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Abstract: We have developed and tested a numerical model for turbulence resolving simulations of
dense mud–water mixtures in oscillatory bottom boundary layers, based on a low Stokes number
formulation of the two-phase equations. The resulting non-Boussinesq equation for the fluid mo-
mentum is coupled to a transport equation for the mud volumetric concentration, giving rise to a
volume-averaged fluid velocity that is non-solenoidal, and the model was implemented as a new
compressible flow solver. An oscillating pressure gradient force was implemented in the correction
step of the standard semi-implicit method for pressure linked equations (SIMPLE), for consistency
with the treatment of other volume forces (e.g., gravity). The flow solver was further coupled to
a new library for Bingham plastic materials, in order to model the rheological properties of dense
mud mixtures using empirically determined concentration-dependent yield stress and viscosity. We
present three direct numerical simulation tests to validate the new MudMixtureFoam solver against
previous numerical solutions and experimental data. The first considered steady flow of Bingham
plastic fluid with uniform concentration around a sphere, with Bingham numbers ranging from 1
to 100 and Reynolds numbers ranging from 0.1 to 100. The second considered the development
of turbulence in oscillatory bottom boundary layer flow, and showed the formation of an inter-
mittently turbulent layer with peak velocity perturbations exceeding 10 percent of the freestream
flow velocity and occurring at a distance from the bottom comparable to the Stokes boundary layer
thickness. The third considered the effects of density stratification due to resuspended sediment on
turbulence in oscillatory bottom boundary layer flow with a bulk Richardson number of 1× 10−4

and a Stokes–Reynolds number of 1000, and showed the formation of a lutocline between 20 and
40 Stokes boundary layer depths. In all cases, the new solver produced excellent agreement with the
previous results.

Keywords: Bingham plastic; OpenFOAM; sediment; viscoplastic; rheology; turbulence

1. Introduction

Resuspension and transport of sediment are the defining processes in the continual
evolution of aqueous topography in shallow coastal environments. Morphological changes
in ocean, estuary, and river environments impact shoreline change, bottom topography,
nearshore navigation in a changing environment, acoustic communication and observation,
and seabed interaction with man-made structures. As such, understanding the mecha-
nisms of resuspension and transport is of critical importance to the development of an
understanding of these coastal environments. In the bottom boundary layer, resuspension
and fluidization of bed sediments are intimately coupled to the turbulent shear stresses
generated at the interface between the fluid and the bed [1,2].

The focus of this paper and the associated solver is the shallow coastal environments
characterized by large concentrations of cohesive dense muddy sediments (e.g., in the
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Gulf of Mexico). Of particular importance in the shallow coastal environment is the
dominant influence of ocean surface waves [3,4], which generate the shear stresses needed
to resuspend sediment from the bed, as well as to transport the sediment bedload. Wave-
induced sediment resuspension can support gravity flows that drive a large portion of cross-
shelf fine sediment transport [5]. Under an oscillating wave, turbulence is limited to a thin
boundary layer just above the bed. The strong shear disturbs the bed sediment, fluidizing
a large concentration of muddy sediment in this layer. Transport of high concentration
sediment mixtures in the near bed layer is a large contributor to the evolution of the
morphology in shallow coastal regions [6,7].

Dense muddy mixtures of cohesive sediments exhibit a non-Newtonian behavior that
can be approximated as a Bingham plastic [8,9]. Comparisons between the Newtonian
model and the Bingham model have shown that the dynamics of dense muddy mixtures
are significantly changed by the presence of a yield stress [8], which clearly makes the task
of properly modeling this yield stress important. Models for the yield stress of the mixture
have been proposed based on empirical studies of wave flow interactions with cohesive
sediments, where relationships were determined using yield stress estimates as a function
of sediment concentrations [10,11].

We presently do not understand how the non-Newtonian concentration-dependent
rheology affects the structure of the turbulence in the boundary layer. It has been shown
that within the bottom boundary layer, the viscoplastic rheological properties of the dense
muddy mixture reduce the turbulent kinetic energy by increasing dissipation [12]. Likewise,
the stable stratification resulting from wave-induced resuspension of bottom sediments has
been seen to both damp turbulent kinetic energy and reduce the bed shear stress [13]. The
interaction between this damping and the turbulent resuspension and transport of muddy
sediment is not yet fully understood, but recent research has indicated a strong relationship
between small scale turbulence in the bottom boundary layer and the movement of fine
muddy sediment [14,15]. Two-phase modeling has been used to show that the boundary
layer thickness of fine sediment suspension is increased by the complex interplay between
flow instabilities, stress terms, and sediment-induced turbulence attenuation [16]. It is
worthwhile to mention the processes of erosion within the context of the rheological
behavior of the dense muddy mixtures. Typically, the flux of sediment into the water
column from the bed is modeled as the product of an erosion rate, a probability factor, and a
function of the shear stress exceeding the critical shear stress [17], with some modifications
required in different scenarios, such as cases of freshly deposited muddy beds [18]. In
contrast, the goal for the new solver considered here is to explicitly resolve the erosion
of sediment from the dense lower layers into the water column under an oscillating flow.
Depending on the Reynolds number of the oscillating conditions, previous direct numerical
simulations have found four different flow regimes: the fully laminar regime, disturbed-
laminar regime, intermittently turbulent regime, and fully turbulent regime [19]. Of
particular interest here is the regime of intermittent turbulence, which has been investigated
with numerical simulation [19] and is later used as a benchmark for our model. The
aforementioned simulations did not consider the non-Newtonian rheology of muddy
sediments and its dependence on the sediment concentration within the fluid.

Previous numerical investigations of the turbulent flow of mud mixtures made a
Boussinesq approximation and assumed that the fluid flow was incompressible, which is
generally valid when the concentration of sediment is sufficiently small [15,20,21]. How-
ever, this approach is not adequate when explicitly modeling the erosion process from large
concentrations near the bottom. Other models such as SedFoam 2.0 [22] are non-Boussinesq,
have options for different sediment rheologies, and are based on the full two-phase mo-
mentum equations. Here, we focus on the simpler approach based on the low Stokes
number simplification of the two phase equations, where the dynamics are governed by the
fluid momentum equation. Our non-Boussinesq model is coupled with Bingham plastic
rheology, where viscoplasticity is represented by a dynamic viscosity and yield stress that
are specifically concentration-dependent. This is done by utilizing functions of dynamic
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viscosity and yield stress that obey empirically determined dependencies on sediment
concentration. We should mention that the existing viscoplastic rheology in OpenFOAM
standard libraries [23] uses a concentration-independent yield stress and viscosity and is
unsuited for modeling dense muddy mixtures.

This paper is organized into several sections. First, we will address the physics foun-
dation of the solver we have developed. This will include a discussion of the development
of the necessary two-phase conservation equations for fluid and sediment used within
our new solver, the development of the momentum equations that govern the dynamics
of the mud–water mixture within the mudMixtureFoam solver, and the treatment of the
viscoplasticity terms for rheological considerations of dense mud mixtures. Second, the
implementation of the mathematical theory into OpenFOAM will be discussed. Third, tests
will be reported that demonstrate the capability and strength of the solver to accurately
model the rheological properties of dense Bingham fluids compared to simulations of
Bingham flows over a sphere [24], as well as the generation of turbulence within the bottom
boundary layer under both single-phase and two-phase oscillatory flow.

2. Mathematical Formulation

As has been the convention in previous work [15,20], we assume that the fine sediment
particles of low Stokes number move with the fluid, having a velocity us that is identical
to the fluid velocity u f , save for in the vertical, where the downward sediment velocity
exceeds the fluid velocity by an extent equal to the settling velocity of the particle, shown by

us
i = u f

i −Wsδi3 (1)

where the settling velocity, WS, includes a hindered settling effect, which decreases the
settling velocity as the sediment becomes more dense. In order to conserve the total sed-
iment concentration within the domain, the settling velocity must approach zero at the
bottom boundary, such that there is no export of sediment across the bottom boundary.
This was accomplished with use of a ramp-down function, causing the total amount of
sediment in the domain to be fixed. We neglect any elastic behavior that occurs in the
thin layer near the bottom boundary. In suspensions of cohesive sediments, the settling
velocity of the particles is dependent on the way in which they flocculate into aggregates or
flocs. Many attempts have been made to model the complicated interaction between floc
aggregation/breakup and the setting velocity, ranging from simple empirical relationships
based on instantaneous concentration and turbulent dissipation rate, to kinetic equations
describing the aggregation and breakup of flocs [25], to population equation balance and
size class modeling [26,27]. Modeling these flocculation effects is computationally demand-
ing, and it is more efficient to select a representative settling velocity for the sediment.
In this model, we consider concentration-dependent settling velocities representative of
sediment in dense muddy mixtures given by

Ws = Ws,0(1− φ
φmax

)mw (2)

where Ws,0 is the reference settling velocity of the sediment, φmax is the maximum allowed
concentration by volume, and mw is an empirically determined constant [28]. Two-phase
conservation equations for the mass of the fluid and sediment phases are

∂(1−φ)
∂t +

∂(1−φ)u f
i

∂xi
= − νt∂

2φ

Sc∂x2
i

(3)

∂φ
∂t +

∂φus
i

∂xi
= νt∂

2φ

Sc∂x2
i

(4)

where the terms on the left-hand side of both equations are the change with respect to time
and the divergence of the velocity, respectively. In addition, when the flows are not entirely
resolved, it becomes necessary to model the unresolved terms with a diffusion term, which
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is a function of the turbulent viscosity and the Schmidt number. The viscosity, νt, is a sum
of the turbulent and molecular viscosities, and the Schmidt number is the dimensionless
ratio of viscous diffusion to molecular diffusion (taken here to be Sc = 0.5). This diffusion
term is typically introduced to increase the numerical stability of simulations.

To determine the momentum of a suspension of fluidized particles within a fluid, it is
necessary to obtain averaged values of the velocity of the fluid, velocities of the particulates,
and fluid pressure. This method simplifies the approach, allowing us to apply the Navier–
Stokes equations to representative regions of fluid. Local spatial averages taken for the
fluid and solid phases require the definition of the portion of the volume occupied by the
fluid, ε (also referred to as the void fraction), and the portion of the volume occupied by the
solid, φ. Reynolds averaging over the momentum equation produces temporally averaged
terms, where quantities are separated into their mean and fluctuating components.

The basis of our model equations rests on the volume-averaged two-phase fluid
momentum equations derived by Jackson [29]. As the fine sediment follows the fluid flow,
except with respect to the settling velocity, it is unnecessary to fully solve both the fluid and
particle momentum phase equations. Instead, the known velocity relationship between the
fluid and fine, low Stokes number clay particles results in a simplification, such that the
dynamics of the mixture is governed by the fluid phase momentum equation alone. The
fluid phase momentum equation is given as

ρ f ε Du f

Dt = ∇ · S f − n f + ρ f εg (5)

where the term on the left hand side represents the material derivative of the fluid, D
Dt =

∂
∂t +u · ∇. ρ f the fluid density, S f the fluid averaged effective stress tensor, and f represents
the average value of the force exerted by the fluid on a particle. Using Jackson’s definition
of the stress tensor

∇ · S f = −∇p +∇ · νe f f∇u (6)

we can recast the fluid momentum equation in terms of the pressure and the dissipation
terms as follows:

ρ f ε Du f

Dt = −∇p +∇ · νe f f∇u f − n f + ρ f εg (7)

where p is the fluid pressure and νe f f is an effective fluid viscosity that combines νt with a
mud mixture viscosity approximating a Bingham plastic. Momentum exchange terms in
the fluid equation are disregarded as they are dependent on small settling velocities and
only act in the vertical direction.

The key consideration in the present model is the inclusion of a cohesive sediment
rheology suitable for dense muddy sediment. Rheometer measurements have suggested
that muddy mixtures closely follow a Bingham plastic rheology [9], where the effective
viscosity is increasingly large under conditions of low shear flow. To account for the
Bingham flow viscoplactic contributions, we model a regularized effective viscosity that
approximates the stress of a Bingham plastic. In the current low Stokes number regime, the
entire mixture viscosity stress is accounted for in the fluid momentum balance as given by

νmud = 1
ρw

(
µmud +

τy
γ̇+ ˙γmin

[1− exp(−m(γ̇ + ˙γmin))]
)

(8)

where µmud is the dynamic viscosity of the muddy mixture, τy is the yield stress of the
mixture, and γ̇ is the shear rate. The constant m is a regularization parameter chosen to
ensure that the rheology asymptotically approaches Bingham plastic behavior for cases
where mγ̇ >> 1, while for cases where mγ̇ << 1, the rheology asymptotically approaches
high-viscosity Newtonian fluid behavior. Empirically determined coefficients for the
yield stress, dynamic viscosity, and mixture density were obtained based on data from
Komatina [11].
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3. Numerical Implementation with OpenFOAM

Here we describe a new numerical solver, mudMixtureFoam, that uses the computa-
tional fluid dynamics framework of OpenFOAM [30] to solve Equations (1)–(8). To solve
for the non-Bousinesq compressible fluid flow in Equations (3) and (7), we modify the
buoyantPimpleFoam solver for compressible, transient flow, as described in detail below.

We are interested in turbulent flows forced by an oscillating pressure gradient. In
OpenFOAM solvers, it is possible to include pressure forcing in the velocity equation of the
momentum prediction step of the pressure–velocity coupling. However, when the flow is
transient, this approach can result in numerical instabilities, and the alternative approach
adopted in OpenFOAM is to include the forcing term in the correction step of the standard
semi-implicit method for pressure linked equations (SIMPLE) [31]. Since the aim of this
model is to simulate turbulent, transient flows of a fully two-phase muddy mixture, we use
the later approach to implement an oscillating pressure gradient force. The flow solver was
further coupled to a new library for Bingham plastic materials to incorporate the effects of
concentration-dependent viscoplastic flow viscosity and yield stress (Equation (8)).

Following the general Rhie and Chow procedure [32] of the finite-volume method, the
semi-discretized form of the fluid-phase momentum equation is

aPU = H(U)−∇prgh +∇ · νe f f∇u + F (9)

where aP is the diagonal term of the matrix resulting from the discretization of the con-
vection term, and H(U) is the off-diagonal term of velocity, both functions of the velocity
field and concentration. F is a body force term, and prgh is the alternate pressure (i.e., the
dynamic pressure) defined by the removal of the hydrostatic pressure prgh = p− ρ(g · h),
where h is some arbitrary height.

The SIMPLE method constructs a convection matrix aP and H(U) and makes a predic-
tion estimate of momentum from Equation (9) using the pressure from the previous time
step. It then estimates the pressure field from the following Poisson equation

∇ ·
[
(1− φ)H(U)

aP
− (1− φ)

∇prgh
aP

+ (1− φ) F
aP

]
+ ∂ε

∂t = − νt∂
2φ

Sc∂x2
i

(10)

obtained by substituting the velocity from Equation (9) into the equation for void fraction
conservation (Equation (3)). The final SIMPLE step is the correction step, where velocity is
estimated with the updated pressure. The steps of estimating the pressure and correcting
the velocity field in the correction step are also known as the PISO method [33], which can
be iterated within each SIMPLE iteration.

The result is a novel numerical solver within the OpenFOAM framework that can be
applied to dense muddy mixtures of fine suspended sediment. The treatment of the time
derivative of the void concentration is a straightforward implementation from buoyantPim-
plefoam (which the mudMixtureFoam solver was adapted from). The novel aspect is that
the body forcing term includes not only gravity but also the oscillatory pressure gradient
forcing. High accuracy discretization schemes were chosen for the convection–diffusion
terms and the temporal terms (central differencing and Crank–Nicholson, respectively),
and the pressure gradient force included in the correction step of the velocity–pressure
coupling loop applies a user defined oscillating flow to the mixture.

4. Results and Discussion
4.1. Viscoplastic Flow around a Sphere

We first validate the ability of the mudMixtureFoam solver to simulate the rheological
properties of a Bingham fluid passing over a stationary spherical particle. This is carried
out by comparing the result of mudMixtureFoam to the work of Gavrilov et al. [24], who
modeled a Bingham plastic flowing past a sphere with a different finite-volume solver. The
properties that we have chosen to compare are the surface drag over the sphere and the
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viscous stress distribution in the Bingham fluid in the vicinity of the sphere surface, two
properties of the fluid that depend heavily on the rheology.

Following the methodology of Gavrilov et al. [24], we utilize radial symmetry to
minimize the computational domain necessary to model. We construct a 3D domain of
extent Lx× Ly× Lz with a solid spherical surface centered at (Lx/2, 0, 0). This results in a
quarter of the solid sphere extending into our domain (Figure 1). Using radial symmetry,
we can extrapolate that the unmodeled volumes are symmetrical reflections across the
y = 0 plane and the z = 0 plane centered at (Lx/2, 0, 0).

Figure 1. Diagram of the modeled area respective to the sphere. The upper left-hand quadrant is the
model domain, with assumed symmetry conditions on the interfaces between quadrants.

The domain size is set to cover a distance 50 radii from the sphere center. A circum-
ferential resolution of 72 cells is defined at the surface of the sphere (Figure 2), with this
high-resolution area extending to a distance five radii from the sphere center. A constant
fluid flow aligned along the x-axis is used to initialize the simulation and is also imposed as
an inlet boundary condition with magnitudes indicated in Table 1. The surface of the sphere
is set to be a no-slip wall boundary, with the other domain boundaries being assigned the
symmetry boundary condition. The forward Euler scheme was used for time integration of
the governing equations. The simulated flow field quickly converged to the final steady
state for the low Reynolds number considered in the present tests.

Figure 2. Near-surface mesh around the sphere. Five surface layers are implemented with an
expansion ratio of 1.2.

Table 1. Bingham Fluid Parameters.

Case Bn Re V (mm/s) D (mm)

A 1 0.1 2 0.172
B 100 1.0 0.643 5.6
C 1 100 64.3 5.6
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Drag and viscosity are intimately related to the system rheology. As fluid flow encoun-
ters the solid sphere and is deflected around the sphere surface, the no-slip wall boundary
creates a shear stress around the sphere, which decreases the viscosity of the Bingham
fluid in the region where the yield stress is exceeded. Using his simulations Gavrilov [24]
obtained the following empirical drag force on the sphere

Fd = 3πµ f DV(1 + 0.15Re0.687 + 1.79Bn1/2 + 1.09Bn) (11)

as a function of the Reynolds number (Re) of the fluid

Re = ρmDV
µm

, (12)

and the Bingham number (Bn) of the fluid

Bn =
τyD
µmV , (13)

where D is the sphere diameter, V is the velocity of the fluid, ρm is the fluid density, µm is
the dynamic viscosity, and τy is the yield stress; the last three properties would be functions
of the sediment concentration in the case of mud suspensions.

We considered three unique cases of steady Bingham fluid flow over a range of
1 < Bn < 100 and Reynolds numbers from 0.1 < Re < 100 (shown in Table 1). Sphere
diameter and fluid velocity were varied to obtain a range of Reynolds and Bingham
numbers, while the yield stress, density, and viscosity were held constant.

Drag-induced shear causes stress near the sphere surface, which in turn results in a
lowered effective viscosity of the Bingham fluid near the sphere surface. As the Bingham
number decreases, or Reynolds number increases, we expect that the flow and shear effects
would more strongly dominate, resulting in a larger area of lowered viscosity around the
sphere (as observed in Figures 3–5). These figures represent contour cross-sections of the
fluid viscosity through the center of the rigid sphere. Figures 3 and 5 correspond directly
to cases A and C, respectively, as examined by Gavrilov et al. [24]. Case B (Figure 4) was
undertaken to demonstrate the ability of mudMixtureFoam to handle fluids with very large
Bingham numbers.

The contour lines correspond to the following range of normalized values of effective
viscosity: 1 < ν/k(1 + Bn) < 10. In case A, the region of lowered viscosity forms a
symmetrical bubble around the rigid sphere, with a smaller ring of higher viscosity halfway
around the sphere. As the Bingham number increases, the region of lowered viscosity
deforms somewhat, extending outwards in the upstream and downstream directions, and a
distinct divot forms at the top. Presumably, this can be attributed to the effects of increased
yield stress causing the fluid to resist shear near the sphere surface. Predictably, this
causes the region of lowered viscosity to have a more limited extension in the cross-stream
direction away from the sphere. When the Reynolds number is dramatically increased,
as in case C, the region of lowered viscosity can be seen to lengthen quite dramatically
downstream. This is expected, as at high Reynolds numbers, the inertial forces are strong
enough to overcome the viscous forces, and the fluid stress exceeds the yield stress of the
Bingham fluid, both near the sphere surface and downstream of the rigid sphere, creating a
wake of lowered viscosity.
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Figure 3. A vertical cross-section of the viscosity bubble around the solid sphere (black line) is shown
for Case A with Re = 0.1, Bn = 1. Colored lines correspond to the viscosity, nondimensionalized by
k(1 + Bn). The contours are integer values in the range 1–10.

Figure 4. A vertical cross-section of the viscosity bubble around the solid sphere (black line) is shown
for Case B with Re = 1, Bn = 100. Colored lines correspond to the viscosity, nondimensionalized by
k(1 + Bn). The contours are integer values in the range 1–10.

Figure 5. A vertical cross-section of the viscosity bubble around the solid sphere (black line) is shown
for Case C with Re = 100, Bn = 1. Colored lines correspond to the viscosity, nondimensionalized by
k(1 + Bn). The contours are integer values in the range 1–10.
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Figures 6 and 7 display the vertical and horizontal cross-sections of viscosity taken
from cases A and C, compared with the contour profiles of data digitized from the corre-
sponding Gavrilov results.

Figure 6. Comparison of case A horizontal and vertical profiles of nondimensionalized viscosity
through the sphere with the corresponding profiles in Gavrilov.

The profiles of viscosity through the sphere determined by the mudMixtureFoam
solver show a good match with the simulation results from Gavrilov et al. [24]. A quantita-
tive comparison of the viscosity profiles to Gavrilov et al. [24] was made by calculation of
the root-mean-square error (RMSE), normalized using the viscosity range. Case A shows
the best fit of the model with the established simulation, with a normalized RMSE of 0.0135
in the vertical and 0.0011 in the horizontal. Case C shows an excellent match in the vertical,
with a normalized RMSE of 0.000237. The horizontal profile of Case C shows a good match
on the upstream side (normalized RMSE = 0.000379), but on the downstream there is a
clear under-prediction of the extent of the region of lowered viscosity. This resulted in a
normalized RSME value of 0.195. This is a notable divergence from the Gavrilov simulation
results, but was likely a result of the limited extent of downstream refinements used within
the OpenFOAM domain.

Successful modeling of drag force by mudMixtureFoam would produce values for
drag force over the sphere surface consistent with the theoretical drag force obtained from
Equation (11). Figure 8 demonstrates that the modeled value of the drag converged toward
the empirical value over the last several hundred model iterations of the test case runs.
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Figure 7. Comparison of case C horizontal and vertical profiles of nondimensionalized viscosity
through the sphere with the corresponding profiles in Gavrilov.

Figure 8. Ratio of Fd, the modeled drag coefficient over the sphere surface, to Fg, the expected drag
force calculated using Equation (11).
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Taken together, the examination of drag and viscosity clearly demonstrate that the
new mudMixtureFoam solver is able to reliably model the rheology of a Bingham plastic
fluid, making it a suitable method for modeling areas with dense muddy sediment. With
this validation of the rheological component of the model, we turn to the examination of
the ability of mudMixtureFoam to appropriately handle the generation of turbulence in the
bottom boundary layer.

4.2. Turbulence in Single-Phase Oscillatory Boundary Layer

The ultimate goal of the mudMixtureFoam solver is to model turbulent resuspension
of sediments and their transport in the bottom boundary layer. There is a large body
of simulation work concerning bottom boundary later turbulence under oscillating flow
conditions [15,19,20,34,35], and we have selected here the work of Costamagna et al. [36]
to serve as a benchmark for our model. There are two facets to the motivation for this
section. The first is to show that we can replicate the growth and behavior of intermittent
turbulence in the bottom boundary layer, and the second is to test the stability of our solver
for non-solenoidal flow under conditions of non-uniform sediment concentration.

We consider a 3D domain (a small box near the bottom boundary) analogous to that
used by Costamagna. The domain extent is a multiple of the Stokes boundary length scale

∆ =

√
2ν f
ω , (14)

where ω is the angular frequency of the oscillatory flow. Costamagna et al. [36] tested
the domain size necessary to produce turbulent effects, and a domain with dimensions
(50.27∆× 25.14∆× 25.14∆) was sufficient to produce a good match when compared to
experimental observation [37]. While subsequent studies have expanded this domain
to produce more targeted turbulence effects, such as tracking turbulent spots within the
flow [34], for a simple comparison we deemed the smaller domain sufficient. Periodic
boundary conditions were selected on the horizontal boundaries, a no-slip wall condition
was forced at the bottom boundary, and a slip boundary condition was selected for the
upper boundary.

Flow through the domain was forced by the oscillating pressure gradient term

∂P
∂x = ρ f ωU0 cos(ωt) (15)

where ω is the angular frequency of the oscillating wave, given by ω = 2π/T and where
T is the period of the wave. This term corresponds to a free stream wave with velocity
U = U0 sin(ωt). A period of five seconds was selected, resulting in an angular frequency
ω = 1.257 s−1 and Stokes boundary layer thickness ∆ = 1.26 mm. In oscillatory flow,
the flow regime of laminar, disturbed laminar, intermittent turbulent, or fully turbulent is
typically described using the Stokes Reynolds number [38,39]

Re∆ = U0∆
ν f

(16)

where the intermittently turbulent regime exists in the range of 400 < Re∆ < 1200. To keep
consistency with with energetic shelf wave conditions, and to produce Stokes–Reynolds
numbers of the same level as those used by Costamagna et al. [36], a U0 of 0.752 m/s was
selected. The natural transition to turbulence from laminar flow can be triggered by initially
small variations induced by perturbations, such as wall waviness or vibration. These cause
small variations from the laminar regime, which grow and cause the breakdown of laminar
flow into turbulence. An infinitesimal waviness comprised of a superposition of sinusoidal
waves was applied to the bottom boundary of our domain

x3 = 0.005∆ ∑N
n=1 an cos(αnx1 + γnx2 + φn) (17)
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where x1 and x2 represent the nondimensionalized x and y positions, respectively, and
x3 is the vertical position of the bottom boundary. This expression is characterized by
the wavenumbers αn in the x dimension and γn in the y dimension. The parameters for
waviness used in this study are given in Table 2.

Table 2. Waviness parameters.

a1 a2 α1 α2 γ1 γ2 φ1 φ2

1 0.1 0.5 0 0 1 0 0

Taking into account all the factors above, we chose our domain to be of size 6.33 cm
× 3.17 cm × 3.17 cm, with 192× 64× 96 grid points. The infinitesimal bottom boundary
waviness described by Equation (17) was introduced by calculating a spline fit through a
series of points.

We studied two specific case runs. The first had a zero sediment concentration through-
out the domain, for a direct comparison of our model results to those of Costamagna et
al. [36]. The second case introduced a very small sediment concentration, initialized using
the exponential profile:

c = 0.00013 ∗ exp(−27.7z) (18)

to demonstrate that the solver can perform calculations with concentration-dependent terms.
In the intermittently turbulent regime, the turbulent kinetic energy (TKE) is characterized
by an oscillation, where turbulence grows during the early part of the deceleration phase
and diminishes during the early phases of accelerating flow. Figure 9 shows the free-stream
mean velocity, the oscillating pressure gradient forcing term, and the domain-averaged
turbulent kinetic energy. The first simulated cycle served as a ramp-up of the model, while
phase averages were taken over the second and third cycles. We begin with a quiescent fluid
with an initially large pressure gradient, which follows a sinusoidal behavior through one
cycle. This results in a velocity oscillation which has the expected π/2 phase shift. For our
five-second cycle, this means we expect maximum velocity magnitudes at π/2 and 3π/2
of each cycle, which can clearly be seen in Figure 9. Turbulent kinetic energy follows the
velocity oscillations, reaching maximum values at the early phases of decelerating cross-flow.

Figure 9. Free-stream velocity in m/s (blue), pressure gradient of ω cos (ωt) (black), and turbulent
kinetic energy in m2/s2 (red).
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Figure 10 shows a comparison between both mudMixtureFoam solver case runs and
the digitized results of Costamagna et al. [36]. The streamwise velocity fluctuations
normalized by U0 decreased to values lower than 0.01 above 20 mm from the bottom.
At π, where the oscillating flow is zero and the acceleration is negative, the maximum
fluctuations occur between 5 mm and 10 mm, reaching values of up to 0.05 with regularity.
At 1.24 π, when the oscillating flow is oriented in the negative x direction, peak fluctuations
occur around 1 mm from the bottom (comparable to ∆), reaching values of just under
0.09. At 1.64π under conditions of negative flow and positive acceleration, the profile of
streamwise fluctuations is seen to increase in the region below 15 mm, reaching values up to
0.12 near the bottom. Normalized vertical velocity fluctuations have similar behaviors,
where at π, the profile can be seen to have a large increase in values under 25 mm, with the
largest values occurring between 15 mm and 5 mm, reaching magnitudes of just under 0.04.
At 1.64π, the fluctuations can be seen to increase towards the bottom, reaching a peak at
3 mm (about 2∆) over 0.04. Figure 10 also shows that adding a small concentration profile
did not have a significant impact on the momentum of the solution, which can be seen
in how closely it follows the case without sediment. The results also compare favorably
with the experimental work of Jensen et. al. [37] on oscillatory flows in an intermittently
turbulent regime (See Figure 10, diamond symbols). Doubling the grid resolution in the
simulation only had a small effect, such that the root-mean-squared velocity perturbations
in the streamwise direction did not exceed 1% at the phase of maximum flow (see for
example, Figure 10, first panel). This validates the ability of our solver to properly handle
sediment concentrations within the bottom boundary layer under oscillating flow.

Figure 10. Phase-averaged normalized root mean squared velocity perturbations in the streamwise
and vertical directions. Results are shown for the test case initialized with no concentration (blue),
and the test case initialized with a concentration gradient (red). A comparison is made with with the
numerical results of Costamagna et al. [36] (black dots), as well as the experimental results of Jensen
et. al. [37] (black diamonds). The doubled resolution test case is denoted by the cyan line.

The volume fraction field is a tracer and its behavior through the domain provides
insight into the development of turbulence over time. Figure 11 shows the volume frac-
tion on an x–z plane cross-section through the domain. From this, the time evolution
of turbulence can be seen, as the sediment goes from a well ordered initial gradient
(Figure 11a,b) towards well-mixed homogenized conditions (Figure 11d).
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Figure 11. X–z cross-section through the center of the domain of concentration, taken through the
first three cycles (a) 3 s, (b) 5 s, (c) 7 s, and (d) 13 s.

Figure 12 shows the growth and oscillations of the domain-averaged turbulent kinetic
energy generated with the mudMixtureFoam solver through the first three flow cycles.
Growth of turbulent kinetic energy occurs during the first cycle and quickly stabilizes for
the second and third cycles. As expected, the small amount of density gradients in the test
with the concentration profile did not alter significantly the final equilibrium value of the
turbulent kinetic energy. These results demonstrate that the mudMixtureFoam solver can
reproduce the generation of turbulence within the bottom boundary layer, as well as handle
small concentrations of sediment, without having a substantial effect on the solution of
the momentum.

Figure 12. Log scale of turbulent kinetic energy over time for the test case initialized with no
concentration (blue), and with a concentration gradient (red).

4.3. Two-Phase Flow in Oscillatory Boundary Layer

Here, we replicate the simulation of suspended fine sediments under an oscillatory
flow from Ozdemir et al. [19]. In their methodology, the Boussinesq approximation was
assumed for fluid flow, and the resulting momentum equation was used to formulate a
model designed to capture the interactions of sediment properties and turbulence in the
bottom boundary layer. Reproducing these numerical cases will give further validation to
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the applicability of our non-Boussinesq model to fluid flows under such conditions, and
facilitate the expansion of the modeled conditions to include denser suspensions.

An oscillating free-stream velocity of 0.56 m/s and a period of 10 s were selected to
simulate highly energetic shelf conditions. This resulted in a Stokes boundary length of
1.8 mm and a Stokes–Reynolds number of 1000. The domain used in the previous section
was extended vertically to achieve consistency with Ozdemir et al. This extension resulted
in a domain with a vertical span of 60 Stokes boundary lengths. Length scales were
normalized using this boundary layer thickness, and velocity scales were normalized
using the maximum free stream velocity, U0. Ozdemir et al. [19] made use of a pseudo-
spectral method to resolve the initialization of turbulence at the bottom boundary, which
we cannot reproduce with our second order spatial accuracy. Instead, we made use of the
bottom waviness (Equation (17)) approach that was utilized by Costamagna et al. [36] and
Mazzuoli et al. [40] to provide the infinitesimal “kick” that triggers the natural transition to
turbulence.

The domain averaged sediment concentration was held to be 0.001 by volume within
the domain, and initialized with the exponential profile c = 7.04×Vs× exp(−111×Vs× z),
where c is the volumetric concentration of sediment, and z is the non-dimensional vertical
position vector. A bulk Richardson number of 1× 10−4, and Stokes–Reynolds number of
1000 were chosen for consistency with Ozdemir’s numerical simulations.

We ran cases 2 and 3 from Table 3 with the mudMixtureFoam solver and compared
the results to the digitized data output of Ozdemir et al. [19]. Points of comparison are the
behavior of the along-stream velocity profiles and the profiles of concentration. Values are
taken on three different phases of the oscillating cycle: 5π/6, π, and 7π/6. These phases
correspond to the decelerating phase, the zero freestream velocity phase, and the negatively
accelerating phase, respectively.

Table 3. Parameters in the two simulation cases from Ozdemir et al. [19].

Case Re∆ Ri Vs U0 T

Case 2 1000 1× 10−4 4.5× 10−4 0.56 m/s 10 s
Case 3 1000 1× 10−4 7.5× 10−4 0.56 m/s 10 s

The phase-averaged concentration profiles in our simulations (blue lines) are in good
agreement with those of Ozdemir et al. (red dots) and formed a lutocline, a sharp concen-
tration gradient, at approximately 25 Stokes boundary lengths from the bottom (Figure 13
top row). The lutocline separates the upper fluid layer (with low magnitudes of turbu-
lence) from the lower turbulent layer. Likewise, our simulations reproduced the verti-
cal behavior of turbulence in relation to the lutocline, where the region below the luto-
cline is characterized by substantially increased values of turbulent velocity fluctuations
(Figure 13 bottom row). The presence of a distinct lutocline is a characteristic behavior
of the intermittently turbulent flow regime. The flow in this layer is highly energetic,
displaying high values of streamwise root mean squared velocity, as can be seen in the
bottom row of Figure 13. We found a similar agreement between our model and Ozdemir
et al. for case 3 in Table 3.



Fluids 2023, 8, 171 16 of 18

I

I II

II III

III

UxUxUx

UxRMS UxRMS UxRMS

C C C

Figure 13. Phase-averaged profiles of the sediment concentration, normalized streamwise velocity,
and RMS of the streamwise perturbations for mudMixtureFoam (Blue) are compared against the data
from the Case 2 simulation of Ozdemir et al. [19] (red). Taken at three phases of the oscillating cycle:
5π/6 (I), π (II), and 7π/6 (III).

5. Conclusions

In this paper, we presented a two-phase model designed to simulate the interaction
of bottom turbulence with density stratification due to resuspended sediment. This was
achieved by coupling a viscoplastic model to the non-Boussinesq momentum equations.
The viscoplastic model approximates the behavior of a Bingham plastic using empiri-
cally determined dependencies of the dynamic viscosity and yield stress on sediment
concentration. Sediment-specific parameterizations can be used to adjust the viscosity
model towards different mud compositions, resulting in a broad applicability of the over-
all model to a diverse set of conditions. The solver was implemented in Openfoam by
modifying the pressure solver algorithm to account for a non-solenoidal fluid velocity in a
two-phase system.

The viscosity model component of the solver was successfully validated against
steady flow of a Bingham plastic fluid over a sphere, accurately recreating the behavior
of viscosity around the solid sphere. The model demonstrated good agreement with
previous simulations, with a direct comparison of the viscosity profiles with Gavrilov’s
simulations [24] showing root mean square deviations not exceeding 1 percent near the
sphere surface, with most deviations falling below 0.1 percent. The drag force over the
surface of the sphere for flow conditions with a Bingham number of 1 and Reynolds
numbers of both 0.1 and 100 converged to the values predicted by the drag force equation
proposed by Gavrilov (Equation (11)).

MudMixtureFoam was able to produce intermittently turbulent flow within the bottom
boundary layer under an oscillating wave. The accuracy of turbulence production was
validated by comparison of the velocity perturbation profiles throughout all phases of flow
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to a prior simulation carried out by Costamagna [36] and the laboratory experiments of
Jensen [37]. The profiles demonstrated the model’s ability to capture the behavior of the
turbulent layer with peak streamwise perturbations reaching magnitudes over 10 percent
of the freestream velocity and vertical perturbations reaching magnitudes up to 5 percent
of the freestream velocity and occurring at distances 1− 2∆ from the bottom.

Finally, we carried out numerical simulations of intermittently turbulent sediment-
laden flow and found good agreement with the prior simulation of [19] for a Stokes–
Reynolds number of 1000 and a bulk Richardson number of 1× 10−4. Formation of a
lutocline between 20 and 40 Stokes boundary layer depths was seen, and an increase in
the settling velocity by 67 percent resulted in the location of the lutocline dropping by
approximately 5 mm. Below this lutocline, the turbulent velocity perturbations displayed a
marked increase in magnitude, with normalized velocity values exceeding 0.05 within the
first 10 Stokes boundary lengths from the bottom. As the lutocline forms directly above
the turbulent layer, this provides a measure of the thickness of the intermittently turbu-
lent bottom boundary layer, which itself is sensitive to the settling velocity. Given these
validations, we believe that MudMixtureFoam would be a useful tool to investigate the
effects of high nearbed concentration on turbulence in oscillatory bottom boundary layers.
The numerical model described in this work can be used to refine the parameterization of
the effects of sediment driven density stratification in sediment diffusion models of silty
suspensions [41].
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