. Fully
resolved methods use an immersed boundary approach, where the particles are seen as a
boundary condition for the CFD simulation. This method is restricted to larger particles
that cover at least ten computational cells [14]. An unresolved approach uses the volume
fraction of solids inside a cell with the use of averaging and smoothing methods to exchange
momentum between the two phases. An unresolved method requires multiple particles to
have the ability to fit inside an Eulerian computational cell. For our type of turbulent jet
flow, a minimum cell side length of 1.86 particle diameters was found to be sufficient [20].

Coupling using an unresolved approach between the carrier (CFD) and particulate
(DEM) phases can be performed in many ways. In the CFDEMr software, the coupling can
be achieved using three similar methods, with the difference being in the methodology used
for calculating viscous and pressure forces by setting the switch variable in Equation (2)
equal to 1 or ε f for Set I and Set II, respectively. The full description of the models is given
in detail by Zhou et al. [30]. We tested Set I and Set II in these jet flow simulations and
determined there were only minute differences in the results. Set II goes against Newton’s
Third Law, and therefore, Set I was chosen for the work. The summation of all forces for
the coupling term in Set I is given by

∑
i

F̄d = f∇·τ + f∇p + fdrag (22)

where the viscous and pressure terms in the momentum equation are left unchanged as
indicated by the switch = 1 variable in Equation (2).

2.4. Coarse-Graining

Coarse-graining is a technique that allows a single particle (grain) to represent a cluster
of multiple individual particles by scaling the size and contact parameters. Coarse-graining
is very similar to the Multiphase Particle-In-Cell (MPPIC) method. The difference is that
MPPIC is more of a combination of a two-fluid model and uses indirect stress models,
whereas coarse-graining uses explicit DEM models for the stresses [38,39]. Even with the
availability of modern computing resources, it is still costly to run simulations that include
tens of millions of particles. With the coarse-graining approach, it is possible to reduce the
tracking of, for example, 20-million particles to the tracking of 20

/
f 3
cg-million particles,

where fcg is a coarse-graining factor, which is typically equal to two or three. Therefore, it
would be a great benefit to realize that coarse-graining is an effective method.

While researchers are developing new coarse-graining models every year, this current
work used the technique currently implemented in CFDEMr, which was proposed by
Radl et al. [40]. The basic premise of this method is to equate the density, energy densities,
translational velocity, and total rotational kinetic energy of the original and coarse-grained
particles and merely scale the radius of the particles [41]. This is performed by keeping
the coefficient of restitution, coefficient of friction, density, and Young’s modulus constant
while scaling the radius of the particles by a coefficient fcg. Dimensional analysis and a
significant amount of reduction is then performed to determine that particle contact forces
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using the Hertz–Mindlin nonlinear contact model can be scaled directly using Equation (A4)
and that no other modification is needed. The full derivation is shown in Appendix A.

The scaling of particle coupling forces is performed slightly differently than for the contact
forces. The drag force acting on the particles was previously stated in Equations (18)–(21). The
drag coefficient is not scaled linearly with coarse-graining, as shown through the dg

/
fcg

term in Equations (19) and (21). Instead, it is scaled when calculating the total drag force
using the total solid volume, Vs, in Equation (18).

3. Simulation Setup

Seven simulations were performed for validation and were compared to the experi-
mental work by Hardalupas et al. [5] and Lau and Nathan [11]. Table 1 summarizes the
particle operating and flow conditions for the selected validation cases.

Table 1. Summary of particle operating and flow conditions for the selected validation cases.

Simulation
Name

Particle
Diameter, µm

Particle
Density, kg/m Mass Loading Gas Exit

Velocity, m/s
Reynolds
Number

Stokes
Number

Hardalupas1 80 2950 0.23 13 13,000 50
Hardalupas2 80 2950 0.86 13 13,000 50
Hardalupas3 40 2420 0.13 13 13,000 10.27
Hardalupas4 40 2420 0.80 13 13,000 10.27

Lau1 40 1200 0.40 12 10,000 5.6
Lau2 40 1200 0.40 24 20,000 11.2
Lau3 40 1200 0.40 48 40,000 22.4

3.1. Generalized CFD Setup

Due to the nature of CFD-DEM, a complete 3D circular domain is needed to accurately
capture the physics of the particles inside of the fluid domain. The geometries of the
domains considered in this work are described in Figure 1.

66𝐷𝐷𝐻𝐻, 𝐿𝐿𝐿𝐿
21𝐷𝐷𝐻𝐻 ,

20𝐷𝐷𝐿𝐿𝐿𝐿

𝐷𝐷𝐻𝐻, 𝐿𝐿𝐿𝐿

0𝐷𝐷H

Sampling Planes in Pipe

−5𝐷𝐷H,LN−10𝐷𝐷H,LN−15𝐷𝐷H,LN…

Plate Locations

Particle Insertion Point

10𝐷𝐷H,NL 20𝐷𝐷H

5𝐷𝐷H 15𝐷𝐷H

Sampling Planes After Nozzle Exit

8𝐷𝐷𝐻𝐻, 10𝐷𝐷𝐿𝐿𝑁𝑁

−45𝐷𝐷H,LN

0.2𝐷𝐷LN

Figure 1. Domains for the test cases of Hardalupas et al. [5] and Lau and Nathan [11] with nozzle
diameters of DH = 15 mm and DLN = 12.7 mm, respectively.

Discretization was performed by producing an all-hexahedral mesh using the Cubit©

meshing software. A mesh sensitivity analysis was performed in our previous work,
where it was concluded that an average cell size of 0.001 should be used. This produced a
minimum side length for the smallest cells of 357 µm, which is well above the requirement
of the minimum cell side length of 1.86 particle diameters, as noted from our previous
work [20]. This mesh resolution ensured that mesh-independent results were achieved
while also being large enough to allow the effective coupling to the Lagrangian approach or
particulate phase [20]. The max orthogonality of all meshes was kept below 30, as defined
as the deviation angle between the line connecting two cell centers and the face normal
of one [42]. Skewness was kept below 0.6 for all meshes, as defined as

∣∣d̄∣∣/| p̄|, where d̄ is
the distance to the common face center and p̄ is the distance between the two cell centers.
Further mesh quality information can be found in Table 2.
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Temporal discretization was performed using the first-order implicit Euler scheme.
Spatial discretization was performed using a second-order linear upwind scheme for all
velocity and turbulent fields. This native OPENFOAMr scheme for spatial discretization
uses upwind interpolation weights depending on the gradient of the fluid velocity [43].
The linear second-order scheme was used for all interpolations between the cell center and
face center values. A final solver tolerance of 10−8 was used for all scalar and vector fields.

Table 2. Mesh quality details.

Experiment Number Cells Orthogonality Max Orthogonality Average Skew Max Average y+

Hardalupas et al. [5] 3,806,397 21.9 2.9 0.5 24
Lau and Nathan [11] 3,440,578 25.8 3.1 0.5 24–76

The boundary conditions are shown in Table 3. For the velocity boundary condition,
the mean velocity found in Table 1 was used to calculate a turbulence power-law profile.
First, the maximum velocity is calculated by

umax =
umean

2

(
1
n
− 1
)(

1
n
+ 2
)
= umean

(n + 1)(2n + 1)
2n2 (23)

and then, the turbulence power law was used with this maximum velocity for the profile.
A great description of the power law is given by Jaroslav [44]. The turbulence intensity was
set to i = 0.05; the turbulence mixing length was set to l = 0.07D; Cω = 0.09 for all cases.

Table 3. Summary of boundary conditions used in simulations.

Location Velocity Pressure Eddy Viscosity Kinetic Energy Epsilon

Wall No Slip Zero Gradient Spalding Wall Func. Zero Gradient Epsilon Wall Func.

Inlet umax(1− r/R)1/n Zero Gradient Calculated 1.5(i|u|)2 C3/4
ω

(
k3/2

/
l
)

Outlet Entrainment Vel. Total Pressure Calculated Zero Gradient Zero Gradient

Initial
Freestream Uniform 0 Uniform 0 0 k = 1.5(i|u|)2 C3/4

ω

(
k3/2

/
l
)

A wall function approach was used near the wall to allow larger cell sizes and to
achieve effective momentum coupling between the fluid and particulate phases. It was
a continuous wall function modeled from Spalding’s equation, which fits a curve of the
relationship between u+ and y+ [27,45]. Typically, wall functions constructed using the
Launder and Spalding methods require a first cell height that produces a y+ in the logarith-
mic layer (30 ≤ y+ ≤ 300), but OPENFOAMr uses adaptive wall functions proposed by
Kalitzin et al. [45], which obtain agreeable solutions from 11 ≤ y+ ≤ 111. A y+ between 24
and 76 for all simulations was obtained, as indicated in Table 2. Therefore, we are confident
that the wall boundary layer was effectively modeled, as was also validated in our previous
publications [20,27].

3.2. Generalized DEM Setup

Typically, glass beads have a very high Young’s modulus of 6.89× 1010 Pascals (Pa).
Fully resolving the particle collisions with this Young’s modulus would require an extremely
small time step, which is impractical and could be over 103-times more computationally
expensive depending on the leeway given for the critical time step criterion. Chen et al. [46]
tested a wide range of Young’s moduli, reducing them to 0.00001E, and concluded that
although Young’s modulus has significant effects on single particle collisions, the bulk
behavior of particles in the system (a rotating drum) was conserved. Lommen et al. [47]
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performed a study testing the accuracy of reducing Young’s modulus with the intent of
speeding up the DEM simulations. It was determined that, at a minimum, if Young’s
modulus was kept greater than or equal to 107 Pa, there was no change in the simulation
results. There were very small relative velocities with the simulations in this current work,
and therefore, it was possible to reduce this Young’s modulus even further. A comparison
of simulations with a Young’s modulus of 5 · 106 and 107 was first performed to determine
if there was any effect of Young’s modulus on the simulation results. An average relative
error of 0.06% for particle velocities and 1.49% for particle fluxes was realized, with the
majority of the error occurring at the outer regions of the jet, where particle flux approached
zero. Therefore, it was decided that a Young’s modulus of 5 · 106 would suffice to reduce
the computational cost.

The coefficient values in the present study (except Young’s modulus) were taken di-
rectly from Lorenz et al. [48] for glass beads in which experiments were performed colliding
two nearly spherical glass particles. Poisson’s ratios for glass beads vary depending on
the paper, but a value of 0.3 is common throughout [49,50]. Tang et al. [50] performed a
wonderful study on testing for these parameters between a glass bead and glass plate and
found a Poisson’s ratio, ν, equal to 0.245, a coefficient of restitution, εn, equal to 0.926, a
coefficient of friction, c f , equal to 0.18, and a coefficient of rolling friction, cr f , equal to 0.01.
Whether this transfers over to particle–particle contact is uncertain. Another study found a
εn equal to about 0.8 for varying sizes of glass beads in the range from 2 to 4 mm with the
value decreasing with a reduction in the glass beads’ size. These coefficients are not highly
critical because the volume fraction of particles was sufficiently low, where the drag force
will dominate the flow. This is another example of a need for research that has detailed and
defined inputs for the material properties of the particles.

The experimental data at the nozzle exit were used to obtain the particle insertion
velocities and fluctuations. DEM particles were inserted on a surface, and the insertion
velocities and fluctuations did not vary along that surface. Therefore, the mean of the
experimental velocities in the radial direction of the nozzle was used with the inputs shown
in Table 4.

Table 4. Particle initial mean and fluctuating velocities, DEM time step, and percentage of Rayleigh
and Hertz critical time steps for each simulation.

Simulation Name Inlet Velocity (45
D), m/s

Fluctuating
Velocity, m/s DEM Time Step, s % Rayleigh % Hertz

Hardalupas1 11.94 (1.20, 0.45, 0.45) 10−6 5.9 5.3
Hardalupas2 11.94 (1.20, 0.45, 0.45) 10−6 5.9 5.3
Hardalupas3 11.65 (1.42, 0.45, 0.45) 5 · 10−7 6.6 5.7
Hardalupas4 11.65 (1.42, 0.45, 0.45) 5 · 10−7 6.6 5.7

Lau1 12.08 (0.54, 0.14, 0.14) 5 · 10−7 9.2 7.6
Lau2 22.56 (0.86, 0.24, 0.24) 2.5 · 10−7 4.6 4.3
Lau3 41.80 (1.34, 0.37, 0.37) 1.25 · 10−7 2.3 2.5

3.3. Hardalupas et al. [5] DEM Setup

The solids inserted into the system were “mono-sized” 40 and 80 µm spherical glass
beads with the velocities given in Table 4. It should be noted that they are stated to be
“mono-sized”, but it is extremely difficult to obtain true mono-sized particles because of the
expense and quantity needed for these types of experiments. Therefore, a size range was
used, with the mean being the mono-sized value and a range small enough to be considered
negligible for the overall results. The 40 µm particles had a nominal range of 37–44 µm,
and those of 80 µm had a nominal range of 60–95 µm. The information on the particle size
distribution can be found in Hardalupas et al. [5].
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3.4. Lau and Nathan [11] DEM Setup

Polymer particles of density 1200 kg/m3 were used for this study with the inlet
velocities given in Table 4.These particles had an extremely low nominal range as compared
to the Particle Size Distribution (PSD) of Hardalupas et al. [5,11]. Other than the PSD
of the particles, the paper did not go into details on the specific spheres used, but in a
previous paper by Lau and Nathan, with what appears as the same setup, they stated
that they were Microbead Spheromers [51]. The Microbead Spheromers are made with
polymethylmethacrylate (acrylic). Polymethylmethacrylate has a density of 1.18 and a
flexural modulus of 2.9 · 109 Pascals. Similar to the test cases of Hardalupas et al. [5],
we reduced the Young’s modulus to 5 · 106 to help with the computational expense. The
Poisson’s ratio of acrylic is about 0.37, and this is what was used in the DEM simulations.
The coefficient of restitution is given by εn = 0.934 and the coefficient of friction by
c f = 0.096, which were taken directly from Lorenz et al. [48], in which experiments were
performed on the collision of two 4 mm acrylic spheres. It was assumed that the coefficient
of rolling friction was extremely low for these acrylic spheres, and therefore, the coefficient
of rolling friction, cr f , was set to a low value of 0.01.

3.5. Coupling Setup

Coupling was performed implicitly between the two phases. The soft sphere nonlinear
spring–dashpot contact model of Hertz–Mindlin was used. To fully model and ensure
the particles were observing one another, a DEM time step lower than 20% Rayleigh and
Hertzian critical time steps was used [34]. This produced a very small time step; therefore,
a coupling interval to the CFD side was set to 10 to facilitate less computational expense,
while keeping the fluid Courant number less than 0.5. The DEM time steps and specifics
of the percentages of the Rayleigh and Hertzian time step criterion are shown in Table 4.
The Gidaspow drag model was used, which combines the drag models of Ergun [52] and
Wen and Yu [53]. The full model description can be found in Zhu et al. [54]. The pressure,
viscous, and Archimedes lift forces were used and calculated using Equations (11), (13),
and (14), respectively. Second-order linear interpolation was used to obtain face-centered
values from the cell centers for the velocity, void fraction, and pressure in all calculations of
the forces on the particles.

4. Results and Discussion

Mesh sensitivity analysis was first performed to determine if the numerical solution
was independent of domain discretization (mesh resolution). Three systematically refined
meshes of 2.88-, 3.80-, and 6.45-million elements were used with the same operating
parameters. Richardson extrapolation was going to be used, but it was found that the
solution differed so minutely that Richardson extrapolation would hold no quantitative
value for the solution of mesh convergence. Instead, it was deemed that the medium mesh
size of 3.80-million elements would be used. Simulations were performed in our previous
work that demonstrated a particle-diameter-to-minimum side-cell-size ratio of up to 1.86
particle diameters can be used while still conserving the accurate momentum exchange
between the two phases.

4.1. Particle Full Development

A fully developed flow is critical in these simulations. If we did not have a fully
developed flow before the outlet of a simulation, then the particle flux and velocities would
entirely depend on both the insertion location and initial velocities. It is difficult to conclude
that the experimental work performed by Hardalupas et al. [5] is a fully developed flow.
The pipe used in the study was 93D in length with a Reynolds number of 13,000. For
single-phase flows, this Reynolds number is well into the turbulent zone; therefore, no
laminar boundary layer forms, and there will be a turbulent velocity profile. To further
demonstrate this, an idealized entry length was calculated until fully developed flow by
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using an assumed velocity profile at the inlet and the classical solution developed by
Latzko [55], given as

x/D = 0.636Re0.25 (24)

where Re = (dG)/µ for the circular tube. Calculating this, an entry length of x/d ≈ 6.8
was obtained for an idealized single-phase flow. The pipe used for Hardalupas et al. [5] was
well above this entry length, but this did not indicate for certain that the particles were fully
developed because of particle slippage during particle insertion and mixing. Indeed, this is
briefly discussed in the paper when the results for the highest particle size (200 µm) showed
signs of a lack of fully developed flow. In the work performed by Mena and Curtis [56], it
was postulated and concluded that 51 pipe diameters were sufficient for fully developed
flow, and they measured this by the use of pressure transducers placed periodically along
the pipe. In the study, they used water as the carrier fluid; therefore, the viscous effects
were significantly higher than air, and particle slip velocity would be less of a concern.

To the current authors’ knowledge, Lau and Nathan [51] and the future work of Lau
and Nathan [11] are the only studies to test for fully developed flow. They performed
particle experiments with L/d ≈ 163.8 and L/d ≈ 301.3 with identical Stokes numbers
to test for particle slippage. They realized that the particle concentration and velocities
converged to similar values and, therefore, concluded that L/d ≈ 163.8 was a sufficiently
long-enough nozzle for full flow development at Stokes numbers of 0.3–11.2 and Reynolds
numbers of 10,000 and 20,000. In the study performed by Hardalupas et al. [5], Stokes num-
bers of St = 50 and St = 10.27 with a Reynolds number of 13,000 were used. There is the
possibility that, with the larger Stokes number of 50 and the fact that Lau and Nathan [51]
had a pipe length of almost 1.75-times that of Hardalupas et al. [5] that we may not have
fully developed flow. Therefore, no conclusion can be realized.

To test for fully developed flow for the numerical test case of Hardalupas et al. [5],
simulations were performed using merely the nozzle or pipe flow with the same operating
parameters as previously outlined. Still, instead of particles inserted at 45D, they were
inserted at 60D with sampling at locations at 0D and negative 5D, 10D, 15D, 20D, 25D,
30D, 35D, 40D, 45D, 50D, and 55D, as referenced from the nozzle exit with the positive in
the flow direction. In addition, two simulations were performed to test for the location of
full development and to determine whether inlet velocity made a significant difference in
flow development.

It was realized that most of the flow development occurred in the first 40 nozzle
diameters, where the last 20D experienced very minute changes in all parameters (Figure 2).
The inside of the nozzle for the Lau and Nathan (Lau3, Tables 1 and 4) test case was also
examined. It was realized that full development occurred in about the first 30 nozzle
diameters with only minute differences observed in the last 10 nozzle diameters; see
Figure 3.
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Figure 2. Radial profiles for the particles’ (a,b) mean and (c,d) root-mean-squared velocity and (e,f)
number flux for fully developed flow at locations 0D and negative 5D, 10D, 15D, 20D, 25D, 30D,
35D, 40D, 45D, 50D, and 55D for a mean inlet velocity of 12.8 m/s (a,c,e) and 11.94 m/s (d,b,f),
respectively.
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Figure 3. Radial profiles of the particles’ (a,b) velocities (c) and flux for locations of 0D and negative
5D, 10D, 15D, 20D, 25D, 30D, 35D, and 40D from the nozzle exit for the Lau3 simulation (48 m/s).

4.2. Hardalupas et al. [5] Results

It was realized that the results at the nozzle exit for all the test cases of Hardalupas et al. [5]
provided a similar trend for the mean and root-mean-squared velocity near the central re-
gions of the jet stream. Still, towards the outer regions near the nozzle wall, it was observed
that the particles moved more towards a laminar shape profile rather than a more-turbulent
shape, as demonstrated by the experiments (Figures 4a and 5a). This was believed to be
caused by the interpolation method used for velocity in particle–fluid interactions.

To achieve effective momentum coupling, we required a cell size with a minimum
length side of at least 1.86-times the particle diameter for these types of flow problems [20].
To model the boundary layer at the wall of a CFD simulation, we either needed to fully inte-
grate into the wall or use an algebraic function. To fully integrate into the wall, we required
an extremely fine mesh with, at the very least, 8–10 cells located below y+ = 11.5 [27].
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Achieving this, while also achieving effective momentum coupling, would require ex-
tremely small particles, far smaller than those used in many cases, including the experimen-
tal studies considered in this current work. Therefore, a wall approach near the wall was
used in this current work to accurately model the strong viscous effects on the fluid velocity
while achieving effective momentum coupling. That said, there was not a perfect solution
here because there was also a concern with the fluid velocity and void fraction interpolation
when calculating the drag particle–fluid coupling force. A wall function was used in this
current work to model the fluid boundary layer in the larger cell. Still, for interpolation,
that same wall function was not used for particle coupling parameter interpolation, but
instead, a linear interpolation method.
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Figure 4. Radial profiles for mean and root-mean-squared velocity and particle flux at 0.1D (a,b), 10D
(c,d), and 20D (e,f) from the nozzle exit for the Hardalupas1 and Hardalupas2 simulations and the
experimental data of Hardalupas et al. [5] (80 µm-sized particles).
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Figure 5. Radial profiles for mean and root-mean-squared velocity and particle flux at 0.1D (a,b),
10D (c,d), and 20D (e,f) from the nozzle exit for the Hardalupas3 and Hardalupas4 simulations and
the experimental data of Hardalupas et al. [5] (40 µm-sized particles).

In CFD-DEM, the interpolation method used is a linear cell point method. This method
breaks each face into triangles to define tetrahedra and the cell center point; then, it cycles
through the tetrahedra to determine where the point or particle cell point center is located.
An inverse distance linear interpolation was then used from known velocity points of the
cell centers. This produces a different distribution of coupling velocities than is modeled by
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our wall function. Optimally, we would want to use an interpolation method that follows
the wall function. This would involve developing a tracking algorithm that allows the use
of a custom interpolation scheme when in the near-wall cell, but difficulties would arise
that may increase the computational expense, which would have to be addressed.

Although there were discrepancies at the nozzle exit, it was observed that, further
in the flowfield, there were very similar trends between the numerical and experimental
results for the lower (0.23) and higher (0.86) mass fractions, respectively.

In general, for the 80 µm particle simulations (Hardalupas1 and Hardalupas2), discrep-
ancies were observed at the nozzle exit associated with the interpolation method for both
mean (rms) velocities and particle number fluxes (Figure 4a and Table 5). As previously
outlined, this can be attributed to the issues with the interpolation method near the wall.
That being said, relative accuracy was achieved for the velocities where the general change
in the results between the two mass fractions was similar to that of the experiments. At
location 10D, similar slopes were achieved between all numerical and experimental results.
The numerical results showed a slight decrease in slope relative to the experimental results
near the outer regions of the jet. At 20D, higher mean velocities were observed for the
numerical results with root-mean-squared velocities closely following and a smaller spread
with the particle number fluxes. It was concluded that, with 80 µm particles, up to 10D
should see viable results for the case of the optimization of an industrial unit, but anything
further downstream would need more analysis. Work needs to be performed for pipe flows
with wall functions in CFD-DEM to solve the interpolation issues, but it was observed
that the particles “correct” themselves after they exit the nozzle. This could be attributed
to having relatively low Stokes numbers, and therefore, the particles closely followed the
highly accurate and validated fluid flow, where wall effects were not present.

Table 5. Root-mean-squared error for the simulation data of Hardalupas et al. [5].

Simulation
Name

Up
/

Ug,c Up,rms
/

Ug,c G
/

Gm
0.1D 10D 20D 0.1D 10D 20D 0.1D 10D 20D

Hardalupas1 0.071 0.090 0.178 0.023 0.029 0.063 0.223 0.095 0.095
Hardalupas2 0.054 0.036 0.301 0.013 0.012 0.050 0.122 0.049 0.116
Hardalupas3 0.056 0.110 0.074 0.051 0.123 0.239 0.157 0.141 0.114
Hardalupas4 0.096 0.129 0.055 0.006 0.070 0.247 0.091 0.035 0.130

For the 40 µm particles, the same errors at the nozzle exit were observed because of
interpolation for all fields, but with the same relative accuracy or change in trends between
the two mass fluxes (Figure 5a,b). An interesting note for the nozzle exit is that, with
smaller mass loading (Hardalupas3), a particle number flux with a flatter profile than that
of the larger mass loading (Hardalupas4) was observed. It was postulated that, if mass
loading continued to increase, a more-triangular profile for particle number flux would
be achieved. Further downstream, similar slopes in the results for the mean velocity and
particle number flux were observed, but a significantly lower root-mean-squared velocity
for the numerical results. It is curious to note that these smaller particle trends lined up
quite well up to 20D, but with the larger particles results can only be trusted up to 10D.
This was further reinforced by the root-mean-squared error values shown in Table 5. It can
be concluded that, as the Stokes number increased, where the particles tended to “go their
own path”, the numerical results started deviating from the experimental results.

4.3. Lau and Nathan Single-Phase Results

The single-phase results for the test cases of Hardalupas et al. [5] were validated
in our previous work [27], but the results of Lau and Nathan [11] were not. Therefore,
three different simulation setups were used to determine that the single-phase results were
accurate before adding the particulate phase. If this was not performed, then there was
a risk of obtaining a model that may have the perfect combination of parameters for the
two-phase flow, but not necessarily because each of the phases separately is accurate. This
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would make it difficult to conclude with any confidence that this model can be generally
applied to other similar flows and accurately represents the physics.

All cases started with the Lau3 test case (48 m/s), but without the inclusion of particles.
The default Launder and Spalding [26] k-ε was used for one case. For the second case, a
change of the empirical coefficients was made to the turbulence model by Cε1 = 1.52 and
Cε2 = 1.90. This modification was researched and validated extensively in our previous
work [27]. The third simulation used the modified k-ε turbulence model, but without the
use of co-flow. This was to test the effect that co-flow has on these types of numerical
simulations.

There was very little difference between all simulations at the nozzle exit for both
the mean and root-mean-squared velocities, as shown in Figure 6a,d. At location 10D,
the unmodified k-ε turbulence model produced spreading that more closely followed the
experiment for mean velocity, but the modified k-ε produced a drop in axial velocity that
more closely matched the experiment. Therefore, it is up to the researcher to weigh the
pros and cons of using the modified k-ε, whether it is important for accurate spreading or
accurate axial drop in mean velocities. That being said, in the current authors’ previous
work, it was found that both spreading rates and the axial drop in the mean velocity were
both improved with the slight modification of the empirical coefficients [27] for the two
different sets of data provided by Bogusławski and Popiel [28] and Hardalupas et al. [5].
For the root-mean-squared velocities, the modified k-ε produced spreading rates that more
closely matched the experiments at all sampling locations. There was no appreciable
difference in all sampling locations in adding a co-flow to the simulations. Considering all
this, it was decided to use the modified k-ε with a co-flow for all subsequent simulations
for the test cases of Lau and Nathan [11].
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Figure 6. CFD comparison of turbulence models and experiments for (a–c) mean and (d–f) root-
mean-squared velocity at 0.2D, 10D, and axial locations, respectively.

4.4. Lau and Nathan Results

As previously noted, there will be errors at the nozzle exit associated with the interpo-
lation method, and this also extends to the results of Lau and Nathan [11], as indicated in
Figure 7a,b. A more-laminar flow profile was realized for the mean particle velocity with a
higher mean velocity in the central region while decreasing rapidly towards the wall rela-
tive to the experimental results. That being said, it was observed that the overall trend when
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changing the Stokes number agreed with the experimental results. For example, the lowest
Stokes number had the highest mean particle velocity in the central region. Conversely,
the highest Stokes number had the lowest mean particle velocity for both the experiments
and numerical simulations (Figure 7a). At the location 10D, we observed a slightly steeper
slope for the mean particle velocities and a slightly higher root-mean-squared velocity
with the same slope. It is interesting to note that mean particle velocity changed at 10D
depending on the Stokes number. In contrast, in the experiments, the normalized mean
particle velocity minimally changed between the Stokes numbers. This could be attributed
to the errors at the nozzle exit, but this is difficult to postulate with confidence because we
did not experience this behavior with the test cases of Hardalupas et al. [5]. It was also
observed that, with increasing Stokes number, the associated Root-Mean-Squared Error
(RMSE) at 0D did not change significantly, but at 10D, there was an obvious decrease in
the error (Table 6).

Table 6. Root-mean-squared error for the simulation data of Lau and Nathan [11].

Simulation
Name

Up

/
Ug,b Up,rms

/
Up G

/
Gb

0.2D 10D 0.2D 10D 0.2D

Lau1 0.157 0.165 0.130 0.029 0.229
Lau2 0.139 0.126 0.114 0.040 0.117
Lau3 0.162 0.073 0.109 0.068 0.202
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Figure 7. Radial profiles of Lau and Nathan [11] for mean and root-mean-squared velocity and
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4.5. Coarse-Graining Results

Some DEM simulations use a large number of particles, upwards of six-million. This
would require a significant amount of compute cores to track and calculate all collisions
between particles. Furthermore, developing codes to have the ability to scale to a very
large amount of compute cores can be difficult because of the issues associated with the
slowed communication between compute nodes. To circumvent this, many researchers
have turned to coarse-graining methods. The essence of coarse-graining is that multiple
particles are represented as a single grain, and then, the grain is tracked through time.
This significantly decreases the number of trajectories tracked throughout the system
and, depending on the type of coarse-graining model, can reduce the number of tracking
points by ng = np

/
f 3
cg. We can see that, with a coarse-graining factor of 2, fcg = 2, the

example of 6-million particles reduced down to 750-thousand particles. This reduced the
overall computational cost significantly. Furthermore, additional computational savings
can be realized by increasing the integration time step, and the duration of the soft sphere
collisions will generally be smaller by several orders of magnitude [39].

As previously mentioned in Section 2.4, the type of coarse-graining used for this
analysis was first proposed by Radl et al. [40] and further expanded to include the Hertz
nonlinear contact model by Nasato et al. [41]. Radl et al. [40] concluded that the major
hurdle in using a coarse-graining approach is to correctly compute the collision rate and
inter-parcel or inter-grain stress, with there being no easy way to scale the interaction
parameters in an inertial flow regime [40]. This conclusion is significant because it will
be difficult to relate this current work’s collision frequencies, forces, and stresses from an
unscaled system (no coarse-graining) to a scaled (coarse-grained) one. That being said,
if the overall trends are followed, we may find the usefulness of coarse-graining in an
industrial application.

To optimize an industrial-scale unit, a statistical analysis needs to be performed on the
parameters, including the collision frequencies and forces acting on particles. Therefore, at
first glance, it would seem that coarse-graining should not be used in this type of setting
because of the disparity between inter-grain stresses from the unscaled to scaled system.
That being said, the goal of numerical simulations, and any experimental study for that
matter, is to find the optimum setup through an analysis of the changes in the geometric and
operating parameters. Since this is the ultimate practical goal, and it may not be necessary
to obtain the exact answers of the physical space; we can, for example, compare two
different geometries of an unscaled system to a scaled system using those same geometries.

To investigate the accuracy of coarse-graining, two sets of simulations with the same
operating parameters as the Hardalupas1 case were performed. The first set of simulations
was unscaled, while the second set was scaled. In each set, a plate was inserted at two
different axial locations: 5D and 15D relative to the nozzle exit, resulting in four simulations
in total. The collision frequencies and force statistics applied to the particles when they
hit the plate for both the 5D and 15D cases were then output. The ratio of the results
obtained from the 5D and 15D simulations was calculated and compared to the ratios
between the scaled and unscaled systems to determine the accuracy of coarse-graining.
We then analyzed the collision frequencies and mean/variances of the normal/tangential
forces for all collisions (Figure 8a) and also analyzed the results grouped by location with
intervals of 0.5D on the plate. These results were then used to determine whether the
coarse-graining method accurately predicted the results that followed the simulation trend
of an unscaled system.
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3.5D

(a)

0.5D

(b)

Figure 8. A snapshot in time showing particles contacting the plate: (a) all collisions on a full plate
(3.5D radius) and (b) collisions grouped by concentric regions with a 0.5D width.

The ratios we compared for collision frequencies are given by

ratioc f ,cg0 =
CFcg0,5D

CFcg0,15D
, ratioc f ,cg2 =

CFcg2,5D

CFcg2,15D
(25)

where CFcg0,5D and CFcg0,15D are the collision frequencies for the unscaled DEM method for
simulations with 5D and 15D plates, respectively. CFcg2,5D and CFcg2,15D are the collision
frequency for the scaled system with a coarse-graining factor of two for the simulations
with 5D and 15D plates, respectively. Similarly, for the force statistics, we have

ratioFn,CG0 =
Fn,cg0,5D

Fn,cg0,15D
, ratioFn,CG0 =

Fn,cg2,5D

Fn,cg2,15D
(26)

ratioFt,CG0 =
Ft,cg0,5D

Ft,cg0,15D
, ratioFt,CG0 =

Ft,cg2,5D

Ft,cg2,15D
(27)

The collision frequencies and force statistics were then output for all collisions (Figure 8a)
and concentric regions (Figure 8b), and the ratios and associated errors were calculated, as
shown in Table 7.

Table 7. Ratios of 5D and 15D collision frequencies and normal and tangential force statistics for
unscaled (CG0) and scaled (CG2) systems with their relative errors.

Ratio Col. Freq. Fn Mean Fn Var. Fn Skew Ft Mean Ft Var. Ft Skew

CG0 1.22 0.70 0.64 1.38 0.73 0.56 1.12
CG2 1.25 0.68 0.62 1.42 0.75 0.55 1.10
%Error 2.39 3.10 3.78 3.56 3.81 1.04 1.23

It should be noted, for completeness, that the percent error was calculated from the
traditional formula, given by

%Error =
100 ·

∣∣ratiocg0 − ratiocg2
∣∣

ratiocg0
(28)

When analyzing all the collisions acting on the plate, it was realized that there was an
error of less than 4% for all parameters, as indicated by Table 7. These results demonstrated
the accuracy in comparing the ratios of scaled to unscaled systems when analyzing all
collisions on the plate.

To further analyze the trends of particle collisions with the plate, the collisions were
independently considered within specific concentric regions on the plate, as shown in
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Figure 8b, and the same analysis of the collision frequency and force statistics was per-
formed.

In Figure 9, the relative errors are plotted between the scaled and unscaled system
ratios for each region. A slightly different conclusion than when analyzing all collisions can
be realized. The majority of the mean values had an error less than 10% with the only region
above being at r

/
d = 3.25 with an error of just above 20%. The highest errors in the force

statistics were the variance errors, which were in line with the collision frequency errors;
most errors were observed in regions where the collision frequency was low. To investigate
this further, Figure 9b shows individual collision frequencies for both unscaled and scaled
systems at 5D and 15D plate positions with the corresponding collision frequency ratio
relative errors. It was realized that the collision frequency was high near the center region
with a much lower percentage error. Conversely, the collision frequency was lowest in
the outer regions with a relatively high percentage error. Considering all this, along with
the very low error of less than 4% for all collisions, it can be concluded that we achieved
a relative accuracy that provided significant results for the practical application of an
industrial flow problem.
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Figure 9. Percent Error (a) between ratios of CG0 and CG2 and collision frequencies and (b) Percent
Error for the collision frequency.

A Kernel Density Estimate plot (KDE) was then used to visualize the distribution of
the collisions on the plate (Figure 10). This plot uses a Gaussian smoothing algorithm to
estimate the probability density function. This allowed the visualization of the distribution
of the particle impacts across the plate. It was realized that the probability of particle
collisions between CG = 0 and CG = 2 was very comparable with the largest difference
towards the outer regions, as demonstrated when comparing at location 15D (Figure 10b,d).
This reassuringly confirmed the use of coarse-graining for an industrial flow optimization
problem.

Of special interest is comparing the flow profiles both inside of the nozzle and outside
of the jet. This could be beneficial in future simulations because, if flow development occurs
sooner for coarse-graining, that would further reduce the computational cost by allowing a
shorter nozzle.

Very little difference in the length of the full development for the particles (Figure 11)
in all parameters was observed. Furthermore, it was realized that there was also very little
difference between the scaled and unscaled systems in the jet stream for all fields, with the
highest error being observed for the root-mean-squared velocity (Figure 12).
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Figure 10. A kernel density estimate plot for collision frequency on the plate in the (a) unscaled 5D,
(b) unscaled 15D, (c) scaled 5D, and (d) scaled 15D simulations.

If the desire is to optimize an industrial unit, then the goal is to pinpoint a design that
performs better than another. Therefore, from a practical standpoint, if relatively accurate
answers are achieved that follow the same trends as the changes in the design of a physical
system, then the goal can be reached from purely numerical simulations alone. With that in
mind, coarse-graining is deemed a very useful tool in the optimization of an industrial unit
for high-speed jet flows because of the significant reduction in the simulation cost. That
being said, these results and conclusions should not be realized for other types of systems,
in particular systems with a large amount of particle–particle collisions in a semi-quasi
steady state inertial system that significantly dictates the bulk flow behavior. It is worth
acknowledging that the authors express a high level of confidence in their ability to employ
coarse-graining techniques when dealing with Reynolds and Stokes numbers that fall
within the range of those tested. However, it is imperative to conduct additional testing for
values that lie outside of this range to ensure the validity of the results.
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Figure 11. Flow profiles for particles’ (a,b) mean and (c,d) root-mean-squared velocity and (e,f)
number flux at locations 0D and negative 5D, 10D, 15D, 20D, 25D, 30D, 35D, and 40D relative to the
nozzle exit for CG0 and CG2, respectively.
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Figure 12. Mean and root-mean-squared particle velocity and particle number flux for locations 0D,
2D, 4D, 6D, 8D, 10D, 12D, and 14D relative to the nozzle exit.

5. Conclusions

This paper performed fully coupled CFD-DEM simulations and validated them against
two different experimental studies, namely Hardalupas et al. [5] and Lau and Nathan [11].
The coupling parameters, models, and operating conditions were all considered. However,
issues were encountered with the interpolation method used in the fully coupled simu-
lations, which produced a more laminar profile shape for the particles at the nozzle exit.
Future work can investigate this issue further.

For the test cases of Hardalupas et al. [5], a Stokes number of 50 can be trusted up
to 10D from the nozzle exit and a Stokes number of 10.27 can be trusted up to 20D if
only the mean and particle number fluxes are desired. The modified k-epsilon models
were consistent with the single-phase results of Lau and Nathan [11], providing further
validation of the previous work [27]. For the test cases of Lau and Nathan [11] at 10D, there
was a slightly steeper slope for the mean particle velocity with a higher root-mean-squared
velocity. Overall, it was concluded that the CFD-DEM’s accuracy generally increased with
increasing Stokes number up to 50, based on both studies.

Finally, it is noted that coarse-graining is a useful method for practical applications
such as the optimization of industrial-scale units, where relative results between designs
are desired. However, if the goal is to measure the total energy dissipation of a single
experiment, coarse-graining falls short.



Fluids 2023, 8, 215 24 of 29

Author Contributions: Conceptualization, D.S.W. and S.M.; methodology, D.S.W. and S.M.; software,
D.S.W.; validation, D.S.W.; formal analysis, D.S.W. and S.M.; investigation, D.S.W. and S.M.; resources,
S.M.; data curation, D.S.W.; writing—original draft preparation, D.S.W.; writing—review and editing
S.M. and D.S.W.; visualization, D.S.W.; supervision, S.M.; project administration, S.M.; funding
acquisition, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported and funded by the MITACS Accelerate program and Disa
Technologies™ (Contract No. IT23227). We gratefully acknowledge the computing support of
Compute Canada via their WestGrid program and the ARC group at the University of British
Columbia for providing the access to the Sockeye cluster.

Data Availability Statement: The cases, models, and data solutions can be made available by
contacting the corresponding author.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or
interpretation of the data; in the writing of the manuscript; nor in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ε f liquid volume fraction, Vf
/

Vp
Vf volume of fluid inside of a cell
Vc volume of the cell
Vs particle or solid volume in the cell
ρ f density of the fluid
ρp density of the particle
u f velocity of the liquid
us average solid velocity inside of the cell
up particle velocity

switch
variable to change between Model A (Set II) and Model B (Set I) of the CFD-DEM
formulation

p pressure
τ liquid phase stress tensor
Ksl implicit momentum coupling term
f explicit force term
∑ F̄d summation of all forces inside of a cell
k fluid turbulent kinetic energy
ε fluid turbulent dissipation
ν fluid viscosity
νt fluid turbulent viscosity
σk k-ε constant
σε k-ε constant
Cε1 k-ε constant
Cε2 k-ε constant
Sij deviatoric part of the fluid stress tensor
δij Kronecker delta
mp particle mass
g gravity vector
f∇p pressure force
f∇·τ viscous force
fl lift force acting on the particle
fp−p particle–particle interaction force
fp−w particle–wall interaction force
fdrag drag force
Ip moment of inertia of the particle
ωp rotational velocity of the particle
Tp torque acting on the particle
Fn

c normal contact force
Ft

c tangential contact force
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kn normal stiffness coefficient
γn normal damping coefficient
δn normal overlap distance
vrn normal relative velocity
kt tangential stiffness coefficient
γt tangential damping coefficient
δt tangential overlap distance
vrt tangential relative velocity
βp used for the calculation of drag to further simplify the equation
ur relative velocity between the fluid and the solid, u f − us
Cd the coefficient of drag
dg diameter of the grain
fcg coarse-graining factor
η f shape factor
Rep particle Reynolds number
φp particle shape factor
ν f fluid viscosity
E∗ equivalent Young’s modulus
R∗ equivalent particle radius
R1 , R2 particle radius on collision
E1 , E2 particle Young’s modulus for collisions
ν1 , ν2 Poisson’s ratio for collisions
Rg grain (parcel) radius
Rp particle radius
CG0 unscaled (no coarse-graining) system
CG2 coarse-graining factor of 2
y+ non-dimensional wall distance

u+
non-dimensional velocity defined as the near-wall velocity divided
by the shear velocity

CFcg0,5D collision frequency statistic for unscaled system using 5D plate
CFcg0,15D collision frequency statistic for unscaled system using 15D plate
CFcg2,5D collision frequency statistic for scaled system using 5D plate
CFcg2,15D collision frequency statistic for scaled system using 15D plate
Fn,t,cg0,5D normal or tangential force statistic for unscaled system using 5D plate
Fn,t,cg0,15D normal or tangential force statistic for unscaled system using 15D plate
Fn,t,cg2,5D normal or tangential force statistic for scaled system using 5D plate
Fn,t,cg2,15D normal or tangential force statistic for scaled system using 15D plate

Appendix A

Dimensional analysis was used for the stiffness and damping coefficients to scale from
the particles to the grains. The normal and tangential stiffness coefficients in the Hertz
model are provided in the work of Di Renzo and Di Maio [36,37] and given, respectively, by

kn,p =
4
3

E∗
√

R∗pδn,p (A1)

kt,p = 8G∗
√

R∗pδn,p (A2)

1/E∗ =
(

1− ν2
1

)
/E1 +

(
1− ν2

2

)
/E2

R∗ = 1/R1 + 1/R2

1
G∗

=
2(2− v1)

(
1− v2

2
)

E1
+

2(2− v2)(1 + v2)

E2

(A3)
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where E∗ is the equivalent Young’s modulus, R∗ is an equivalent radius, δn is the normal
overlap, G∗ is an equivalent shear modulus, ν is Poisson’s ratio, E is Young’s modulus, and
R is the particle radius. Scaling particle radius by the factor fcg, we obtain

Rg = fcgRp (A4)

⇒ R∗g = fcgR∗p, δn,g = fcgδn,p (A5)

Plugging Equation (A5) into Equations (A1) and (A2), we obtain the scaled stiffness coeffi-
cients, given by

kn,g =
4
3

E∗
√

R∗gδn,g = fcg
4
3

E∗
√

R∗pδn,p = fcgkn,p (A6)

kt,g = 8G∗
√

R∗gδn,g = fcg8G∗
√

R∗pδn,p = fcgkt,p (A7)

As shown by Equations (A6) and (A7), the stiffness coefficients are merely scaled by fcg.
The damping coefficients γn,p, γt,p for the nonlinear Hertz–Mindlin model are given in Hu
et al. [57] by

γn,p = −2

√
5
6

β
√

Sn,pm∗p > 0 (A8)

γt,p = −2

√
5
6

β
√

St,pm∗p > 0 (A9)

Sn,p = 2E∗
√

R∗pδn,p (A10)

St,p = 8G∗
√

R∗pδn,p (A11)

1
/

m∗p = 1
/

m1,p + 1
/

m2,p (A12)

β =
ln(en)√

ln2(en) + π2
(A13)

Plugging Equation (A5) into Equations (A10) and (A11), we demonstrate that Sn,p and St,p
are also scaled by fcg:

Sn,g = 2E∗
√

R∗gδn,g = fcg2E∗
√

R∗pδn,p = fcgSn,p (A14)

St,g = 8G∗
√

R∗gδn,g = fcg8G∗
√

R∗pδn,p = fcgSt,p (A15)

To then calculate the scaling for the damping coefficient, we first needed to determine
the mass. We know that density is constant from the particles to the grains, so to obtain the
mass, we multiplied the density by the volume of the particle.

mp = ρp
4
3

π
(

R3
p

)
(A16)

Plugging Equation (A5) into (A16), we obtain the grain mass by

mg = ρp
4
3

π
(

R3
g

)
= ρp

4
3

π
(

f 3
cgR3

p

)
= f 3

cgmp (A17)

Given Equation (A12), we can then infer that the equivalent mass scales by

m∗g = f 3
cgm∗p (A18)
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We can now calculate the scaled damping coefficients in the normal and tangential
directions by plugging Equations (A14), (A15), and (A18) into Equations (A8) and (A9) and
show that the damping coefficient is scaled by f 2

cg.

γn,g = −2

√
5
6

β
√

Sn,gm∗g = −2

√
5
6

β
√

f 4
cgSn,pm∗p = f 2

cgγn,p (A19)

γt,g = −2

√
5
6

β
√

St,gm∗g = −2

√
5
6

β
√

f 4
cgSt,pm∗p = f 2

cgγt,p (A20)

Based on the non-dimensional analysis work of Radl et al. [40] and Nasato et al. [41],
a linear spring–dashpot model does not have a nonlinear function of particle radius, but
only constant values for the stiffness and damping coefficients. We observed that, after
scaling the grains’ radius, there was no need to additionally scale both the stiffness and
damping parameters because they already scaled with fcg and f 2

cg, respectively. Therefore,
merely the particle radius was scaled by the coarse-graining factor.
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