
Citation: Viquerat, J.; Hachem, E.

Parallel Bootstrap-Based On-Policy

Deep Reinforcement Learning for

Continuous Fluid Flow Control

Applications. Fluids 2023, 8, 208.

https://doi.org/10.3390/fluids8070208

Academic Editors: Ivette Rodríguez

and D. Andrew S. Rees

Received: 17 May 2023

Revised: 5 July 2023

Accepted: 11 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Parallel Bootstrap-Based On-Policy Deep Reinforcement
Learning for Continuous Fluid Flow Control Applications
Jonathan Viquerat * and Elie Hachem

MINES Paristech, CEMEF, PSL—Research University, 06904 Sophia Antipolis, France;
elie.hachem@mines-paristech.fr
* Correspondence: jonathan.viquerat@mines-paristech.fr

Abstract: The coupling of deep reinforcement learning to numerical flow control problems has
recently received considerable attention, leading to groundbreaking results and opening new per-
spectives for the domain. Due to the usually high computational cost of fluid dynamics solvers, the
use of parallel environments during the learning process represents an essential ingredient to attain
efficient control in a reasonable time. Yet, most of the deep reinforcement learning literature for flow
control relies on on-policy algorithms, for which the massively parallel transition collection may break
theoretical assumptions and lead to suboptimal control models. To overcome this issue, we propose a
parallelism pattern relying on partial-trajectory buffers terminated by a return bootstrapping step,
allowing a flexible use of parallel environments while preserving the on-policiness of the updates.
This approach is illustrated on a CPU-intensive continuous flow control problem from the literature.

Keywords: deep reinforcement learning; flow control; proximal policy optimization; parallel
environments; bootstrapping

1. Introduction

Deep neural networks (DNNs) have become a pervasive approach in a large variety
of scientific domains in the course of the last decade, achieving multiple breakthroughs in
domains such as image classification tasks [1,2], speech recognition [3] or generative tasks [4,5].
Thanks to cheaper hardware and generalized access to large computational resources, such
advances have led to a general evolution of the reference methods at both academic and
industrial levels.

Among these developments, decision-making techniques have largely benefited form
the coupling of DNNs with reinforcement learning algorithms (called deep reinforcement
learning, or DRL), due to their feature extraction capabilities and their ability to handle high-
dimensional state spaces. Unprecedented efficiency has been achieved in many domains
such as robotics [6], language processing [7], or games [8,9], but also in the context of
industrial applications [10–12].

In recent years, DRL-based approaches have made their way into the domain of flow
control, with an increasing amount of contributions on varied topics such as (but not limited
to) drag reduction [13], collective swimming [14] or heat transfers [15]. Although a handful
of couplings of DRL with experimental setups were reported, most contributions make use of
numerical environments relying on computational fluid dynamics (CFD) solvers [16,17], making
the performance of the latter an important lever for the successful learning of a control strategy
by a DRL agent. Yet, in order to control processes of increasing computational loads, the use of
parallel environments to accelerate the sample collection between agent updates also appears as
a key ingredient, allowing to further exploit existing resources and reducing the time-to-control
(here defined as the computational time required to reach efficient control). In 2019, such setup
was introduced by Rabault and Kuhnle in the context of flow control for the drag reduction on
a cylinder at low Reynolds number [18]. In this contribution, the authors showed that, for a
configuration where the CFD time represents almost 100% of the time-to-control, using a parallel

Fluids 2023, 8, 208. https://doi.org/10.3390/fluids8070208 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8070208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://doi.org/10.3390/fluids8070208
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8070208?type=check_update&version=2


Fluids 2023, 8, 208 2 of 16

collection of samples could yield an excellent speedup up to the point where the number of
parallel environments (hereafter denoted as nenv) becomes equal to the number of full episodes
used for a single update (hereafter denoted as nupdate, in this case equal to 20 episodes). Pushing
the parallelization process beyond this point resulted in “over-parallelization” (sic) and led to
observable flat steps in the learning process (see [18], Figure 4).

Although efficient, the approach introduced above comprises two major drawbacks. First,
the “over-parallelization process” inherently leads to off-policy updates of the agent (i.e., the
agent is trained with samples produced by a previous policy), which introduces bias in the
policy gradient estimates and increases the risk of the agent falling into local optima. While
importance sampling corrections could be used to account for the discrepancy between the
current policy and the behavior policy, such an approach is known to introduce large variance in
the estimate and require additional tuning [19,20]. Second, in order to take maximum advantage
of the parallel sample collection, this approach constrains the size of the buffer update to be
(i) a multiple of the number of transitions within an episode, and (ii) a multiple of the number of
parallel environments. These two points may lead either to a suboptimal control model or to a
suboptimal use of the available computational resources. To overcome these issues, we propose
an update approach based on partial trajectories terminated by a return bootstrapping step to
mimic a continuing environment (i.e., the last reward of each parallel update buffer is modified
to account for the continuous nature of the control task). The concept of partial trajectories is not
new and was, for example, presented by Schulman in the original proximal policy optimization
(PPO) paper (see [21], Section 5), while the bootstrapping method was originally proposed by
Pardo et al. [22]. As will be shown below, the combination of these two approaches allows us
to design a flexible parallel sample collection pattern, while retaining the on-policiness of the
PPO algorithm (i.e., the agent is trained with samples produced by the current policy). This
represents a major asset in the context of fluid flow control, where efficient parallel sample
collection eventually allows the control of complex, CPU-intensive environments.

The present paper is organized as follows: in Section 2.1, a short reminder of the basics
of on-policy DRL algorithms and proximal policy optimization is provided. Then, a recall is
made on the bootstrapping technique in Section 2.3, after which the proposed bootstrapped
partial trajectories approach is detailed in Section 2.4. To benchmark the proposed method, a
continuous flow control case from the literature is presented in Section 3 (namely the control of
a falling fluid film, adapted from [23]). This case is then exploited in Section 4 to benchmark
(i) the interest of bootstrapping and (ii) the proposed parallel paradigm. Finally, conclusions
and perspectives are given.

2. Parallel Bootstrap-Based on-Policy Deep Reinforcement Learning
2.1. On-Policy DRL Algorithms

Policy-based methods maximize the expected discounted cumulative reward of a
policy π(a|s) mapping states to actions, resorting to a probability distribution over actions
given states. Among these techniques, two types of algorithms must be differentiated:

� on-policy algorithms usually require that the samples they use for training are generated
with the current policy. In other words, after having collected a batch of transitions using
the current policy, these data are used to update the agent and cannot be re-used for
future updates;

� off-policy algorithms are able to train on samples that were not collected with their current
policy. They usually use a replay buffer to store transitions, and randomly sample mini-
batches from it to perform updates. Hence, samples collected with a given policy can be
re-used multiple times during the training procedure.

Although off-policy algorithms naturally exhibit a better sample efficiency, their stability
is not guaranteed, and, as of today, they have not yet made their way in the DRL-based flow
control domain [17]. Contrarily, although less sample-efficient, on-policy algorithms present
good stability properties, ease of implementation and tuning, and are widely represented in
the field of DRL-based flow control. By focusing on on-policy algorithms, the present study



Fluids 2023, 8, 208 3 of 16

can deliver more useful insights to the community. In the following section, we focus on the
details of the well-known PPO algorithm [21].

2.2. Proximal Policy Optimization (PPO)

The PPO algorithm belongs to the class of actor-critic methods [24], in which an actor
provides actions based on observations by sampling from a parameterized policy πθ, while a
critic is devoted to evaluate the future expected discounted cumulative reward. The standard
loss used to update the actor network reads:

L(θ) = E
τ∼πθ

[
T

∑
t=0

log(πθ(at|st))Aπθ (st, at)

]
,

where Aπθ (s, a) is the advantage function, that represents the improvement in the expected
cumulative reward when taking action a in state s, compared to the average of all possible
actions taken in state s. The advantage function is evaluated thanks to the rewards collected
from the environment, and the evaluation of the value function is provided by the critic.
Although displaying good performance, vanilla actor-critic techniques displayed a high
sensitivity to the learning rate, with small learning rates implying slow learning, while
large learning rates leading to possible performance collapses. To overcome these issues,
the proximal policy optimization [21] uses a simple yet effective heuristic that helps avoid
destructive updates. Namely, it relies on a clipped surrogate loss:

L(θ) = E
(s,a)∼πθold

[
min

(
πθ(a|s)

πθold(a|s) , g
(
ε, Aπθold (s, a)

))
Aπθold (s, a)

]
,

where

g(ε, A) =

{
(1 + ε)A if A ≥ 0,
(1− ε)A if A < 0,

and ε is the clipping range, a small user-defined parameter defining how far away the new
policy is allowed to go from the old one. Due to its improved learning stability and its relatively
robust behaviour with respect to hyper-parameters, the PPO algorithm has received considerable
attention in the DRL community, including in the context of flow control [17].

It seems worth noting that, in practice, although PPO is considered an on-policy method
in the sense that it does not make use of a replay buffer, it is not strictly on-policy, as the
collected transitions will be used for multiple epochs in the course of a single update before being
discarded. This fact leads a part of the community to label PPO as an off-policy method, which
is fundamentally correct, although in essence the method is fundamentally different from
state-of-the-art off-policy methods such as deep deterministic policy gradients-like methods
(DDPG [25], TD3 [26]).

2.3. Bootstrapping

DRL methods can be used either to tackle episodic or continuous tasks. In episodic tasks,
the agent has a limited amount of time to successfully reach a given goal, the provided time
limit being an intrinsic characteristic of the problem (for example, the case of a robotic arm
moving an object from an initial position to a final position). In continuous tasks, the time
limit is often arbitrary, the control being supposed to run indefinitely (for example, the case of
active drag reduction around an obstacle). In the case of continuous control, the time limit is
set only so the environment can be regularly reset during the training, leading to an improved
diversity of samples and a good representation of all the stages of control. In the context of
on-policy algorithms such as PPO, this distinction leads to a subtle yet capital difference in
the way the advantage buffer must be terminated when an episode is ended for a time-out
reason [22]. Traditionally, once an episode is terminated, the advantage vector is assembled
using the reward vector r collected from the environment during the episode, the estimated
value vector v̂πθ that estimates the discounted cumulative reward starting from a given state



Fluids 2023, 8, 208 4 of 16

until the end of the episode, and the termination mask m, whose values are equal to 1 for each
non-terminal state, and 0 for terminal states (so on a single episode, the termination mask is
typically a vector of 1 terminated with a 0). Then, the advantage vector can be assembled as
shown in Algorithm 1.

Algorithm 1 Traditional advantage vector assembly

1: given: the reward vector r
2: given: the value vector v̂πθ

3: given: the termination mask m
4: for t = 0, nsteps − 1 do
5: yt = rt if st is terminal else yt = rt + γv̂πθ

(st+1)
6: end for
7: for t = nsteps − 2, 0 do
8: yt = yt + γmtyt+1
9: end for

10: A = y− v̂πθ

The computed advantage vector is later used in the computation of the actor loss (here, the
computation of the standard advantage function is presented for simplicity, yet the comments
made in this section still hold for more complex advantage functions, such as the generalized
advantage estimate [27], for example). Yet, the Algorithm 1 does not account for terminations
due to time limits in the context of continuous tasks. Hence, when trained, providing such an
advantage vector to the agent does not account for the possible future rewards that could have
been experienced if a different arbitrary time limit had been used. Moreover, this approach
inherently brings a credit attribution problem: reaching a similar state in the course of an episode
or on a time-out termination would lead to very different outcomes that would be evaluated
with the same inaccurate value function estimate v̂πθ

(st), thus leading to a degraded learning
process. However, a fairly simple remedy called bootstrapping consists in replacing the “if st
is terminal” condition of Algorithm 1 by “if st is terminal and not a time-out”. Indeed, one
can clearly see from Algorithm 1 at line 8 that modifying the final target value yt in the case
of a time-out (i.e., t = T) will modify all the previous target values yt<T, thus having a large
impact on the actor update, and eventually leading to a significant performance improvement.
Experiments using bootstrapping alone in the context of continuous flow control tasks are
presented in Section 4.1. Additional results on regular benchmark control tasks from the GYM

and MUJOCO packages are also provided in Appendix A.

2.4. Parallel Bootstrap-Based Learning

In the context of CPU-expensive CFD environments, speeding up the training of DRL
agents by harnessing the capabilities of parallelism can lead to substantial gains in computa-
tional resources. Although this can be accomplished by exploiting the inner parallelism of
the CFD computation itself, collecting data from environments running in parallel is also a
well-known technique that has largely spread in the community. In the context of the coupling
of CFD environments with DRL, such improvement represents a key ingredient for the dis-
covery of efficient control laws, as the environment can represent from 80% to more than 99%
of the computational time. In [18], the authors consider a 2D drag reduction case using the
PPO algorithm, setting the update frequency of their agent to nupdate = 20 episodes. Using an
asynchronous parallelism of the environments, the authors report an excellent speedup up
to nenv = 20 parallel environments, and a decent performance improvement up to 60. Yet,
for nenv > nupdate, a fraction of the updates are naturally performed in an off-policy way,
due to the fact that the samples used were produced using a different policy than the one
being updated. Although an appreciable speedup is still observed, this choice can lead to
a degraded learning, as will be evidenced in Section 4.2. Here, we propose to exploit the
bootstrapping technique presented above to design a synchronous parallel paradigm that
respects the on-policy nature of PPO.



Fluids 2023, 8, 208 5 of 16

The proposed method is illustrated in Figure 1 for a simple configuration: a regular
episode consists of four transitions, and for this example it is decided that an update of the
agent requires nupdate = 2 full episodes, or eight transitions. For nenv = 1, two episodes are
unrolled sequentially between each update. For nenv = 2, transition sampling is effectively
sped up while retaining the same update pattern, as two full episodes can be collected between
each agent learning step. However, when reaching nenv = 4, four full episodes are collected at
once, and are then used to form two update buffers. While the first update will be on-policy,
the second one will violate the on-policiness of the method, leading to possibly sub-optimal
control. The proposed partial-trajectory approach holds two major differences: first, all
collected transition buffers are terminated with a return bootstrap step; second, in the case of
nenv = 4, only two transitions are unrolled for each environment, and a first buffer update
is formed using four partial bootstrapped trajectories. Once the update is performed, the
second half of the episodes is unrolled using the updated policy, forming a second update
buffer used for a second on-policy update. For convenience, in the remainder of this paper,
we call the first kind end-of-episode (EOE) bootstrapping, while the second kind is designated as
partial-trajectory (PT) bootstrapping. Regarding the implementation of these features, adding
EOE bootstrapping to an existing actor-critic code requires only minimal modifications, while
PT bootstrapping requires a larger amount of modifications in the unrolling process.

In the context of real environments, this approach leads to an important flexibility, as (i) it
does not need to collect full episodes to perform updates, (ii) it allows for better exploitation of
parallel environments, and (iii) it preserves the on-policiness of the PPO algorithm. While it is
important to notice that this method relies on a proper evaluation of the value function at the
states at which bootstrapping is applied, our experiments show that the learning of the value
function in the early steps of the process is sufficient for the method to bring an important
benefit over the vanilla approach.

1 env
(sequential)

2 envs
(parallel)

4 envs
(parallel)

On-policy update

Off-policy update

On-policy update

On-policy update

Sample collection Regular buffer Bootstrapped buffer

Figure 1. Illustration of the use of fixed-length trajectory buffers with bootstrapping in the context of
parallel sample collection, assuming that an update requires the unrolling of two full episodes. The red
dots indicate end-of-episode bootstrapping, while black dots indicate partial-trajectory bootstrapping.

3. Continuous Flow Control Application

To illustrate the interest of the approach introduced in the previous section, a continuous
flow control case from the literature is considered. To present meaningful results, the authors
chose an environment for which the CPU cost of the unrolling is significantly higher than the
training of the agent (typically around 96% of the total CPU time). To illustrate, the repartition
of the CPU time of these two cases is compared with that of the well-known PENDULUM-V1
environment in Figure 2. This section is devoted to the description of the cases, while the
corresponding results are shown in Section 4.



Fluids 2023, 8, 208 6 of 16

env. training others
0

50

100

(a) PENDULUM-V1 environment

env. training others
0

50

100

(b) Shkadov environment

Figure 2. Comparison of the CPU cost between the simple PENDULUM-V1 environment and the CPU-
intensive task considered in this study. The “environment” part covers the stepping, the reward computa-
tion and the construction of the observations. The “training” part covers the data movements required
for the construction of the training buffers, as well as the loss computation and the back-propagation.
The “others” part covers all the remaining tasks, including mostly buffer management and handling of
the parallelism.

3.1. Control of Instabilities in a Falling Fluid Film

The considered case concerns the control of growing instabilities developing in a 1D
falling fluid film perturbed with random noise, for which a simplified, two-equations
model for this setup was proposed in 1967 by Shkadov [28]. Although it was found to lack
some physical consistency [29], this model displays interesting spatio-temporal dynamics
while remaining acceptably cheap to integrate numerically. It simultaneously evolves the
flow rate q as well as the fluid height h as:

∂th = −∂xq,

∂tq = −6
5

∂x

(
q2

h

)
+

1
5δ

(
h(1 + ∂xxxh)− q

h2

)
,

(1)

with all the physics of the problem being condensed in the δ parameter:

δ =
1

15

(
3Re2

W

) 1
3

, (2)

where Re and W are the Reynolds and the Weber numbers, respectively, defined on the
flat-film thickness and the flat-film average velocity [30]. The system (1) is solved on a 1D
domain of length L, with the following initial and boundary conditions:

q(x, 0) = 1 and h(x, 0) = 1,

q(0, t) = 1 and h(0, t) = 1 + U (−ε, ε),

∂xq(L, t) = 0 and ∂xh(L, t) = 0,

(3)

with ε� 1 being the noise level. As shown in Figure 3, the introduction of a random uniform
noise at the inlet triggers the development of exponentially growing instabilities (blue region)
which eventually transition to a pseudo-periodic behavior (orange region). Then, the periodicity
of the waves break, and the instabilities turn into into pulse-like structures, presenting a steep
front preceded by small ripples [31]. It is observed that some of these steep pulses, called
solitary pulses, travel faster than others, and can capture upstream pulses in coalescence events.
The dynamics of these solitary pulses are fully determined by the δ parameter, while the
location of the transition regions also depends on the inlet noise level [30].



Fluids 2023, 8, 208 7 of 16

Fluids 2023, 1, 0 7 of 17

(blue region) which eventually transition to a pseudo-periodic behavior (orange region).
Then, the periodicity of the waves break, and the instabilities turn into into pulse-like
structures, presenting a steep front preceded by small ripples [31]. It is observed that
some of these steep pulses, called solitary pulses, travel faster than others, and can capture
upstream pulses in coalescence events. The dynamics of these solitary pulses are fully
determined by the δ parameter, while the location of the transition regions also depends on
the inlet noise level [30].

0 50 100 150 200 250 300 350 400 450 500

1

2

3

x

h

Figure 3. Example of developed flow for the Shkadov equations with δ = 0.1. Three regions can
be identified: a first region where the instability grows from a white noise (blue), a second region
with pseudo-periodic waves (orange), and a third region with non-periodic, pulse-like waves (green).

The control environment proposed here is re-implemented based on the original
publication of Belus et al. [23], although with some significant differences, noted hereafter.
It is important to notice that the translational invariance feature introduced in [23] is not
exploited here. Equations (1) are discretized using a finite difference approach. Due to the
existence of sharp gradients, the convective terms are discretized using a TVD scheme with
a minmod flux limiter. The discretized third-order derivative is obtained by chaining a
second-order centered difference for the second derivative, chained with a second-order
forward difference, leading a second-order approximation. Finally, the time derivatives
are discretized using a second-order Adams-Bashforth method. The convergence of the
numerical discretization is tested on a manufactured solution in appendix B.

The control of the system (1) is performed by adding a forcing term δqj to the equation
driving the temporal evolution of the flow rate. In practice, this is achieved by adding
localized jets at certain positions in the domain, as shown in figure 4, which strengths are
to be controlled by the DRL agent. The first jet is positioned by default at x0 = 150, with jet
spacing being by default set to ∆xjets = 10, similarly to [23]. To save computational time,
the length of the domain is a function of the number of jets njets and their spacing:

L = L0 +
(
njets + 2

)
∆xjets. (4)

By default, L0 = 150 (which corresponds to the start of the pseudo-periodic region for
δ = 0.1), and njets is set equal to 1. The spatial discretization step is set as ∆x = 0.5, while
the numerical time step is ∆t = 0.005. The inlet noise level is set as ε = 5× 10−4, similarly
to [23]. The injected flow rate δqj has the following form:

δqj(x, t) = Auj(t)
4
(

x− xl
j

)(
xr

j − x
)

(
xr

j − xl
j

)2 , (5)

with A = 5 an ad-hoc non-dimensional amplitude factor, xl
j and xr

j the left and right
limits of jet j, and uj(t) ∈ [−1, 1] the action provided by the agent. Expression (5) corre-
sponds to a parabolic profile of the jet in x, such that the injected flow rate drops to 0 on
the boundaries of each jet. The jet width xr

j − xl
j is set equal to 4, similarly to [23]. The time

Figure 3. Example of developed flow for the Shkadov equations with δ = 0.1. Three regions can
be identified: a first region where the instability grows from a white noise (blue), a second region
with pseudo-periodic waves (orange), and a third region with non-periodic, pulse-like waves (green).

The control environment proposed here is re-implemented based on the original
publication of Belus et al. [23], although with some significant differences, noted hereafter.
It is important to notice that the translational invariance feature introduced in [23] is not
exploited here. Equations (1) are discretized using a finite difference approach. Due to the
existence of sharp gradients, the convective terms are discretized using a TVD scheme with
a minmod flux limiter. The discretized third-order derivative is obtained by chaining a
second-order centered difference for the second derivative, chained with a second-order
forward difference, leading a second-order approximation. Finally, the time derivatives
are discretized using a second-order Adams-Bashforth method. The convergence of the
numerical discretization is tested on a manufactured solution in Appendix B.

The control of the system (1) is performed by adding a forcing term δqj to the equation
driving the temporal evolution of the flow rate. In practice, this is achieved by adding
localized jets at certain positions in the domain, as shown in Figure 4, whose strengths are
to be controlled by the DRL agent. The first jet is positioned by default at x0 = 150, with jet
spacing being by default set to ∆xjets = 10, similarly to [23]. To save computational time,
the length of the domain is a function of the number of jets njets and their spacing:

L = L0 +
(
njets + 2

)
∆xjets. (4)

By default, L0 = 150 (which corresponds to the start of the pseudo-periodic region for
δ = 0.1), and njets is set equal to 1. The spatial discretization step is set as ∆x = 0.5, while the
numerical time step is ∆t = 0.005. The inlet noise level is set as ε = 5× 10−4, similarly to [23].
The injected flow rate δqj has the following form:

δqj(x, t) = Auj(t)
4
(

x− xl
j

)(
xr

j − x
)

(
xr

j − xl
j

)2 , (5)

with A = 5 an ad-hoc non-dimensional amplitude factor, xl
j and xr

j the left and right limits of
jet j, and uj(t) ∈ [−1, 1] the action provided by the agent. Expression (5) corresponds to a
parabolic profile of the jet in x, such that the injected flow rate drops to 0 on the boundaries of
each jet. The jet width xr

j − xl
j is set equal to 4, similarly to [23]. The time dependance of u(t) is

implemented as a saturated linear variation from an action to the next one, in the form

uj(t) = (1− α(t))un−1
j + α(t)un

j , with α(t) = min
(

t− tn

∆tint
, 1
)

, (6)

Hence, when the actor provides a new action to the environment at time t = tn, the real
imposed action is a linear interpolation between the previous action un−1

j and the new action
un

j over a time ∆tint (here taken equal to 0.01 time units); after that, the new action is imposed
over the remaining action time ∆tconst (here taken equal to 0.04 time units). The total action



Fluids 2023, 8, 208 8 of 16

time-step is therefore ∆tact = ∆tint + ∆tconst, whose value is therefore equal to 0.05 time units.
The total episode time is fixed to 20 time units, corresponding to 400 actions.

0 50 100 150 200
0

0.5

1

1.5

2

x

h

Figure 4. Example of observation and reward computation areas for five jets. The jet strengths are
shown with green rectangles, while the observation areas (upstream of each jet) and reward areas
(downstream of each jet) are shown in purple and teal, respectively.

The observations provided to the agent are the mass flow rates collected in the union of
regions Aj

obs of length lobs = 10 located upstream of each jet, as shown in Figure 4. Contrarily
to the original article, the flow rates of this region are not provided to the agent, and the
observations are not clipped. The reward for each jet j is computed on a region Aj

rwd of length
lrwd = 10 located downstream of it (see Figure 4), the global reward consisting of a weighted
sum of each individual reward:

r(t) = − 1
lrwd njets

njets−1

∑
j=0

∑
x∈Aj

rwd

(h(x, t)− 1)2 (7)

Finally, each episode starts by randomly loading a fully developed initial state from a
pre-computed set. The latter were obtained by solving the uncontrolled equations from an
initial flat film configuration during a time tinit and comprise between 200 and 220 time units.

3.2. Default PPO Parameters

The default parameters used for the present study are presented in Table 1. A PPO agent
is used with separate networks for the actor and the critic, the actions being drawn from a
multivariate normal law with diagonal covariance matrix. While the critic network is a simple
feedforward network with two hidden layers of size 64, the actor network is made of a trunk
of size 64, with two branches composed of a single layer, each of size 64. The first branch
is terminated using a tanh layer, used to output the mean of the normal distribution, while
the second branch ends with a sigmoid layer, used to output the standard deviation of the
distribution. The actions drawn from the corresponding distribution are clipped in [−1, 1]d

before being mapped to their adequate physical range. The generalized advantage estimate [27]
is used, and the advantage vectors are normalized per rollout. Additionally, we underline that
the current parallel implementation is based on the message-passing interface (MPI), which
led to improved parallel speedups over shared-memory approach.



Fluids 2023, 8, 208 9 of 16

Table 1. Default parameters used in this study.

– agent type PPO-clip
γ discount factor 0.99
λa actor learning rate 5× 10−4

λc critic learning rate 2× 10−3

– optimizer adam
– weights initialization orthogonal
– activation (hidden layers) relu
– activation (actor final layer) tanh, sigmoid
– activation (critic final layer) linear
ε PPO clip value 0.2
β entropy bonus 0.01
g gradient clipping value 0.1
– actor network [64, [[64], [64]]]
– critic network [64, 64]
– observation normalization yes
– observation clipping no
– advantage type GAE

λGAE bias-variance trade-off 0.99
– advantage normalization yes

4. Results

In this section, we evaluate the interest of bootstrapping, as well as the performance of the
proposed parallel paradigm against the canonical parallel approach. First, we simply compare
the score curves obtained from sequential learning, with and without the end-of-episode
(EOE) bootstrapping step. Then, we investigate the performance of the partial-trajectory (PT)
bootstrapping parallel technique against the standard approach. Since they do not represent
the core of this contribution, results from the solved environment are proposed in Appendix C.

4.1. End-of-Episode Bootstrapping

First, we consider the sole impact of EOE bootstrapping on the agent training. To
do so, we compare the score curves obtained by training an agent in sequential mode on
both environments, with a “regular” ending (i.e., no EOE bootstrapping step) and with a
bootstrapped ending. As can be observed in Figure 5, EOE bootstrapping accelerates the
convergence of the agent while also reducing the variability in performance between the
different runs. On the Shakdov environment, it almost cuts by half the number of required
transitions to reach the maximal score. To illustrate further the benefits of EOE bootstrapping,
results on standard GYM environments are also presented in Appendix A. Similar conclusions
are drawn from these additional examples.

0 50k 100k 150k 200k

−3

−2

−1

0

transitions

sc
or

e

EOE bootstrapping
No bootstrapping

Figure 5. Comparison of score curves with and without end-of-episode bootstrapping in a sequential
learning context.



Fluids 2023, 8, 208 10 of 16

To better understand the effects of the EOE bootstrapping, the plots of the value loss and
value estimate along the course of training are proposed in Figure 6a,b, respectively. A signifi-
cantly lower value loss is observed, indicating that the EOE bootstrapping, by solving the credit
assignment issue [22], induces a smoother value landscape for the critic to learn. This results in
higher value estimates, which is expected due to the nature of the EOE bootstrapping procedure.

0 50k 100k 150k 200k

10−4

10−3

10−2

10−1

transitions

va
lu

e
lo

ss

EOE bootstrapping
No bootstrapping

(a) Evolution of the value loss during training

0 50k 100k 150k 200k
−0.6

−0.4

−0.2

0

transitions

va
lu

e
es

ti
m

at
e

EOE bootstrapping
No bootstrapping

(b) Evolution of the value estimate during training

Figure 6: Evolution of the value loss and value estimate during the course of training on the
Shkadov environment, with and without end-of-episode bootstrapping.

4.2 Bootstrap-based parallelism

This section focuses on the interest of the partial-trajectory (PT) bootstrapping technique for parallel
transitions collection proposed in section 2.4. To evaluate its interest, we consider the score curves
obtained on the Shkadov environment in different configurations, the number of parallel environments
ranging from 1 to 64 (see figure 7). First, we solve it with no bootstrapping at all (figures 7a and 7b),
then with EOE bootstrapping only (figures 7c and 7d), then with EOE and PT bootstrapping (figures
7e and 7f). In all three cases, the score curves are plotted both against walltime and transitions, in
order to visualize the parallel speedup obtained, as well as the relative performances using different
number of parallel environments. For the clarity of the following discussion, we remind that nenv
designates the number of parallel environments used to gather transitions, and nupdate the number of
full episodes to perform an update of the agent (here equal to 8). More, we introduce the notation
sM
n→m to designate the speedup observed for a parallel approach M when using m parallel environments

instead of n. Hence, for a perfect speedup, sM
n→m = m

n .

� For nenv ≤ nupdate, the performance remains stable in each of the three configurations. This
is expected, as the use of parallel environments only modifies the pace at which the updates
occur, but the constitution of the update buffers is the same as it would have been for nenv = 1.
Yet, the use of EOE bootstrapping leads to a faster convergence than the regular case, as was
already observed in previous section. More, as PT bootstrapping does not occur when full
episodes are used, figures 7d and 7f present similar results for nenv ≤ 8;

� For nenv > nupdate, a rapid decrease in convergence speed and final score is observed for
the regular approach, with nenv > 16, resulting in very poor performance (figure 7b). This
illustrates the reasons that motivated the present contribution, i.e. that the standard parallel
paradigm results in impractical constraints that prevents massive environment parallelism.
Introducing EOE bootstrapping (figure 7d) improves the situation by (i) generally speeding
up the convergence, and (ii) improving the final performance of the agents, although the final
score obtained for nenv = 32 remains sub-optimal, while that of nenv = 64 is poor. Additionally,
the ”flat steps” phenomenon described in [18] clearly appears for nenv = 32 and 64, with the
length of the steps being roughly equal to the number of transitions unrolled between two
updates of the agent. When adding PT bootstrapping (figure 7f), a clear improvement in
the convergence speed is observed even for large nenv values, and the gap in final performance
significantly reduces. The flat steps phenomenon is still observed in the early stages of learning
for nenv = 32 and 64, although with significantly reduced intensity.

� Similarly to [18], we observe decent speedups for nenv ≤ nupdate, with sEOE+PT
1→8 = 7.6, against

sregular
1→8 = 6.9. This difference is attributed to the additional buffering overhead required

in the regular approach, as more transitions are unrolled and stored between each update

10

Figure 6. Evolution of the value loss and value estimate during the course of training on the Shkadov
environment, with and without end-of-episode bootstrapping.

4.2. Bootstrap-Based Parallelism

This section focuses on the interest of the partial-trajectory (PT) bootstrapping tech-
nique for parallel transitions collection proposed in Section 2.4. To evaluate its interest,
we consider the score curves obtained on the Shkadov environment in different config-
urations, the number of parallel environments ranging from 1 to 64 (see Figure 7). First,
we solve it with no bootstrapping at all (Figure 7a,b), then with EOE bootstrapping only
(Figure 7c,b), then with EOE and PT bootstrapping (Figure 7e,f). In all three cases, the score
curves are plotted both against walltime and transitions in order to visualize the parallel
speedup obtained, as well as the relative performances using different numbers of parallel
environments. For the clarity of the following discussion, we remind the reader that nenv
designates the number of parallel environments used to gather transitions, and nupdate the
number of full episodes to perform an update of the agent (here equal to 8). Moreover, we
introduce the notation sM

n→m to designate the speedup observed for a parallel approach M
when using m parallel environments instead of n. Hence, for a perfect speedup, sM

n→m = m
n .

� For nenv ≤ nupdate,the performance remains stable in each of the three configurations.
This is expected, as the use of parallel environments only modifies the pace at which the
updates occur, but the constitution of the update buffers is the same as it would have been
for nenv = 1. Yet, the use of EOE bootstrapping leads to a faster convergence than the
regular case, as was already observed in previous section. Moreover, as PT bootstrapping
does not occur when full episodes are used, Figure 7d,f present similar results for nenv ≤ 8;

� For nenv > nupdate, a rapid decrease in convergence speed and final score is observed
for the regular approach, with nenv > 16, resulting in very poor performance (Figure 7b).
This illustrates the reasons that motivated the present contribution, i.e., that the standard
parallel paradigm results in impractical constraints, which prevents massive environment
parallelism. Introducing EOE bootstrapping (Figure 7d) improves the situation by (i)
generally speeding up the convergence, and (ii) improving the final performance of the
agents, although the final score obtained for nenv = 32 remains sub-optimal, while that
of nenv = 64 is poor. Additionally, the “flat steps” phenomenon described in [18] clearly
appears for nenv = 32 and 64, with the length of the steps being roughly equal to the
number of transitions unrolled between two updates of the agent. When adding PT



Fluids 2023, 8, 208 11 of 16

bootstrapping (Figure 7f), a clear improvement in the convergence speed is observed even
for large nenv values, and the gap in final performance significantly reduces. The flat steps
phenomenon is still observed in the early stages of learning for nenv = 32 and 64, although
with significantly reduced intensity.

0 20 40 60 80
−4

−3

−2

−1

0

training minutes

sc
or

e

1 env
2 envs
4 envs
8 envs
16 envs
32 envs
64 envs

(a) Score against walltime, no bootstrapping

0 50k 100k 150k 200k
−4

−3

−2

−1

0

transitions

(b) Score against transitions, no boot-
strapping

0 20 40 60 80
−4

−3

−2

−1

0

training minutes

sc
or

e

1 env
2 envs
4 envs
8 envs
16 envs
32 envs
64 envs

(c) Score against walltime, EOE bootstrapping only

0 50k 100k 150k 200k
−4

−3

−2

−1

0

transitions

(d) Score against transitions, EOE
bootstrapping only

0 20 40 60 80
−4

−3

−2

−1

0

training minutes

sc
or

e

1 env
2 envs
4 envs
8 envs
16 envs
32 envs
64 envs

(e) Score against walltime, EOE + PT bootstrapping

0 50k 100k 150k 200k
−4

−3

−2

−1

0

transitions

(f) Score against transitions, EOE +
PT bootstrapping

Figure 7: Score curves obtained for different number of parallel environments. (Top) With
no bootstrapping (Middle) With end-of-episode (EOE) bootstrapping only (Bottom) With EOE and
partial-trajectory (PT) bootstrapping

12

Figure 7. Score curves obtained for different numbers of parallel environments. (Top) With no boot-
strapping (Middle) With end-of-episode (EOE) bootstrapping only (Bottom) With EOE and partial-
trajectory (PT) bootstrapping.

� Similarly to [18], we observe decent speedups for nenv ≤ nupdate, with sEOE+PT
1→8 = 7.6,

against sregular
1→8 = 6.9. This difference is attributed to the additional buffering overhead

required in the regular approach, as more transitions are unrolled and stored between each
update compared to PT bootstrapping. For higher numbers of parallel environments, we
measure sEOE+PT

1→32 = 25.4 against sregular
1→32 = 17.7, and sEOE+PT

1→64 = 42.4 against sregular
1→64 = 18.4.

Again, the excessive memory and buffering requirements of the regular case are the most
probable cause of this discrepancy, as is evidenced by the fact that sregular

1→64 ' sregular
1→32 . In the



Fluids 2023, 8, 208 12 of 16

present case, we underline that speedups could probably be improved by replacing the
computation of a random initial state at each reset step of the environment by the loading
of pre-computed initial states from files.

Hence, the introduction of EOE and PT bootstrapping roughly enables the use of
four times more parallel environments than with the vanilla parallelism, thus reducing
the resolution time of the Shkadov environment from nearly 1.5 h to approximately 2 min
while retaining the same final performance.

5. Conclusions

In the present contribution, we introduced a bootstrapped partial trajectory approach for
parallel environments, in order to speed up learning for deep reinforcement learning agents
while retaining their on-policiness. The proposed method was tested on a CPU-intensive flow
control case from the literature, bringing multiple improvements over regular approaches such
as (i) faster convergence, (ii) improved performance for nenv > nupdate, (iii) improved parallel
speedups, (iv) increased flexibility regarding the compatibility of nenv and nupdate, and (v)
preserved on-policiness. The new parallel paradigm roughly allowed for the safe exploitation
of four times more parallel environments than the vanilla approach, and speedups as high
as 42 were measured. Such techniques, coupled with an efficient parallelism at the solver
level, open the door to the control of more complex, resource-demanding environments, thus
pushing forward the current limits of DRL-based fluid flow control.

Author Contributions: Conceptualization, J.V.; Methodology, J.V.; Software, J.V.; Validation, J.V.;
Writing—original draft, J.V.; Writing—review & editing, E.H. All authors have read and agreed to the
published version of the manuscript.

Funding: Funded/co-funded by the European Union (ERC, CURE, 101045042). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

Data Availability Statement: The sources of this project are available from the authors upon reason-
able request.

Acknowledgments: The authors would like to thank A. Kuhnle for the fruitful discussions about
bootstrapping.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. End-of-Episode Bootstrapping on GYM Environments

This appendix illustrates the interest of bootstrapping on continuous control environ-
ments from the GYM package, such as PENDULUM-V1 and BIPEDALWALKER-V3, and on
locomotion problems from the MUJOCO package, such as HALFCHEETAH-V4 and ANT-V4.
For the sake of brevity, the environments are not fully described here, and the interested
reader is referred to the original publications for details [32,33]. On Figure A1, the scores
obtained with the PPO method are compared with and without the bootstrapping tech-
nique, averaged over five runs. As can be observed, bootstrapping the end-of-episode
target in the case of time-outs leads to a largely improved convergence speed, as well as in
a lower variability between different runs.



Fluids 2023, 8, 208 13 of 16Fluids 2023, 1, 0 14 of 17

0 20k 40k 60k 80k 100k

−1.5k

−1k

−0.5k

−0.2k

transitions

sc
or

e

EOE bootstrapping
No bootstrapping

(a) PENDULUM-V1

0 250k 500k 750k 1000k
−100

0

100

200

300

transitions

EOE bootstrapping
No bootstrapping

(b) BIPEDALWALKER-V3

0 250k 500k 750k 1000k

0

2k

4k

transitions

sc
or

e

EOE bootstrapping
No bootstrapping

(c) HALFCHEETAH-V4

0 250k 500k 750k 1000k

0

1k

2k

transitions

EOE bootstrapping
No bootstrapping

(d) ANT-V4
Figure A1. Illustration of the interest of end-of-episode bootstrapping on continuous control
problems from the GYM and MUJOCO libraries, solved with the PPO algorithm. (Top left) The
PENDULUM-V1 environment, in which the agent controls the torque applied to the pendulum junction,
the goal being to keep the pole balanced vertically. The score comparison is made over 500 episodes
(equivalent to 100 000 transitions). (Top right) The BIPEDALWALKER-V3 environment, in which the
agent controls the 4 torques applied at the hips and knees of the walker. The score comparison is
made over 1 000 000 transitions. (Bottom left) The HALFCHEETAH-V4 environment, where the agent
learns to run with a cat-like robot, using 6 torques. The score comparison is made over 1 000 000
transitions. (Bottom right) The ANT-V4 environment, where a four-leg ant learns to move using 8
torques. The score comparison is made over 1 000 000 transitions. For all environments, the solid
color line indicates the average over the 5 runs, while the light-colored area around it indicates the
standard deviation around the average.

Appendix B. Convergence of the numerical discretization

The numerical discretization proposed to solve the system (1) is tested by using a
manufactured solution based on the following a priori expressions for h(x, t) and q(x, t):

h(x, t) = cos(ωt− kx),

q(x, t) =
ω

k
sin(ωt− kx),

(A1)

with ω = 2.3 and k = 0.77. The discretization error induced by the derivatives
computation is measured and plotted as a function of the spatial discretization step ∆x in
figure A2. As can be observed, a second order convergence in obtained, which correlates
with the chosen numerical scheme in the absence of sharp gradients.

Figure A1. Illustration of the interest of end-of-episode bootstrapping on continuous control prob-
lems from the GYM and MUJOCO libraries, solved with the PPO algorithm. (Top left) The PENDULUM-
V1 environment, in which the agent controls the torque applied to the pendulum junction, the goal
being to keep the pole balanced vertically. The score comparison is made over 500 episodes (equiv-
alent to 100,000 transitions). (Top right) The BIPEDALWALKER-V3 environment, in which the agent
controls the 4 torques applied at the hips and knees of the walker. The score comparison is made over
1,000,000 transitions. (Bottom left) The HALFCHEETAH-V4 environment, where the agent learns to run
with a cat-like robot, using 6 torques. The score comparison is made over 1,000,000 transitions. (Bottom
right) The ANT-V4 environment, where a four-leg ant learns to move using 8 torques. The score compari-
son is made over 1,000,000 transitions. For all environments, the solid color line indicates the average over
the 5 runs, while the light-colored area around it indicates the standard deviation around the average.

Appendix B. Convergence of the Numerical Discretization

The numerical discretization proposed to solve the system (1) is tested by using a
manufactured solution based on the following a priori expressions for h(x, t) and q(x, t):

h(x, t) = cos(ωt− kx),

q(x, t) =
ω

k
sin(ωt− kx),

(A1)

with ω = 2.3 and k = 0.77. The discretization error induced by the derivatives computation
is measured and plotted as a function of the spatial discretization step ∆x in Figure A2. As
can be observed, a second order convergence in obtained, which correlates with the chosen
numerical scheme in the absence of sharp gradients.



Fluids 2023, 8, 208 14 of 16

10−2 10−1 100

10−1

100

101

102

2

1

∆x

er
ro

r

Figure A2. Convergence in space for the discretization of the Shkadov system obtained with a manu-
factured solution.

Appendix C. Solved Shkadov Environment

In Figure A3, we present the evolution of the field in time under the control of a solved
agent for 5 jets using the default parameters. As can be observed, the agent quickly constrains
the height of the fluid around h = 1, before entering a quasi-stationary state in which a set of
minimal, quasi constant jet actuations keeps the flow from developing instabilities.

0 50 100 150 200
0

0.5

1

1.5

2

h

(a) t = 0, start of control

0 50 100 150 200
0

0.5

1

1.5

2

h

(b) t = 100

0 50 100 150 200
0

0.5

1

1.5

2

h

(c) t = 200

0 50 100 150 200
0

0.5

1

1.5

2

h

(d) t = 300

0 50 100 150 200
0

0.5

1

1.5

2

h

(e) t = 400

Figure A3. Evolution of the flow under control of the agent, using 5 jets. The jets strengths are
represented with green rectangles.



Fluids 2023, 8, 208 15 of 16

References
1. Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput.

2017, 29, 2352–2449. [CrossRef] [PubMed]
2. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
3. Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep neural networks: A systematic review.

IEEE Access 2019, 7, 19143–19165. [CrossRef]
4. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications.

arXiv 2020, arXiv:2001.06937.
5. Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with CLIP latents.

arXiv 2022, arXiv:2204.06125.
6. Pinto, L.; Andrychowicz, M.; Welinder, P.; Zaremba, W.; Abbeel, P. Asymmetric actor critic for image-based robot learning.

arXiv 2017, arXiv:1710.06542.
7. Bahdanau, D.; Brakel, P.; Xu, K.; Goyal, A.; Lowe, R.; Pineau, J.; Courville, A.; Bengio, Y. An actor-critic algorithm for sequence prediction.

arXiv 2016, arXiv:1607.07086.
8. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
9. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
10. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.M.; Lam, V.D.; Bewley, A.; Shah, A. Learning to drive in a day.

arXiv 2018, arXiv:1807.00412.
11. Bewley, A.; Rigley, J.; Liu, Y.; Hawke, J.; Shen, R.; Lam, V.D.; Kendall, A. Learning to drive from simulation without real world

labels. arXiv 2018, arXiv:1812.03823.
12. Knight, W. Google Just Gave Control over Data Center Cooling to an AI; MIT Technology Review; MIT Technology: Cambridge, MA, USA,

2018.
13. Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial neural networks trained through deep reinforcement

learning discover control strategies for active flow control. J. Fluid Mech. 2019, 865, 281–302. [CrossRef]
14. Novati, G.; Verma, S.; Alexeev, D.; Rossinelli, D.; van Rees, W.M.; Koumoutsakos, P. Synchronisation through learning for two

self-propelled swimmers. Bioinspir. Biomim. 2017, 12, 036001. [CrossRef] [PubMed]
15. Beintema, G.; Corbetta, A.; Biferale, L.; Toschi, F. Controlling Rayleigh–Bénard convection via reinforcement learning. J. Turbul.

2020, 21, 585–605. [CrossRef]
16. Garnier, P.; Viquerat, J.; Rabault, J.; Larcher, A.; Kuhnle, A.; Hachem, E. A review on deep reinforcement learning for fluid mechanics.

Comput. Fluids 2021, 225, 104973. [CrossRef]
17. Viquerat, J.; Meliga, P.; Hachem, E. A review on deep reinforcement learning for fluid mechanics: An update. Phys. Fluids 2022,

34, 111301. [CrossRef]
18. Rabault, J.; Kuhnle, A. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach.

Phys. Fluids 2019, 31, 094105. [CrossRef]
19. Metelli, A.; Papini, M.; Faccio, F.; Restelli, M. Policy optimization via importance sampling. arXiv 2018, arXiv:1809.06098.
20. Tomczak, M.B.; Kim, D.; Vrancx, P.; Kim, K.E. Policy optimization through approximate importance sampling. arXiv 2019,

arXiv:1910.03857.
21. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
22. Pardo, F.; Tavakoli, A.; Levdik, V.; Kormushev, P. Time limits in reinforcement learning. arXiv 2017, arXiv:1712.00378.
23. Belus, V.; Rabault, J.; Viquerat, J.; Che, Z.; Hachem, E.; Reglade, U. Exploiting locality and translational invariance to design

effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film. AIP Adv. 2019, 9, 125014. [CrossRef]
24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for

deep reinforcement learning. arXiv 2016, arXiv:1602.01783.
25. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
26. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. arXiv 2018, arXiv:1802.09477.
27. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage

estimation. arXiv 2015, arXiv:1506.02438.
28. Shkadov, V.Y. Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 1967, 2, 29–34. [CrossRef]
29. Lavalle, G. Integral Modeling of Liquid Films Sheared by a Gas Flow. Ph.D. Thesis, ISAE—Institut Supérieur de l’Aéronautique

et de l’Espace, Toulouse, France, 2014.
30. Chang, H.C.; Demekhin, E.A.; Saprikin, S.S. Noise-driven wave transitions on a vertically falling film. J. Fluid Mech. 2002, 462, 255–283.

[CrossRef]
31. Chang, H.C.; Demekhin, E.A. Complex Wave Dynamics on Thin Films; Elsevier: Amsterdam, The Netherlands, 2002.

http://doi.org/10.1162/neco_a_00990
http://www.ncbi.nlm.nih.gov/pubmed/28599112
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/ACCESS.2019.2896880
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1088/1748-3190/aa6311
http://www.ncbi.nlm.nih.gov/pubmed/28355166
http://dx.doi.org/10.1080/14685248.2020.1797059
http://dx.doi.org/10.1016/j.compfluid.2021.104973
http://dx.doi.org/10.1063/5.0128446
http://dx.doi.org/10.1063/1.5116415
http://dx.doi.org/10.1063/1.5132378
http://dx.doi.org/10.1007/BF01024797
http://dx.doi.org/10.1017/S0022112002008856


Fluids 2023, 8, 208 16 of 16

32. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540.

33. Todorov, E.; Erez, T.; Tassa, Y. MuJoCo: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; IEEE: Piscataway,
NJ, USA, 2012; pp. 5026–5033.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Parallel Bootstrap-Based on-Policy Deep Reinforcement Learning
	On-Policy DRL Algorithms
	Proximal Policy Optimization (PPO)
	Bootstrapping
	Parallel Bootstrap-Based Learning

	Continuous Flow Control Application
	Control of Instabilities in a Falling Fluid Film
	Default PPO Parameters

	Results
	End-of-Episode Bootstrapping
	Bootstrap-Based Parallelism

	Conclusions
	Appendix A
	Convergence of the Numerical Discretization
	Solved Shkadov Environment
	References

