
Citation: Ward, N.J. Physics-Informed

Super-Resolution of Turbulent

Channel Flows via Three-Dimensional

Generative Adversarial Networks.

Fluids 2023, 8, 195. https://doi.org/

10.3390/fluids8070195

Academic Editors: Filippos Sofos and

D. Andrew S. Rees

Received: 24 May 2023

Revised: 16 June 2023

Accepted: 27 June 2023

Published: 29 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Physics-Informed Super-Resolution of Turbulent Channel
Flows via Three-Dimensional Generative Adversarial Networks
Nicholas J. Ward

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA; nicholas.ward@ttu.edu

Abstract: For a few decades, machine learning has been extensively utilized for turbulence research.
The goal of this work is to investigate the reconstruction of turbulence from minimal or lower-
resolution datasets as inputs using reduced-order models. This work seeks to effectively reconstruct
high-resolution 3D turbulent flow fields using unsupervised physics-informed deep learning. The
first objective of this study is to reconstruct turbulent channel flow fields and verify these with
respect to the statistics. The second objective is to compare the turbulent flow structures generated
from a GAN with a DNS. The proposed deep learning algorithm effectively replicated the first- and
second-order statistics of turbulent channel flows of Reτ = 180 within a 2% and 5% error, respectively.
Additionally, by incorporating physics-based corrections to the loss functions, the proposed algorithm
was also able to reconstruct λ2 structures. The results suggest that the proposed algorithm can be
useful for reconstructing a range of 3D turbulent flows given computational and experimental efforts.

Keywords: turbulent channel flow; super-resolution; artificial intelligence; deep learning; generative
adversarial network (GAN)

1. Introduction

Channel flow simulations have been utilized extensively in fluid mechanics research
since the pioneering work performed by Kim et al. [1], Jiménez and Moin [2], Moser et al. [3],
and Kim and Adrian [4]. Since these pioneering works were published, numerous different
studies have been proposed. Lee and Moser [5] generated turbulent channel flow databases
for viscous Reynolds numbers (Reτ) up to 5200. In addition to the pioneering work in
statistics and database generation, there have been significant advancements in near-
wall turbulence. Jeong and Hussain [6] and Jeong et al. [7] discussed the identification,
eduction, and dynamical inference of near-wall turbulence for turbulent channel flows.
Schoppa and Hussain [8,9] enhanced the dynamical inference of near-wall turbulence via
an inviscid streak transient growth phenomenon in the near-wall and buffer layer regions
of a turbulent channel. Additionally, other studies have discussed large-scale structures in
the near-wall [10,11] and buffer layers [4,12,13].

Over the last couple of decades, machine learning (ML) has been utilized for myriad
problems in academic research. Among these problems are artificial intelligence, uncer-
tainty quantification and propagation, algorithm development, and speech recognition.
There is also interest in applying ML algorithms to fluid mechanics problems. These algo-
rithms provided the foundation to deep learning, which applies a neural network (NN)
with multiple layers to create hierarchical representations of data as a means of replacing a
physical model. This means of substituting a physical model with a mathematical model
(i.e., a machine-learning-based algorithm) is also known as surrogate modeling. For more
information, Brunton et al. [14] reviewed each of the different ML algorithms utilized in
fluid mechanics research in more detail.

Recently, there has been increasing interest in utilizing ML for problems in fluid
mechanics and turbulence research. These include synthetic inlet flow generation, super-
resolution of turbulent flows, and physics-informed neural networks for turbulent flows.

Fluids 2023, 8, 195. https://doi.org/10.3390/fluids8070195 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8070195
https://doi.org/10.3390/fluids8070195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://doi.org/10.3390/fluids8070195
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8070195?type=check_update&version=1

Fluids 2023, 8, 195 2 of 20

Synthetic inlet flow generation, a problem reviewed extensively by Tabor and Baba-
Ahmadi [15], is a methodology that reconstructs 2D snapshots of the expected turbulence
at the boundary condition in which flow enters the system; this is accomplished to reduce
the dependence on precursor simulations, which can be computationally expensive. This
study reviewed the pioneering works on inlet flow generation in large eddy simulations
(LES). Wu [16] also reviewed the different methods utilized for inlet flow generation.
This paper focused on the inflow–outflow turbulence generation for direct numerical
simulation (DNS) and LES simulations. Because these simulations rely on non-periodic
streamwise boundary conditions, the training of these generation methods requires some
back-propagation or recycling technique. These techniques take the flow downstream of the
inlet, and feed information back to the inlet to appropriately train the inlet to become and
remain turbulent. These methods have been applied to homogeneous isotropic turbulence
(HIT), incompressible and supersonic boundary layers, flows over rough surfaces, and
mesoscale weather forecasting. Fukami et al. [17] discussed utilizing ML to generate
time-dependent turbulent inflow generation for low-Reynolds-number channel flows. The
authors utilized a convolutional neural network (CNN) encoder and decoder coupled with
a multi-layer perceptron (MLP) classifier model to accomplish a priori and a posteriori
studies of turbulence inflow generation. The a priori study was accomplished to train
the model with respect to the DNS output. By using only one DNS snapshot at the
initial timestep, the model was able to effectively predict the DNS results at subsequent
timesteps. The a posteriori study took the results from the a priori study and applied
a recursive input to investigate whether or not the turbulence was maintained in the
simulation. While low-Reynolds-number flows were effectively predicted with the ML-
based generator, the proposed method requires a higher-order resolution to train the
model. This indicates that the proposed CNN-MLP generator needs to be significantly
improved to tackle turbulent boundary layer and channel flow simulations in the future.
Maulik et al. [18] discussed inlet flow generation using ML based on Reynolds-averaged
Navier–Stokes (RANS) equations. The proposed framework utilizes a neural network
as a surrogate model to interpolate the closure models (Spalart–Allmaras (SA), k − ω,
and k − ε) for RANS simulations. By applying this surrogate model, the authors were
able to converge results up to sevenfold faster than using RANS with a closure model
directly. The authors concluded that surrogate models of the closure problem in RANS
garner accurate results in less time. However, this method is limited by the presence of
sub-grid quantities in the simulation, meaning this surrogate model is good enough for
lower-Reynolds-number simulations and the type of closure problem for the turbulence
model. Kim and Lee [19] discussed synthetic inlet flow generation for a turbulent channel
flow using neural networks. The study applied an ML technique utilizing a recurring
neural network (RNN) coupled with a generative adversarial network (GAN) algorithm
to generate inflow conditions of Reτ = 180–540. The model inputted temperature and
velocity data to predict velocity, vorticity, and temperature. By applying this ML algorithm,
the ML prediction accounts for the stochasticity of the DNS simulation. Additionally, the
authors do not take into account that GANs and RNNs are semi-supervised and supervised
models, meaning it was partially unsupervised. This shows that unsupervised models
in turbulent flows still require supervision for optimization, regression, and classification
purposes. These studies show that synthetic inflow generation is best served using multiple
different types of NNs. However, because synthetic inflow generation depends on the type
of simulation utilized, a CNN or GAN is recommended for DNS, but an ANN for LES and
RANS simulations.

The super-resolution of turbulent flows involves using an ML algorithm as a surrogate
model to recreate a high-resolution dataset to a similar quality as DNS from a low-resolution
dataset. Fukami et al. [17] discussed the super-resolution of two-dimensional (2D) HIT. The
authors utilized two different NNs to reconstruct the 2D HIT for laminar and turbulent
flows over a cylinder as well as decaying isotropic turbulence. The study proposed a CNN
and a hybrid downsampling connection and multi-scale (hDSC/MS) model to capture the

Fluids 2023, 8, 195 3 of 20

physics of low-Reynolds-number DNS simulations. The authors concluded that utilizing
the hDSC/MS model, which was a modification of a conventional CNN, enabled faster and
more efficient convergence than DNS results in as little as 50 2D snapshots of data. The
authors also claimed that the model was able to reconstruct the flow effectively without
using a priori methods, which construct the flow using prior knowledge of the DNS simu-
lations. However, the study showed that the deviation in the energy spectrum at higher
wavenumbers indicates that the model is effective in capturing large-scale structures, and
may need to be improved to capture small-scale structures. Liu et al. [20] improved on
the work performed by Fukami et al. [17] by developing a CNN-based model that incor-
porates temporal information from consecutive snapshots to discuss the super-resolution
of turbulent flows. Conventional CNNs are considered to be “static” NNs because they
do not extract time-dependent information from the snapshots. The NN that the authors
proposed extracted the features from each snapshot, and incorporated three parallel snap-
shot reconstruction modules in terms of forward-, central-, and backward-differencing. By
applying weights to each parallel module, the outputs of each module were averaged to
effectively produce a final output at the same timestep as the DNS simulation. However,
like the study by Fukami et al. [17], the authors were unable to reproduce the kinetic
energy at higher wavenumbers, meaning the small-scale structures also were not captured
properly. Fukami et al. [21] discussed supervised machine learning techniques applied
to super-resolution. The authors determined that utilizing basic ML algorithms such as
MLP, random forest (RF), support vector regression (SVR), and extreme learning machine
(ELM) (a simplified version of the MLP) can easily reproduce laminar flows. However, for
turbulent flow data, the authors recommend that CNNs are effective in handling the large
datasets that turbulent flows incur during DNS simulations. The study also suggests that
CNNs are only effective within the distributions that the model trains and tests data from,
meaning they should not be used for extrapolation. Because NNs are effective approxima-
tors of data resolution studies, future studies should focus on training data based on the
available information. Kim et al. [22] accomplished this by applying unsupervised deep
learning for super-resolution of paired and unpaired datasets for 2D snapshots of turbulent
flows. Based on the results from these papers, it is clear that utilizing a CNN-based model
that can capture the small-scale structures in turbulence from the DNS is of particular
interest in future research.

Additionally, there has been increasing interest in physics-informed neural networks
(PINNs), which incorporate the governing equations, statistics, and/or physical intu-
ition into the neural network. Raissi and Karniadakis [23] and Raissi et al. [24] first
introduced PINNs to solve different governing equations, such as Burger’s equation
and the Navier–Stokes equations. This has also been applied to super-resolution stud-
ies. Yousif et al. [25] applied PINNs to inlet flow generation. Sachin Venkatesh et al. [26]
performed spatio-temporal super-resolution analysis on turbulent flow fields to reconstruct
high-resolution flow fields from low-resolution flow field data. Bode et al. [27] used a
physics-informed super-resolution GAN for sub-filter modeling of turbulent reactive flows.
Yousif et al. [28] and Yousif et al. [29] applied physics-informed super-resolution to predict
turbulent flows at different Reynolds numbers. Eivazi and Vinuesa [30] used PINNs to
reconstruct turbulent flows from noisy datasets. Du et al. [31] also compared PINNs with
four-dimensional adjoint-variational data assimilation in reconstructing turbulent channel
flows from sparse data. Linqi et al. [32] then used PINNs in an enhanced super-resolution
GAN to reconstruct turbulent channel flows from sparse data generated from upsampling
via tri-linear interpolation. These studies indicate that there is a need for PINNs com-
bined with the super-resolution capabilities of GANs to reconstruct turbulent flow fields
and structures.

The novelty of this work lies in the combination of a GAN with physics-informed con-
straints to achieve the super-resolution of three-dimensional turbulence datasets. Previous
work on super-resolution has typically relied on deep learning models that are trained
on large datasets, but these models can struggle with capturing the complex physical

Fluids 2023, 8, 195 4 of 20

processes that govern turbulent flows. By incorporating physics-informed constraints into
the proposed GAN model, this work aims to improve the accuracy and reliability of the
super-resolution results while maintaining computational efficiency. The physics-informed
constraints are derived from first principles and are incorporated into the GAN loss func-
tion to ensure that the generated flow fields satisfy the laws of physics. This approach
allows the model to capture important physical features of turbulence, such as vortices
and energy spectra, while still achieving high-resolution results. The results show that the
proposed physics-informed GAN approach achieves superior performance in terms of both
accuracy and computational efficiency, making it a promising approach for super-resolution
of three-dimensional turbulence datasets.

The goal of this work is to investigate the reconstruction of turbulence from minimal
or lower-resolution datasets as inputs using reduced-order models. This work seeks to
effectively reconstruct high-resolution 3D turbulent flow fields using unsupervised physics-
informed deep learning. The first objective of this study is to reconstruct turbulent channel
flow fields and verify these with respect to the statistics. The second objective is to compare
the turbulent flow structures generated from the GAN with the DNS.

This paper is organized in the following structure. Section 2 describes the numerical
set-up of the DNS data utilized for training the GAN, and explains the methodology of the
proposed GAN. This section describes in detail the deep learning algorithm implemented,
such as the generator and discriminator architecture, as well as the chosen values of the
hyperparameters. Section 3.1 demonstrates the turbulent flow statistics generated from the
GAN with respect to the DNS, and verifies the performance of the GAN compared to other
models. Section 3.2 compares the reconstructed turbulent flow structures with respect to
the DNS data. The conclusions from this study are stated in Section 4.

2. Methodology

DNS simulations were conducted to determine the training data utilized in this study,
which used the POONPACK code developed by Lee and Moser [5]. For this study, the
streamwise, wall-normal, and spanwise coordinates are denoted by x, y, and z, respectively.
Additionally, the streamwise, wall-normal, and spanwise velocities are denoted by u, v,
and w, respectively. The incompressible Navier–Stokes equations, which are determined as

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p +
1

Reτ
∇2u, (2)

are solved using the methodology from Kim et al. [1].
For the turbulent channel flows used in this study, the diagram and the numerical

discretization details are shown in Figure 1 and Table 1. In this study, the DNS simulation
was conducted at a bulk Reynolds number Reb of 2857. This corresponds to a viscous
Reynolds number Reτ = uτδ/ν of 180, where uτ , h, and ν are the friction velocity, channel
half-height, and kinematic viscosity, respectively.

For the surrogate model used in this study, a machine learning algorithm was devel-
oped to effectively capture the flow physics in a turbulent channel flow without directly
solving the Navier–Stokes equations. To effectively capture low-Reynolds-number turbu-
lent channel flows, a GAN [33] was constructed. The GAN is comprised of a generator,
which reconstructed the flow fields at each timestep using a random noise vector as an
input, and a discriminator, which provided feedback to the generator to either accept or
reject the outputted flow fields with respect to the real (DNS) data. Because the GAN is
an unsupervised deep learning model [14,19,22], it takes a random input vector at each
timestep and generates a three-dimensional (3D) flow field at an accuracy close to the
DNS simulation.

Fluids 2023, 8, 195 5 of 20

Figure 1. Sketch of the turbulent channel flow simulation used in this study. The DNS simulation
encompasses the flow between both stationary walls. The proposed ML algorithm trains the bottom
half of the channel, indicating that L′y = Ly/2.

Table 1. Details of the numerical discretization employed for the simulations of the turbulent channel
flow. The computational grid size is Nx × Ny × Nz = 64× 128× 64, and Lx, Ly, and Lz are the
domain dimensions in each direction.

Reτ Reb Lx × Ly × Lz ∆x+ ∆y+ ∆z+

180 2857 πh× 2.0h× πh/2 11.15 0.19–5.27 5.57

To ensure that it worked effectively, the GAN model required a significant number
of samples, because increasing the number of samples enabled reduced errors between
the generated samples and the DNS data. For the Reτ = 180 simulations, 10,000 samples
of data were used to reconstruct the turbulent channel flow. The size of the training
dataset does have an impact on the training results. Generally, a larger training set can
lead to more accurate and reliable model predictions. With a smaller training set, there
may be less information for the model to learn from, which could result in lower accuracy
or overfitting. For the purposes of this study, 10,000 samples was considered to be an
appropriate balance between having enough data to train the model effectively without
overwhelming the model with too much data, which causes overfitting. By utilizing these
DNS samples as inputs into the discriminator, the GAN model was able to generate the
new data for each respective timestep. DNS simulation is not necessarily needed for
the training of the GAN to reconstruct turbulence datasets. However, having access to
DNS data can help to improve the accuracy and realism of the generated flow fields. The
primary purpose of the GAN is to learn the underlying statistical distribution of a dataset,
which can then be used to generate new data that is similar to the training data. In the
case of turbulence datasets, the training data can come from a variety of sources, such as
experimental measurements or LES. If DNS data are available, it can be used as part of
the training dataset for the GAN. This can help to ensure that the generated flow fields
accurately capture the complex physical processes that govern turbulent flows. However, if
DNS data are not available, other sources of turbulence data can still be used for training the

Fluids 2023, 8, 195 6 of 20

GAN. It is worth noting that while DNS data can be useful for improving the accuracy and
realism of GAN-generated flow fields, it is also computationally expensive and may not
always be practical or feasible to obtain. Therefore, alternative sources of turbulence data
may need to be used for training the GAN in some cases. The GAN model accomplished
this by training for 40,000 training iterations. Additionally, the training and testing split for
this study was 80% and 20%, respectively.

In addition to the number of samples and training iterations, the GAN model required
loss functions for both the generator and the discriminator. These loss functions provided
the GAN model with two functions to optimize during each training iteration. The selection
of the loss function depends on the type of problem being solved. For example, for a
regression problem, the mean squared error (MSE) loss function is commonly used, while
for a binary classification problem, the binary cross-entropy loss function is often used. The
choice of loss function can have a significant impact on the training process and the resulting
model. Different loss functions have different properties and can optimize for different
aspects of the model performance. For example, using a mean absolute error (MAE) loss
function instead of MSE may result in a model that is more robust to outliers, but also less
accurate overall. In addition to selecting an appropriate loss function, it is important to
consider how the loss function is optimized during training. This is typically achieved by
using an optimization algorithm such as stochastic gradient descent (SGD) or adaptive
moment (Adam). The choice of optimization algorithm can also affect the training process
and result in different model performance. In summary, selecting an appropriate loss
function is important for achieving good model performance, and different loss functions
can optimize for different aspects of model performance. However, it is also important to
consider how the loss function is optimized during training and choose an appropriate
optimization algorithm.

The loss functions were determined from the cycle-consistency GAN (CycleGAN)
because this DL method is able to map between two unpaired datasets using two generators
and two discriminators [34]. In this case, the two unpaired datasets are the low-resolution
(LR) and high-resolution (HR) inputs to the two generators: G and F. The generator G takes
an LR input and generates an HR output, and generator F does the opposite (HR input to LR
output). The outputs from generators G and F are sent back through the other generators
to create a cycle-consistency loss, such that F(G(XLR)) ≈ XLR and G(F(XHR)) ≈ XHR is
satisfied. The two discriminators, DY and DX , then process the generated outputs from G
and F, respectively, to determine a probability of how real or fake the outputs are versus
the real datasets. The loss functions for the discriminators (LDY and LDX) as well as for the
generators (LG and LF) are, respectively, defined as

LDY = γ1[BCE(DY(XG)) + BCE(DY(X))] + λE[(‖∇Xint,G D(Xint,G)‖2 − 1)2], (3)

LDX = γ1[BCE(DX(XF)) + BCE(DX(X))] + λE[(‖∇Xint,F D(Xint,F)‖2 − 1)2], (4)

LG = BCE(DY(XG)) + λLcycle + Ldiv + LNSE + LSSIM + γ2Ldown, (5)

LF = BCE(DX(XF)) + λLcycle + Ldiv + LNSE + LSSIM + γ3Lup, (6)

where BCE(·) is the binary cross-entropy (BCE) loss, E[·] is the expected value, X is the real
data, XG is the data outputted from generator G, XF is the data outputted from generator F,
λ is a coefficient of the gradient penalty, Xint = εX + (1− ε)XG/F is the interpolated data
between the real and generated data, ε is a uniform distribution of values between 0 and 1
for the purposes of determining the interpolated data, and ‖ · ‖2 =

√
∑n

i=1 ∑n
j=1 ∑n

k=1 | · |2

is the L2 matrix norm. The BCE loss is defined as

BCE(D(X)) = − 1
N

N

∑
i=1

(
D(X) log(D(X)) + (1− D(X)) log(1− D(X))

)
, (7)

Fluids 2023, 8, 195 7 of 20

where D(X) is the discriminator output. A gradient penalty (GP) term was added to the
discriminator loss functions because this loss term has proven to prevent mode collapse
during the training, as well as to enable the discriminator to not overpower the genera-
tor [19,35]. For this study, λ was set to 10. To improve the predictions generated from the
proposed algorithm, six additional loss function terms were introduced: a cycle-consistency
loss function Lcycle [34], a divergence loss function Ldiv, an NSE loss function LNSE based
on the material derivative, a structural similarity index measure (SSIM) loss LSSIM, a
downsampling loss Ldown, and an upsampling loss Lup [36]. These loss functions are
defined as

Lcycle(X, Xgen) = MAE(Xinp,LR, XF) + MAE(Xinp,HR, XG), (8)

Ldiv(X, Xgen) = MSE(∇ · X,∇ · Xgen), (9)

LNSE(X, Xgen) = MSE
(

∂X
∂t

+ X · ∇X,
∂Xgen

∂t
+ Xgen · ∇Xgen

)
, (10)

LSSIM(X, Xgen) =
1
N

N

∑
i=1

(1− SSIM(X, Xgen)), (11)

Ldown(X, Xgen) = MAE(Xinp,LR, f↓(XG)), (12)

Lup(X, Xgen) = MAE(Xinp,HR, f↑(XF)). (13)

MSE and MAE represent the mean squared error and mean absolute error loss terms in
the generator, which are defined as

MSE(X, Xgen) =
1
N

N

∑
i=1

(Xi − Xi
gen)

2, (14)

and
MAE(X, Xgen) =

1
N

N

∑
i=1
|Xi − Xi

gen|, (15)

respectively. The parameter γ1 is a constant that was set to 0.5 because that was determined
to have the best fit to the data without over-powering the GP loss term in the discrim-
inator loss functions. Equations (9)–(13) were added as additional regression losses to
Equations (5) and (6) to penalize the generators more severely for larger errors between the
generated samples and the DNS data. Each of these additional loss functions were able to
significantly improve the training without increasing the computational expense. This is
because the loss functions accounted for both the non-linearities in the governing equations,
which is characteristic of the advection term in the material derivative, and the quality of
the images reconstructed at both resolutions using the BCE, MSE, and MAE functions in
the generator and discriminator. By utilizing both the governing equations as constraints
to the GAN model and the data-driven image reconstruction techniques, the number of
training iterations required to obtain visually similar datasets was reduced. Using the
MSE or the MAE as an additional loss term to the generators has proven to be an effective
constraint in previous studies [19,37]. The MAE is a better optimization function for image
reconstruction purposes; however, unlike the MAE, the MSE enforces statistical constraints
better because it accounts for any outliers in the predicted datasets.

For the CycleGAN, the conditions F(G(XLR)) ≈ XLR and G(F(XHR)) ≈ XHR are then
satisfied using an identity loss [34]. This identity loss initially required the resolutions of
both input datasets to be the same. Because the input datasets are not the same resolution,
the identity losses for the generators are modified using the SSIM and either upsampling

Fluids 2023, 8, 195 8 of 20

or downsampling losses. The SSIM [38] is a metric that measures the similarity between
two datasets, and is defined as

SSIM(XLR, XHR) =
(2µXLR µXHR + c1)(2σXLRXHR + c2)

(µ2
XLR

+ µ2
XHR

+ c1)(σ
2
XLR

+ σ2
XHR

+ c2)
. (16)

As shown in Equation (16), SSIM(XLR, XHR) is a function of the mean µ, the standard
deviation σ, and the covariance σXLRXHR . The constants c1 and c2 are set to small values
to prevent the discriminator from going to zero. Additionally, it is recommended by
Wang et al. [38] to evaluate the SSIM function on an 11 × 11 patch, but it was found that a
5 × 5 patch was a better choice for this study due to the relative size of the patch versus the
final resolution size. The upsampling and downsampling losses incorporated the f↑(·) and
f↓(·) functions, which are then defined as an upsampling and average sampling layer, as
demonstrated in Figure 2 and Table 2.

After determining the appropriate loss functions, the GAN model then required
objective functions to be utilized to provide optimized parameters to the loss functions
during each training iteration. This indicated that an optimizer needed to be defined
for the GAN model. Numerous optimizers have been proposed in previous works, such
as RMSProp [39], Adam [40,41], etc. However, these optimizers suffer from warm-up
constraints in learning rate optimization. To prevent this problem, the Rectified Adam
(RAdam) optimizer was utilized for adaptive learning rate optimization [42]. This optimizer
added an additional variance rectification method to enable faster convergence in less
training iterations. By inputting the initial learning rate l, as well as the decay rates
in calculating the first and second moments (i.e., the mean and variance) β1 and β2, the
variance rectification and adaptive learning rate functions were determined at each timestep,
as [42]:

ρ∞ =
2

1− β2
− 1, (17)

gt = ∇θt f (θt), (18)

vt = β2vt−1 + (1− β2)g2
t , (19)

mt = β1mt−1 + (1− β1)g2
t , (20)

m̂t =
mt

1− βt
1

, (21)

ρt = ρ∞ −
2tβt

2
1− βt

2
, (22)

θt =

{
θt−1 − αtrtm̂tlt, if ρt > 4
θt−1 − αtm̂t, otherwise

, (23)

rt =

√
(ρt − 4)(ρt − 2)ρ∞

(ρ∞ − 4)(ρ∞ − 2)ρt
, (24)

lt =

√
1− βt

2
vt

, (25)

where ρ∞ is the maximum length of the moving average, gt is the gradient of the objective
function f , vt is the variance at time t, mt is the mean, m̂t is the mean corrected for bias, ρt
is the length of the moving average, rt is the variance rectification, and lt is the adaptive
learning rate. For the purposes of this study, the input learning rates for the generator
and discriminator were both set to 0.0001. The decay rates for both the generator and
discriminator were set to 0.0 and 0.9 for β1 and β2.

Fluids 2023, 8, 195 9 of 20

The architecture that was utilized for this study is shown in Figure 2. Additionally,
the description of each layer presented in Figure 2 is indicated in Table 2. The input
that was used as an input into the generator was pre-processed to represent a normal
distribution. This input was then inputted into the generator block, which is comprised of
a fully connected layer with one activation layer, one reshape layer, and one normalization
layer. The first activation layer was a leaky rectified linear unit (LeakyReLU), defined as

f (x) =

{
αx, if x ≤ 0
x, otherwise

, (26)

with a slope coefficient α of 0.2. The LeakyReLU layer has been proven to perform well
in both generators and discriminators for GAN models. The output from this layer was
then sent to either an upsampling or average sampling layer, depending on the generator
or discriminator, which is useful for preventing overfitting when using larger datasets.

(a) (b)

(c) (d)

Figure 2. 3D GAN architecture utilized for this study at resolution ratio R = 4. The generator G and
F are shown in (a,b), and the discriminator DY and DX are shown in (c,d).

Table 2. Description of each layer used in the generators and discriminators of the proposed GAN model.

Generators G and F Description
Conv3D 3D convolutional layer [32–128 features for all]
BN Batch normalization (momentum = 0.8)
LR Leaky rectified linear unit (α = 0.2)
UpSam3D 3D upsampling layer
Activation Activation function (tanh)
Discriminators DX and DY Description
ConvSN3D 3D convolutional layer with spectral normalization [16–256 features]
LR Leaky rectified linear unit (α = 0.2)
Dropout Dropout (rdrop = 0.2)
MiniStDev Mini-batch standard deviation layer
DenseSN Fully connected dense layer with spectral normalization
Activation Activation function (linear)

Fluids 2023, 8, 195 10 of 20

The output of the input block in the generator was then sent to a convolution block,
which contained upsampling, 3D convolution, batch normalization, and LeakyReLU activa-
tion layers. The upsampling doubled the resolution of the input data, which was then sent
to a transpose convolutional layer. The transpose convolutional layer applied an inverse
convolution method to generate output feature maps that were greater than the inputs.
To ensure that its output maintained a normal distribution, batch normalization, which is
defined as

µ =
1
n ∑

i
Z(i), (27)

σ =
1
n ∑

i
(Z(i) − µ), (28)

Z(i)
norm =

Z(i) − µ√
σ2 − ε

, (29)

Z = γZ(i)
norm + β, (30)

was applied, where µ is the mean, Z(i) is the input sample at each instance i, σ is the
standard deviation, Z(i)

norm is the normalized input, ε is a constant (10−12) to ensure the
denominator does not go to 0, and Z is the modified input based on a constant multiplier
γ and a bias term β, and averaged in each training batch. For this study, the batch size
was set to 16. Each convolutional block was then repeated three more times. The output
block applied the transpose convolutional layer and a hyperbolic tangent (tanh) activation
function, defined as

f (x) =
ex − e−x

ex + e−x . (31)

For the discriminator, the activation and normalization layers remained the same,
except the output activation function, which was chosen to be a linear activation function.
The convolution layers applied in the discriminator were similar to previous studies;
however, because of the computational expense and training instability associated with 3D
GAN architectures, the convolutional layers required additional normalization to ensure
faster convergence and more stabilized training. For this reason, spectral normalization [43]
was applied to improve the performance of the discriminator without compromising
accuracy and stability. The spectral normalization method applied a weight normalization
to the discriminator by normalizing it with respect to the Lipschitz constraint (σ(W) = 1,
where W is the weight matrix), such that

WSN(W) := W/σ(W), (32)

σ(WSN(W)) = 1, (33)

‖ f ‖Lip = 1. (34)

Additionally, a mini-batch standard deviation layer was applied to the last convolu-
tional block of the discriminator. This layer, which was introduced by Karras et al. [44],
calculated the standard deviation of each feature in each activation map, averaged the
standard deviation over the mini-batch, and then added at the end of the discriminator
network. This is calculated as

σ =

√
∑n

i=1(xi − x)2

N − 1
. (35)

Fluids 2023, 8, 195 11 of 20

The losses for the generator and discriminator at each iteration are displayed in
Figure 3 for each resolution ratio R considered in this study. For the purposes of this
study, generator G was optimized to be able to reconstruct a high-resolution dataset from
a low-resolution input. This, therefore, meant that the discriminator DY was utilized to
improve the generated datasets from G. The losses for each generator and discriminator
are initialized to zero, but are then at their respective maxima within the first 500 iterations.
This is because the GAN has not had enough iterations to minimize the regression problem
associated with the combined losses. For both Reynolds numbers, Figure 3a,b indicate that
the minimum number of iterations required for the GAN model to converge well-enough
with the DNS results was 2000. However, this enables only the first-order statistics to
converge to the DNS results within an error tolerance of 1%. To enable the higher-order
statistics to converge to the DNS results, the number of iterations was, therefore, extended
to 40,000 iterations for Reτ = 180.

(a) (b)

Figure 3. Losses from the generator and discriminator as a function of the number of training
iterations for the proposed GAN model at (a) R = 2 and (b) R = 4.

It is also important to note several reasons why testing a higher-turbulence dataset
using a lower-turbulence training dataset could be problematic. If the GAN model is trained
on a low-turbulence dataset, it may not generalize well to a higher-turbulence dataset. The
model may have learned to generate flow fields that are specific to the low-turbulence
conditions, and may not be able to accurately generate flow fields for higher-turbulence
conditions. If the GAN model is only trained on low-turbulence data, it may have limited
applicability to real-world scenarios that involve higher-turbulence conditions. This could
limit the usefulness of the model in practical applications. Additionally, if the GAN model
is tested on a higher-turbulence dataset that is significantly different from the training
dataset, there is a risk of overfitting. The model may have learned to generate flow fields
that closely match the training data, but may not be able to accurately generate flow fields
for new and different conditions. Therefore, it is important to carefully consider the range
of turbulence conditions that the GAN model will be expected to generate flow fields for,
and to train and test the model on datasets that are representative of these conditions.
This can help to ensure that the model is accurate and reliable across a range of different
turbulence conditions.

3. Results and Discussion
3.1. Super-Resolution Statistics

This section discusses the super-resolution reconstruction statistics of the ML algorithm
compared to DNS. In order for the data to be properly read by the GAN, the data were

Fluids 2023, 8, 195 12 of 20

normalized to be between −1 and 1. Therefore, the data needed to be normalized to fit
within the bounds of the GAN, which was accomplished via

X′train = 2 ∗ Xtrain − Xtrain,min

Xtrain,max − Xtrain,min
− 1, (36)

where X′train is the normalized input suitable for the GAN training. After the training was
completed and the GAN data were generated, the data were un-normalized to determine
the velocity components at the appropriate scale for the DNS data.

Figure 4 indicates the velocity profiles for the u, v, and w components from the DNS
or GAN models. The velocity profiles shown in Figure 4a,d,g correspond to the data from
the DNS dataset. It is demonstrated that the GAN model is able to capture the flow in
the bottom half of the channel within 5% of the DNS data instantaneously at the channel
center. This also indicates that the GAN model is able to capture both the mean flow and
the turbulent fluctuations for each velocity component. The differences in these snapshots
based on visual inspection are attributed to the high turbulent fluctuations in the log-law
region of the channel, as well as the information loss associated with higher resolution
ratios. These differences are most present in the wall-normal and spanwise components
v and w because the turbulent fluctuations for those components are not as strong or
dominant as the streamwise velocity u.

Figure 5 indicates the mean velocity profile and the velocity fluctuations for each of
the resolution ratios considered in the study, as well as the DNS data. The mean velocity
profile shown in Figure 5a indicates that the GAN model is able to capture the mean flow in
the bottom half of the channel within 2% of the DNS data. This also indicates that the GAN
model is able to satisfy both the near-wall region, where ū = y+, and the log-law region,
where ū = (1/κ) ln y+ + b (given that κ = 0.40 is the von Karman constant and b = 5.5 is
the y-intercept for a smooth wall at Reτ = 180). Additionally, the velocity fluctuations are
determined within a 5% error for a simulation with only 40,000 training iterations. The
lowest variability was in the u′ component of the velocity fluctuations in Figure 5b, whereas
the highest variability was in w′, from Figure 5d. This indicates that the GAN is able to
recover the mean velocity profiles for the channel flow in less iterations than the velocity
fluctuations at both resolution ratios. Likewise, the velocity fluctuations are more sensitive
to the resolution ratios, meaning that increased resolution ratios reduce the ability of the
GAN to capture the fluctuations effectively. Overall, the resolution ratio R = 2 performs
the best because less information about the turbulent flow was lost. However, it was
determined that the model was able to perform better at a lower resolution ratio for the
wall-normal fluctuations v′. Despite that, the velocity fluctuations are more sensitive to the
boundary conditions of the channel, especially at y+ = 180.

Figure 6 demonstrates the Reynolds stresses in the channel. The Reynolds shear stress
is shown in Figure 6a. The black line in the figure corresponds to u′v′/u2

τ = 1− (y+/Reτ),
which is the theoretical limit which the Reynolds shear stress cannot exceed [3]. For both
resolution ratio cases, the predicted Reynolds stresses did not exceed that limit, and also
collapsed within 5–10% of the DNS data. For the R = 4 case, the peak of the Reynolds
shear stress is less than the peak for the DNS. This indicates that the GAN does not fully
recover the total turbulent fluctuations in the fluid momentum, but captures generally the
behavior of the Reynolds shear stress.

Likewise, the Reynolds normal stresses in the streamwise, wall-normal, and spanwise
directions are displayed in Figure 6c,d. The peaks for each of the Reynolds normal stresses
are y+ ≈ 15, y+ ≈ 60, and y+ ≈ 40 for the streamwise, wall-normal, and spanwise
directions, respectively. Both the DNS and the predicted GAN normal stresses correspond
to the same peak, indicating the consistence of the GAN with incompressible channel
flow. Like the cases in Figure 5, the R = 2 cases generally outperform the R = 4 cases,
with the exception of the wall-normal component of the Reynolds normal stresses, shown
in Figure 6c.

Fluids 2023, 8, 195 13 of 20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Instantaneous velocity components in the yz-plane at the channel center for Reτ = 180:
DNS (a,d,g), GAN predictions for R = 2 (b,e,h), and GAN predictions for R = 4 (c,f,i). The top row
(a–c), the middle row (d–f), and the bottom row (g–i) correspond to u, v, and w, respectively.

(a) (b)

Figure 5. Cont.

Fluids 2023, 8, 195 14 of 20

(c) (d)

Figure 5. Mean velocity profile (u) (a) and velocity fluctuations (b–d) as a function of the normalized
wall-normal position y+ for the DNS and ML models at Reτ = 180.

(a) (b)

(c) (d)

Figure 6. Reynolds shear stress fluctuations (u′v′) (a) and Reynolds normal stress (b–d) as a function
of the normalized wall-normal position y+ for the DNS and ML models at Reτ = 180.

Fluids 2023, 8, 195 15 of 20

3.2. Turbulent Structures

This section discusses the turbulent structures from the data generated by the ML
algorithm compared to DNS. Figure 7a–c display the vorticity fluctuations in the channel
for the DNS and predicted GAN datasets. The vorticity fluctuations predicted by the GAN
in Figure 7a,c are in good agreement with the DNS throughout the channel. However, the
wall-normal vorticity fluctuations ω′y are in good agreement until the peak at y+ ≈ 30.
This is due to the fact that near the wall, ω′y is dominated by the spanwise gradient of the
streamwise velocity ∂u/∂z. This can be confirmed visually via Figure 5a–c. The deviations
in ω′y at y+ > 30 then demonstrate high sensitivity to the boundary conditions at the
channel half-height y+ = Reτ .

(a) (b)

(c)

Figure 7. Vorticity fluctuations (ω′) in the (a) streamwise, (b) wall-normal, and (c) spanwise directions
as a function of the normalized wall-normal position y+ for the DNS and ML models at Reτ = 180.

To determine the turbulent structures in the channel, a vortex identifier was needed [45,46].
Numerous methods have been proposed before, such as the Q-criterion [47], the ∆ crite-
rion [48], as well as the Omega and Rortex [49,50]. However, one of the most commonly
accepted vortex identifiers is the λ2 criterion, which was chosen for this analysis. The λ2
vortex identification was defined in Jeong and Hussain [6] as the second eigenvalue of the
tensor S2 + A2, which is a function of the symmetric S = (∇u +∇uT)/2 and asymmetric
A = (∇u−∇uT)/2 components of the velocity gradient tensor ∇u, where T denotes the
transpose of the tensor. A turbulent structure is, therefore, present when λ2 < 0 [6,7]. It
is demonstrated that the peak of the rms λ2 plots occur at y+ ≈ 23, which confirms that

Fluids 2023, 8, 195 16 of 20

the turbulent structures of interest are concentrated in the buffer region. The mean λ2 is
primarily negative, which indicates that, on average, there are vortical structures at each
layer of the channel.

The streamwise energy spectra indicate the distribution of energy in the streamwise
direction at different scales. For each of the resolution ratios considered in this analysis,
the large- and small-scale structures would not be able to be effectively captured in the
streamwise direction. This is because the peak of the turbulent kinetic energy in the
streamwise direction is approximately 1000 wall units for a turbulent channel flow [10],
which is greater than the domain size for the configuration in this study. The large-scale
structures in the buffer and log-law layer region of the channel would, therefore, not be
captured as effectively, so only the spanwise energy spectra were considered in this analysis.

Like the streamwise spectra, the spanwise energy spectra demonstrate the distribution
of energy in the spanwise direction at different scales. The spanwise energy spectra for
the streamwise, wall-normal, and spanwise velocities are displayed in Figure 8a–c. The
large- and small-scale structures are effectively captured in the spanwise direction for the
streamwise and wall-normal velocities, as shown in Figure 8a,b. Unlike the streamwise
spectra, the spanwise energy spectra for the streamwise velocity in Figure 8a occurs at
y+ ≈ 15, which corresponds to the peak of the turbulent energy production in a turbulent
channel [1,4]. However, the large-scale structures in the buffer and log-law layer region
of the channel are not as effectively captured in Figure 8 because of possible boundary
artifacts affecting the energy distributions at the channel center.

(a) (b)

(c)

Figure 8. Premultiplied spanwise energy spectra as a function of wall-normal position and wavenum-
ber for both the DNS and predicted data from the GAN: (a) kzEz,uu, (b) kzEz,vv, and (c) kzEz,ww.

Fluids 2023, 8, 195 17 of 20

The instantaneous λ2 structures are displayed in Figure 9. The structures constructed
by the GAN at R = 2 and R = 4 are shown in Figure 9a and 9b, respectively, while the
DNS data are shown in Figure 9c. For reference, the turbulent structures are colored with
respect to the streamwise vorticity ωx. For each of the resolution ratios considered, the
GAN is able to accurately reconstruct the large- and small-scale turbulent structures in the
channel. Based on the high-resolution dataset size, it can be determined that the resolution
ratio R = 4 is the lowest input resolution dataset that can be utilized in the GAN model
in order to generate both the large and small scales of the turbulence in the channel. For
resolution ratios R > 4, such as R = 8, too much information loss has occurred between
the input and output datasets, so that accurate recovery for this channel flow configuration
is not accomplished.

(a) (b)

(c)

Figure 9. Instantaneous turbulent structures in the bottom half of the channel for λ2 = −1.0: (a) GAN
(R = 2), (b) GAN (R = 4), and (c) DNS.

4. Conclusions

This work sought to effectively reconstruct high-resolution 3D turbulent flow fields
using unsupervised physics-informed deep learning. In particular, by combining physics-
informed loss functions with other data-driven techniques, the GAN was able to reconstruct
a turbulent channel flow dataset without the need for introducing any additional supervised
learning, such as interpolation, to the input dataset. The first objective of this study was
to reconstruct turbulent channel flow fields and verify these with respect to the statistics.
It is demonstrated that the velocity profiles are able to be captured by the GAN within
5% of the DNS data instantaneously at the channel center. The GAN model is also able to
capture each component of the velocity mean and fluctuations within 2% of the DNS data
at the same Reynolds number. Additionally, for both resolution ratio cases, the predicted
Reynolds stresses were predicted within 5–10% of the DNS data. This meant that the
GAN was able to capture the general behavior of the turbulent channel flow, as well as
recover most of the total turbulent fluctuations. The second objective was to compare the
turbulent flow structures generated from the GAN with the DNS. In order to compare the
turbulent flow structures, the general information about the vorticity, energy spectrum, and

Fluids 2023, 8, 195 18 of 20

the λ2 vortex identifier needed to be determined. The GAN was able to accurately predict
the vorticity fluctuations in the channel which indicated how effective the GAN was at
determining the asymmetric components of the velocity gradient tensor. In addition, both
the symmetric and asymmetric components of the velocity gradient were tested using the
λ2 vortex identifier, and the GAN was able to predict those well at both resolution ratios.
Then, to determine whether or not the large- and small-scale structures were captured,
the energy spectra and the instantaneous λ2 structures were reconstructed. The GAN was
able to effectively reconstruct both the large- and small-scale turbulent structures at each
wall-normal position.

A GAN model trained on flow field data can potentially be used for other flow field
calculations, such as HIT, turbulent boundary layers, and pipe flows. The primary purpose
of GANs is to generate new data that is similar to the training data, so if the GAN has
learned to accurately generate flow field data, then it could be used to generate new flow
field data for other applications. However, it is important to note that the accuracy and
generalizability of the GAN model will depend on the quality and diversity of the training
data. If the training data does not represent a wide range of flow field scenarios, then the
GAN may not be able to accurately generate new flow field data for other applications.
Furthermore, it is important to carefully evaluate the performance of the GAN-generated
flow field data for other applications, as it may not be as accurate or reliable as actual
experimental or simulation data. Therefore, while a GAN model trained on flow field
data may have potential uses in other applications, it should be used with caution and its
performance should be carefully evaluated.

Funding: This research received no external funding.

Data Availability Statement: The data presented, as well as the code developed in this study are
available on request from the corresponding author.

Acknowledgments: The author appreciates Prof. Stephen Ekwaro-Osire and Prof. Fazle Hussain
for helpful discussion related to this study. The author thanks Prof. Ekwaro-Osire for reading the
final version of the manuscript. Computational resources provided by the Texas Tech University
High-Performance Computing Center are acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 1987,

177, 133–166. [CrossRef]
2. Jiménez, J.; Moin, P. The minimal flow unit in near-wall turbulence. J. Fluid Mech. 1991, 225, 213–240. [CrossRef]
3. Moser, R.D.; Kim, J.; Mansour, N.N. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 1999,

11, 943–945. [CrossRef]
4. Kim, K.C.; Adrian, R.J. Very large-scale motion in the outer layer. Phys. Fluids 1999, 11, 417–422. [CrossRef]
5. Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech. 2015, 774, 395–415.

[CrossRef]
6. Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [CrossRef]
7. Jeong, J.; Hussain, F.; Schoppa, W.; Kim, J. Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 1997,

332, 185–214. [CrossRef]
8. Schoppa, W.; Hussain, F. Coherent structure dynamics in near-wall turbulence. Fluid Dyn. Res. 2000, 26, 119–139. [CrossRef]
9. Schoppa, W.; Hussain, F. Coherent structure generation in near-wall turbulence. J. Fluid Mech. 2002, 453, 57–108. [CrossRef]
10. Hutchins, N.; Marusic, I. Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007,

365, 647–664. [CrossRef]
11. Hutchins, N.; Marusic, I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J.

Fluid Mech. 2007, 579, 1–28. [CrossRef]
12. Jiménez, J. Near-wall turbulence. Phys. Fluids 2013, 25, 101302. [CrossRef]
13. Jiménez, J. Coherent structures in wall-bounded turbulence. J. Fluid Mech. 2018, 842, P1.
14. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]

http://doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1017/S0022112091002033
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1063/1.869889
http://dx.doi.org/10.1017/jfm.2015.268
http://dx.doi.org/10.1017/S0022112095000462
http://dx.doi.org/10.1017/S0022112096003965
http://dx.doi.org/10.1016/S0169-5983(99)00018-0
http://dx.doi.org/10.1017/S002211200100667X
http://dx.doi.org/10.1098/rsta.2006.1942
http://dx.doi.org/10.1017/S0022112006003946
http://dx.doi.org/10.1063/1.4824988
http://dx.doi.org/10.1146/annurev-fluid-010719-060214

Fluids 2023, 8, 195 19 of 20

15. Tabor, G.R.; Baba-Ahmadi, M.H. Inlet conditions for large eddy simulation: A review. Comput. Fluids 2009, 39, 553–567.
[CrossRef]

16. Wu, X. Inflow Turbulence Generation Methods. Annu. Rev. Fluid Mech. 2017, 49, 23–49. [CrossRef]
17. Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019,

870, 106–120.
18. Maulik, R.; Sharma, H.; Patel, S.; Lusch, B.; Jennings, E. Accelerating RANS turbulence modeling using potential flow and

machine learning. arXiv 2019, arXiv:1910.10878.
19. Kim, J.; Lee, C. Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 2020, 882, 1–37.

[CrossRef]
20. Liu, B.; Tang, J.; Huang, H.; Lu, X.Y. Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids

2020, 32, 025105. [CrossRef]
21. Fukami, K.; Fukagata, K.; Taira, K. Assessment of supervised machine learning methods for fluid flows. Theor. Comput. Fluid

Dyn. 2020, 34, 497–519. [CrossRef]
22. Kim, H.; Kim, J.; Won, S.; Lee, C. Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech.

2021, 910, A29. [CrossRef]
23. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 2018, 357, 125–141. [CrossRef]
24. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
25. Yousif, M.Z.; Yu, L.; Lim, H.; Yousif, M.Z.; Yu, L.; Lim, H.C. Physics-guided deep learning for generating turbulent inflow

conditions. J. Fluid Mech. 2022, 936, A21. [CrossRef]
26. Sachin Venkatesh, T.S.; Srivastava, R.; Bhatt, P.; Singh, R.K. A Comparative Study of Various Deep Learning Techniques For

Spatio-Temporal Super-Resolution Reconstruction of Forced Isotropic Turbulent Flows. In Proceedings of the ASME 2021
International Mechanical Engineering Congress and Exposition, Online, 1–5 November 2021.

27. Bode, M.; Gauding, M.; Lian, Z.; Denker, D.; Davidovic, M.; Kleinheinz, K.; Jitsev, J.; Pitsch, H. Using physics-informed enhanced
super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proc. Combust. Inst. 2021,
38, 2617–2625. [CrossRef]

28. Yousif, M.Z.; Yu, L.; Lim, H.C. Super-resolution reconstruction of turbulent flow at various Reynolds numbers based on generative
adversarial networks. arXiv 2021, arXiv:2110.05047v1.

29. Yousif, M.Z.; Yu, L.; Lim, H.C. High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced
super-resolution generative adversarial network. arXiv 2021, arXiv:2109.04250v2.

30. Eivazi, H.; Vinuesa, R. Physics-informed deep-learning applications to experimental fluid mechanics. arXiv 2022,
arXiv:2203.15402v1.

31. Du, Y.; Wang, M.; Zaki, T.A. State estimation in minimal turbulent channel flow: A comparative study of 4DVar and PINN. arXiv
2022, arXiv:2210.09424.

32. Linqi, Y.; Yousif, M.Z.; Zhang, M.; Hoyas, S.; Vinuesa, R.; Lim, H.C. Three-dimensional ESRGAN for super-resolution reconstruc-
tion of turbulent flows with tricubic interpolation-based transfer learning. Phys. Fluids 2022, 34, 125126. [CrossRef]

33. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. arXiv 2016, arXiv:1511.06434v2.

34. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; Institute of Electrical
and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 2242–2251.

35. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017,
arXiv:1704.00028v3.

36. Zheng, T.; Oda, H.; Hayashi, Y.; Moriya, T.; Nakamura, S.; Mori, M.; Takabatake, H.; Natori, H.; Oda, M.; Mori, K. SR-CycleGAN:
Super-resolution of clinical CT to micro-CT level with multi-modality super-resolution loss. J. Med. Imaging 2022, 9, 024003.
[CrossRef] [PubMed]

37. Wu, J.L.; Kashinath, K.; Albert, A.; Chirila, D.; Xiao, H. Enforcing Statistical Constraints in Generative Adversarial Networks for
Modeling Chaotic Dynamical Systems. J. Comput. Phys. 2020, 406, 109209. [CrossRef]

38. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

39. Tieleman, T.; Hinton, G. RMSProp: Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA Neural
Netw. Mach. Learn. 2012, 4, 26–31.

40. Kingma, D.P.; Lei Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

41. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and Beyond. In Proceedings of the International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–23.

42. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. In
Proceedings of the Eighth International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020.

http://dx.doi.org/10.1016/j.compfluid.2009.10.007
http://dx.doi.org/10.1146/annurev-fluid-010816-060322
http://dx.doi.org/10.1017/jfm.2019.814
http://dx.doi.org/10.1063/1.5140772
http://dx.doi.org/10.1007/s00162-020-00518-y
http://dx.doi.org/10.1017/jfm.2020.1028
http://dx.doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1017/jfm.2022.61
http://dx.doi.org/10.1016/j.proci.2020.06.022
http://dx.doi.org/10.1063/5.0129203
http://dx.doi.org/10.1117/1.JMI.9.2.024003
http://www.ncbi.nlm.nih.gov/pubmed/35399301
http://dx.doi.org/10.1016/j.jcp.2019.109209
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

Fluids 2023, 8, 195 20 of 20

43. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral Normalization for Generative Adversarial Networks. In Proceedings of
the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–26.

44. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In
Proceedings of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings.
International Conference on Learning Representations, ICLR, Toulon, France, 24–26 April 2017.

45. Chakraborty, P.; Balachandar, S.; Adrian, R.J. On the relationships between local vortex identification schemes. J. Fluid Mech.
2005, 535, 189–214. [CrossRef]

46. Liu, C.; Gao, Y.S.; Dong, X.R.; Wang, Y.Q.; Liu, J.M.; Zhang, Y.N.; Cai, X.S.; Gui, N. Third generation of vortex identification
methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 2019, 31, 205–223. [CrossRef]

47. Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Studying
Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program, Stanford, CA, USA, 1 December
1988; pp. 1–16.

48. Chong, M.S.; Perry, A.E.; Cantwell, B.J. A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 1990,
2, 777. [CrossRef]

49. Dong, X.; Gao, Y.; Liu, C. New normalized Rortex/vortex identification method. Phys. Fluids 2019, 31, 011701. [CrossRef]
50. Liu, J.; Liu, C. Modified normalized Rortex/vortex identification method. Phys. Fluids 2019, 31, 061704. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0022112005004726
http://dx.doi.org/10.1007/s42241-019-0022-4
http://dx.doi.org/10.1063/1.857730
http://dx.doi.org/10.1063/1.5066016
http://dx.doi.org/10.1063/1.5109437

	Introduction
	Methodology
	Results and Discussion
	Super-Resolution Statistics
	Turbulent Structures

	Conclusions
	References

