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Abstract: Magnetohydrodynamical (MHD) turbulence is ubiquitous in magnetized astrophysical
plasmas, and it radically changes a great variety of astrophysical processes. In this review, we
introduce the concept of MHD turbulence and explain the origin of its scaling. We consider the
implications of MHD turbulence for various problems: dynamo in different types of stars, flare
activity, solar and stellar wind from different stars, the propagation of cosmic rays, and star formation.
We also discuss how the properties of MHD turbulence provide a new means of tracing magnetic
fields in interstellar and intracluster media.
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1. Introduction

Turbulence is ubiquitous in astrophysics. The evidence of turbulence includes a Kol-
mogorov spectrum of electron density fluctuations [1,2], through numerous measurements
of solar wind fluctuations [3] and the non-thermal broadening of spectral lines, as well as
measures obtained by other techniques; see [4]. This is due to astrophysical plasmas having
very large Reynolds numbers. Plasma flows at these high Reynolds numbers are subject to
numerous linear and finite-amplitude instabilities that induce turbulence.

Turbulence can be driven by an external energy source, such as supernova explosions
in the ISM [5,6], merger events and active galactic nuclei outflows in the intercluster
medium (ICM) [7–9], and baroclinic forcing behind shock waves in interstellar clouds.
Turbulence can also be driven by a rich array of instabilities, such as magneto-rotational
instability (MRI) in accretion disks [10,11], kink instability of twisted flux tubes in the solar
corona [12,13], etc.

The properties of the media change dramatically in the presence of turbulence. In
particular, transport processes are changed by turbulence.

Astrophysical turbulence is magnetized and therefore the turbulence in the presence
of a magnetic field is the most important for astrophysical applications. In this review,
we discuss the basic properties of MHD turbulence in Section 2, its relation to dynamo
in Section 3, and its connection to magnetic reconnection and reconnection diffusion in
Section 4. We discuss the turbulence in spiral galaxies and its effects on star formation in
Section 5. Turbulence effects on cosmic ray physics are considered in Section 6, while a new
means of magnetic field study that employs MHD turbulence properties, i.e., the gradient
technique (GT), is discussed briefly in Section 7.

2. Basics of MHD Turbulence Theory
2.1. General Considerations

The modern understanding of MHD turbulence theory is described in the monograph
by Beresnyak and Lazarian [14]. Below, we provide a brief sketch of a few fundamental
ideas at the theory’s foundations.
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First of all, MHD turbulence is anisotropic. This property has been known for a while
(see [15]) but was associated with scale-independent anisotropy that was measured in
numerical simulations. In [16], the concept of scale-dependent anisotropy scaling was
introduced. The compressible MHD turbulence is based on the notion of the superposition
of three cascades of fundamental modes, i.e., Alfvén, slow and fast. We use term “mode”
rather than “wave” as, in strong turbulence, the Alfvén turbulent perturbations undergo
nonlinear damping/cascading over one period. This is definitely not wave behavior.

The Alfvén modes determine turbulence anisotropy. They enslave the cascades of
slow modes and impose their anisotropy on the slow modes [16–19]. In non-relativistic
turbulence, fast modes follow their own cascades that depend marginally on the cascades
of Alfvén and slow modes [18]. This cascade is similar to the acoustic one in a high β (β
is the ratio of the plasma to magnetic pressure) medium ([16]). In this regime, the fast
modes are mostly compressions of media propagating with sound velocity cs. In [18], it
was demonstrated that in the low-β turbulence, the fast modes form a cascade similar to
the acoustic one, even though the fluctuations are magnetic compressions propagating with
Alfvén velocity VA. In fact, numerical simulations in [18,19] indicate that the cascade of the
fast modes is very similar to the acoustic cascade for all β. Figure 1 illustrates the spectra
MHD modes. We discuss their properties below.

Figure 1. Left: The power spectrum of velocity fluctuations for Alfvénic (top), fast (central) and slow
(bottom) modes. The sonic Mach number MS ≈ 0.6. Right: The spectra of 3 modes for MA ≈ 0.5.
From [20].

2.2. Alfvén and Slow Modes

The properties of MHD turbulence change with the Alfvén Mach number MA = VL/VA,
where VL and VA are, respectively, the turbulent injection and Alfvén velocity. For MA � 1,
magnetic fields are weakly perturbed, while magnetic fields are highly chaotic for MA � 1.
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The original version in [16] was formulated by [16] in Fourier space in the system of
reference of the mean magnetic field. In fact, the formulated scalings are not valid in the
system of the mean magnetic field. The correct choice of the system of reference follows from
the theory of turbulent reconnection [21]. Turbulent reconnection is part and parcel of MHD
turbulence (see [22]). Ref. [21]’s theory demonstrates that in trans-Alvenic turbulence, the
reconnection of eddies is equal to the eddy turnover time. Therefore, Alfvénic turbulence
can be treated as the collection of eddies whose axes of rotation are aligned with the
magnetic field in their vicinity. Turbulent reconnection enables the fluid motions that
induce mixing perpendicular to the local magnetic field direction.

It is easy to see that the eddy’s perpendicular magnetic field in the presence of turbulent
reconnection experiences minimal resistance. Indeed, the magnetic field bending by such
eddies is minimal. Thus, the energy of turbulent driving is being channeled through
such eddies.

An eddy with scale l⊥ perpendicular to the local magnetic field induces an Alfvénic
perturbation of scale l‖ that propagates along the magnetic field with speed VA. As an
eddy induces this perturbation with the turnover time l⊥/vl , this should be equal to the
timescale of the corresponding Alfvénic perturbation l‖/VA induced by the eddy:

l‖
VA
≈ l⊥

vl
. (1)

This relation constitutes the modern understanding of the critical balance for Alfvénic
turbulence.

As a result, [16]’s original theory must be augmented by the concept of a local system of
reference. The vital significance of this system of reference for describing MHD turbulence
is confirmed by numerical simulations [23–25]. One should keep in mind that the direction
of the local magnetic field at a given region can differ significantly from the global mean
magnetic field direction. The latter results from large-scale averaging, and it does not
generally coincide with the realization of the magnetic field at a given point. Disregarding
the difference between the local and global systems of reference is the most common
mistake in the literature dealing with MHD turbulence. The scale-dependent anisotropy
laws formulated in [16] are valid only in the local reference system.

Observational studies of the average magnetic field along the line of sight make it
impossible to define the 3D local reference frame. Thus, the observationally measured
anisotropy is not expected to be scale-dependent. In the reference system related to the
mean field, i.e., the global system of reference, the largest eddies dominate the measured
turbulence anisotropy (see [25]).

While the local system of reference is not easy to define in measuring magnetic fields
from observations, this is a natural system of reference for astrophysical processes. For
instance, the local direction of a magnetic field in the solar vicinity is very different from
the average direction of a magnetic field in the Milky way. Cosmic ray propagation in the
solar system neighborhood is determined by the local magnetic field rather than the Milky
Way’s averaged one.

As mentioned earlier, turbulent reconnection allows the turbulent cascade in the
direction perpendicular to the local magnetic field. This cascade is not affected by the
back-reaction of the magnetic field. Thus, the Alfvénic cascade is Kolmogorov-like. For
trans-Alfvénic turbulence with VL = VA, this entails

vl ≈ VA

(
l⊥
L

)1/3
, (2)

where vl is the turbulent velocity corresponding to the perpendicular eddy l⊥ scale.



Fluids 2023, 8, 142 4 of 23

In the local system of reference, combining Equations (1) and (2), it is easy obtain the
scale-dependent anisotropy of trans-Alfvénic turbulence:

l‖ ≈ L
(

l⊥
L

)2/3
. (3)

This testifies that smaller eddies are more elongated along the local magnetic field.
If turbulence is injected with MA > 1, the magnetic field is weak at injection scale

L. Therefore, the super-Alfvénic turbulence at large scales evolves along an isotropic
Kolmogorov energy spectrum. However, as turbulent velocity decreases at smaller scales,
i.e., v2

l ∼ VL(l/L)2/3, the effect of the magnetic field becomes important. At the scale [26]

lA = LM−3
A , (4)

vl becomes equal to VA, and the turbulence transfers to the MHD regime. In fact, at scales
smaller than lA, turbulence can be described by trans-Alfvénic scaling, provided that L in
Equations (2) and (3) is replaced by lA.

The analysis of the literature shows that researchers frequently miss that the [16]
scalings are not valid for sub-Alfvénic turbulence with MA < 1. It was demonstrated
in [21] that in the vicinity of the injection scale, L, the sub-Alfvénic turbulence evolves along
a different type of cascade. This regime is termed the weak regime of Alfvénic turbulence.
In this regime, the parallel scale of wave packets remains equal to the injection scale, i.e.,
l‖ = L = const, and the Alfvén perturbations interact multiple times to be cascaded.

For weak turbulence, the scaling obtained in [21] for the weak turbulence (weak
turbulence is weak in terms of the nonlinear interactions) under the assumption of the
isotropic turbulence driving at L is

vl ≈ VL

(
l⊥
L

)1/2
, (5)

which also corresponds to the subsequent detailed analytical study in [27].
An important feature of the weak Alfvénic cascade is that, with the decrease in l⊥,

the intensity of interactions of Alfvénic perturbations increases. This is counterintuitive
as, with the decrease in l⊥, the turbulence decreases in its amplitude. Therefore, as shown
in [21], at scale

ltran ≈ LM2
A, (6)

where MA < 1, and the turbulence enters into the strong turbulence regime. For the
sub-Alfvénic MHD turbulence at l < ltran,

vl ≈ VL

(
l⊥
L

)1/3
M1/3

A , (7)

and

l‖ ≈ L
(

l⊥
L

)2/3
M−4/3

A . (8)

It is important to note that the relations above that were derived in [21] differ from
Equations (2) and (3) for trans-Alfvénic turbulence, i.e., for MA = 1, by the additional
dependence on the Alfvén Mach number MA.

2.3. Fast Modes

The numerical decomposition of MHD turbulence into modes has demonstrated
that the interaction between fast modes, on the one hand, and slow, and Alfvén, on the
other hand, is relatively weak for a low Alfvén Mach number MA = Vl/VA for non-
relativistic MHD turbulence [18]. The cascade of the fast modes, therefore, can be assumed
independent of the cascades of the Alfvén and slow modes. This cascade is similar to the
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acoustic one in a high-β medium (we remind the reader that β is the ratio of the plasma
to magnetic pressure) [16]. This is because, in this regime, the fast modes are mostly
compressions of plasmas that propagate with sound velocity cs. It was also shown by [18]
that in the opposite limiting case of low-β plasmas, the fast modes are expected to form a
cascade similar to the acoustic one, even though the fluctuations are compressions of the
magnetic field that propagate with velocity ∼ VA. The numerical simulations in [18,19]
support the idea that the cascade of the fast modes is very similar to the acoustic cascade
for all β.

For fast modes in a high-β medium, the perturbations are similar to sonic waves. Thus,
their amplitude increases with the sonic Mach number Ms. For fast modes in a low-β
medium, the increase in amplitude corresponds to the increase in MA. The numerical
results in [19] are consistent with E f ∼ k−3/2, while those in [28] are better fitted by
E f ∼ k−2.

The difference can be accounted for by appealing to the analogy with the acoustic
turbulent cascade, but it is not a settled issue. For instance, new simulations shown in
Figure 1 suggest that the spectrum of k−2 for subsonic turbulence corresponds to Ms = 0.6.
Whatever their exact spectral index, the fast modes’ fluctuations are isotropic.

Figure 2 illustrates the anisotropies of three fundamental modes of MHD turbulence,
i.e., Alfvén, slow and fast. The contours of iso-correlation are shown.

Figure 2. Iso-contours of equal correlation for structure functions measured in the local reference
frame. The coordinate Z is measured parallel to the local magnetic field, while R is measured
perpendicular to the local magnetic field. The turbulence corresponds to MA ≈ 0.5. From [20].

3. MHD Turbulence and Dynamo

MHD turbulence plays a key role in the turbulent dynamo. The dynamo process is
a mechanism for generating a magnetic field in celestial bodies—in particular, in the Sun
and stars [29,30]. The problem of explaining the occurrence of a magnetic field in celestial
bodies began with the discovery of the terrestrial and solar magnetic fields.

The first theoretical work on what constitutes the Earth’s magnetic field, i.e., what is
the magnitude and direction of its intensity at each point on the Earth’s surface, belongs
to the German mathematician Carl Gauss. In 1834, he gave a mathematical expression for
the components of tension as a function of coordinates—the latitude and longitude of the
observation site. Using this expression, it is possible to find, for each point on the Earth’s
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surface, the values of any of the components called the elements of the Earth’s magnetism.
This and other works of Gauss became the foundation on which the modern science of
terrestrial magnetism is built [31]. In particular, in 1839, he proved that the main part of the
magnetic field comes out of the Earth, and the cause of small, short deviations in its values
must be sought in the external environment [31].

The discovery of the solar magnetic field is associated with the observation of sunspots
on its surface, which began to be conducted a very long time ago.

The first reports of sunspots date back to 800 BC in China; sunspots are mentioned in
the writings of Theophrastus of Athens (4th century BC), and the oldest known drawing of
sunspots was created on 8 December 1128, by John of Worcester (published in The Chronicle
of John of Worcester). In 1610, astronomers began using a telescope to observe the Sun.
Initial research focused on the nature of the spots and their behavior. Despite the fact
that the physical nature of the spots remained unclear until the 20th century, observations
continued. In the 15th and 16th centuries, research was hindered by their small number,
which is now regarded as a prolonged period of low SA, called the Maunder minimum. By
the 19th century, there was already a sufficiently long series of observations of the number
of sunspots to determine periodic cycles in the activity of the Sun. In 1845, Professors D.
Henry and S. Alexander of Princeton University observed the Sun with a thermometer.
They determined that the spots emitted less energy than the surrounding areas of the Sun.
Later, above-average radiation was determined in areas of the so-called solar plumes [32].

For the first time, the magnetic field of the Sun was discovered and reliably measured
in 1908 by J. Hale in only one of the spots [33]. Then, the field strength was found to be
2 kilogauss, which is 2–4 thousand times greater than the Earth’s magnetic field (but almost
10 times less than the field of a modern magnetic resonance imaging apparatus, around
50 times less than the strongest fields created by man and billions of times smaller than the
fields of some neutron stars).

Now, the observation of sunspots and the study of their magnetic fields is one of the
daily tasks of modern heliophysics [34,35].

Today, different agencies perform monitoring of solar activity—for example, the Solar
Dynamics Observatory (SDO) (https://sdo.gsfc.nasa.gov/, aceessed on 1 March 2023).

Note that other stars and their planets also have magnetic activity. There are many
astronomical observations (KEPLER, TESS and Evryscope-South Telescope), thanks to
which large archives of observational data have been created. Stars have other modes of
magnetic activity—for example, regular periods that are different from the solar, or without
oscillations [36,37].

Thus, observations of sunspots and then magnetic fields on the Sun, which have
been carried out since the beginning of the 20th century, have shown that the intensity of
magnetic fields varies, and these changes are cyclical. At the beginning of the 11-year solar
cycle, the large-scale solar magnetic field is directed predominantly along the meridians (it
is commonly said that it is “poloidal”) and has an approximate dipole configuration. At the
maximum of the cycle, it is replaced by a magnetic field of sunspots directed approximately
along the parallel (the so-called “toroidal”), which, at the end of the cycle, is again replaced
by a poloidal one—while its direction is opposite to that observed 11 years ago (”Hale’s
law”).

The solar dynamo model is intended to explain the mentioned observed features.
Since the conductivity of the solar plasma is quite high, magnetohydrodynamics describes
the magnetic fields in the Sun’s convective zone. Due to the fact that the equatorial regions
of the Sun rotate faster than the polar ones (this feature is called “rotation differential”),
the initially poloidal field, being carried away by the rotating plasma, should stretch
along the parallels, thereby acquiring a toroidal component. However, to ensure a closed,
self-sustaining process, the toroidal field must somehow be transformed into a poloidal
one. For some time, it was not clear how this happened. Moreover, Cowling’s theorem
explicitly forbade a stationary axisymmetric dynamo. In 1955, the American astrophysicist
Eugene Parker, in his classic work [38], showed that the rising volumes of solar plasma

https://sdo.gsfc.nasa.gov/


Fluids 2023, 8, 142 7 of 23

must rotate due to the Coriolis forces, and the toroidal magnetic fields entrained by them
can be transformed into poloidal ones (the so-called “alpha effect”). Thus, a model of a
self-sustaining solar dynamo was constructed.

Currently, numerous solar dynamo models that are more complex than Parker’s have
been proposed, but, for the most part, we revert back to the latter. In particular, it is
assumed that the generation of magnetic fields does not occur in the entire convective zone
of the Sun, as previously thought, but in the so-called “tachocline”—a relatively narrow
region near the boundary of the convective and radiant zones of the Sun, at a depth of
approximately 200,000 km under the solar photosphere, where the rotation speed changes
sharply. The magnetic field created in this region rises to the surface of the Sun due to
magnetic buoyancy.

The main dynamo models and their development are presented in the works [39,40].
Dynamo problems deal with the physical description of the process of generating

a magnetic field by a conducting fluid. Field generation is based on turbulence, and
turbulent dynamo models are divided into “large scale/medium dynamo” and “small
scale/fluctuating dynamo.” In the first group, magnetic fields are amplified on scales larger
than the outer scale of turbulence in seconds on smaller scales [41]. In the second group,
the small-scale turbulent dynamo is responsible for amplifying magnetic fields on scales
smaller than the driving scale of turbulence in diverse astrophysical media [42].

In a turbulent dynamo, the amplification of magnetic fields occurs due to the turbulent
stretching of magnetic fields (due to turbulent shear). The basic principle of generating a
magnetic field was proposed by Zeldovich in the 20th century and called the Zeldovich
"stretch-twist-fold" (STF) dynamo [43,44]. This is based on a simple principle, which is
represented in Figure 3. The magnetic field in Figure 3 is represented as a closed rope,
which, at the initial stage, is stretched while maintaining its volume, as in an incompressible
flow (A→ B in Figure 3)—for example, twice. In this case, the cross-section of the rope is
reduced by a factor of two, and due to the freezing of the flow, the magnetic field increases
by a factor of two. At the next stage, the rope is twisted into a figure “8” (B→ C in Figure 3),
and then folded (C→ D in Figure 3) so that two loops appear, the fields of which are now
directed in the same direction and together occupy the same volume as the original rope
configuration. The flow through this volume has doubled. Then, the two loops merge into
one (D→ A in Figure 3) through small diffusion effects. Due to this, the process becomes
irreversible. Such combined loops are topologically the same as the original single loop,
but now with a factor of two field strength.

Figure 3. Sketch of Zeldovich "stretch-twist-fold" dynamo. A—initial state of magnetic field loop,
B—stretched magnetic field loop, C—twisted loop, D—two loops are merged into one.
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The earliest work on the turbulent dynamo theory was presented in [45,46] for the
kinematic regime of the turbulent dynamo with a negligible back-reaction of magnetic
fields. In [45], a simple model of the turbulent motion of a conducting liquid fluid was
considered. The flow velocity has a Gaussian distribution function and the time for the
establishment of diffusion of the liquid particles is zero. In this case, an exact solution
of the problem of amplification of a spontaneous magnetic field can be derived. The
instability criterion and magnetic field increment are obtained. In [46], the evolution of a
weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is
discussed with the aid of the exact expression for the initial growth of the magnetic energy
spectrum. The possibilities of eventual growth and eventual decay are both admitted.
For each, the shape of the magnetic-energy spectrum in the case λ >> ν (λ—magnetic
diffusivity, ν—kinematic viscosity) is estimated by simple dynamical arguments. If there
is growth, it is concluded that the magnetic spectrum below the Ohmic cut-off eventually
reaches equipartition with the kinetic energy spectrum, with the principal exception that
the spectrum of kinetic energy in the equipartition inertial range evolves to the form k−3/2

and that equipartition is maintained, with the rapidly falling spectrum, through part of
the Ohmic dissipation range. The evolution of the magnetic spectrum in the weak-field
λ >> ν regime is also computed numerically with a simplified transfer approximation
suggested by the Lagrangian history direct interaction equations. This calculation is found
to yield an eventual, very weak exponential growth in magnetic energy.

In the case wherein the magnetic back-reaction becomes significant, we have to con-
sider the nonlinear turbulent dynamo. A nonlinear turbulent dynamo is characterized by
energy equipartition between turbulence and magnetic fields within the inertial range of
turbulence [47].

In [48], kinematic dynamo theory is presented for turbulent conductive fluids. The
authors described how inhomogeneous magnetic fluctuations are generated below the vis-
cous scale of turbulence, where the spatial smoothness of the velocity permits a systematic
analysis of the Lagrangian path dynamics. In [48], the authors found the magnetic field’s
moments and multipoint correlation functions analytically at small yet finite magnetic
diffusivity. The authors showed that the field is concentrated in long, narrow strips and
described anomalous scalings and angular singularities of the multipoint correlation func-
tions, which are manifestations of the field’s intermittency. The growth rate of the magnetic
field in a typical realization is found to be half the difference of two Lyapunov exponents
of the same sign.

In [49], the authors showed the results of an extensive numerical study of the small-
scale turbulent dynamo. The primary focus is on the case of large magnetic Prandtl numbers
Pm, which is relevant for hot, low-density astrophysical plasmas. A Pm parameter scan is
given for the model case of viscosity-dominated (low Reynolds number Re) turbulence. The
authors concentrated on three topics: magnetic energy spectra and saturation levels, the
structure of the magnetic field lines and the intermittency of the field strength distribution.
In [49], the main results are as follows: (1) the folded structure of the field (direction
reversals at the resistive scale, field lines curved at the scale of the flow) persists from the
kinematic to the nonlinear regime; (2) the field distribution is self-similar and appears
to be lognormal during the kinematic regime and exponential in the saturated state; and
(3) the bulk of the magnetic energy is at the resistive scale in the kinematic regime and
remains there after saturation, although the magnetic energy spectrum becomes much
shallower. The authors proposed an analytical model of saturation based on the idea of
partial two-dimensionalization of the velocity gradients with respect to the local direction
of the magnetic folds. The model-predicted saturated spectra are in excellent agreement
with the numerical results. Comparisons with large-Re, moderate-Pm runs are carried out
to confirm these results’ relevance and test heuristic scenarios of dynamo saturation. New
features at large Re are the elongation of the folds in the nonlinear regime from the viscous
scale to the box scale, and the presence of an intermediate nonlinear stage of slower than
exponential magnetic energy growth accompanied by an increase in the resistive scale
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and partial suppression of the kinetic energy spectrum in the inertial range. Numerical
results for the saturated state do not support scale-by-scale equipartition between magnetic
and kinetic energies, with a definite excess of magnetic energy at small scales. A physical
picture of the saturated state is proposed.

In [47,50], the authors described the striking similarity between the dependence
of dynamo behavior on Prandtl number Pm in a conducting fluid and R (a function of
ionization fraction) in the partially ionized gas. In a weakly ionized medium, the kinematic
stage is largely extended, including exponential growth and a new regime of dynamo
characterized by the linear-in-time growth of the magnetic field strength, and the resulting
magnetic energy is much higher than the kinetic energy carried by viscous-scale eddies.
Unlike the kinematic stage, the subsequent nonlinear stage is unaffected by microscopic
diffusion processes. It has a universal linear-in-time growth in magnetic energy with the
growth rate as a constant fraction 3/38 of the turbulent energy transfer rate, which agrees
well with earlier numerical results. Applying the analysis to the first stars and galaxies,
S. Xu [50] found that the kinematic stage can generate a field strength only an order of
magnitude smaller than the final saturation value. However, the generation of large-scale
magnetic fields can only be accounted for by the relatively inefficient nonlinear stage and
requires a longer than free-fall time. This suggests that magnetic fields may not have played
a dynamically important role during the formation of the first stars.

Figure 4 illustrates the magnetic energy spectrum in the nonlinear stage of the turbu-
lent dynamo. At Pm = 1, it follows the Kazantsev k3/2 profile on scales larger than 1/kp,
while, on smaller scales, the transition to MHD turbulence occurs, and there is a k−5/3

range for both the kinetic and magnetic energies.

Figure 4. Sketch of the magnetic (solid line) and turbulent kinetic (dashed line) energy spectra in
the nonlinear stage of a turbulent dynamo for Pm = 1; dash-dotted lines indicate different spectral
slopes and the vertical dashed line represents the equipartition scale at the end of their simulations.
Turbulent kinetic (red dashed line) energy spectra in the nonlinear stage of a turbulent dynamo for
Pm = 1 . From [50].

Thus, the general idea of the emergence of the turbulent dynamo process can be
outlined in a diagram, as shown in Figure 5.
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Figure 5. Scheme of the turbulent dynamo process.

4. Magnetic Reconnection and Turbulence
4.1. Fast Turbulent Reconnection

Turbulence accelerates many transport processes, e.g., those of heat and mass diffusion.
The quantitative theory of turbulent reconnection was formulated in [21]. The current state
of this theory and its implications are summarized in [51].

In laminar fluids with high conductivity, the magnetic fields are frozen in the fluid.
This means that the motion of the fluid induces the motion of the magnetic field line. The
annihilation of magnetic field lines happens when the field lines of opposite directions come
into close contact. This situation is shown in the upper panel of Figure 6. The reversing
component of upper and lower magnetic fluxes is shown, while the shared magnetic field
is perpendicular to the plane of the cartoon. This component is passive, and it does not
participate in reconnection.

xL

Sweet-Parker model

Turbulent model

∆

∆

Figure 6. Upper plot: Classical Sweet–Parker (SP) model of reconnection: the thickness of the outflow
∆ is limited by Ohmic diffusivity. Lx � ∆ makes the SP reconnection slow. Lower plot: Ref. [21]’s
model of reconnection includes turbulence in the SP setting. The outflow width ∆ is determined by
macroscopic field line wandering, and it can be ∼ Lx for trans-Alfvénic turbulence. From [21].

The low rates of magnetic reconnection follow from the geometry of the Sweet–Parker
configuration. The reconnection can be fast only if the magnetic field lines come close
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together, so Ohmic resistivity can annihilate them. This means that the distance between
the lines ∆ should be small. However, the fluid that carries the magnetic field lines leaves
the system for this to happen. The outflow happens with Alfvén velocity through the slot ∆.
If ∆ is small, the reconnection speed Vrec ≈ VA∆/L is small. If ∆ is large, the reconnection
stops as the magnetic field lines do not come close to each other to reconnect. As a result,
the Sweet–Parker reconnection is negligibly small in astrophysical conditions.

Turbulence introduces magnetic field meandering. The thickness of the outflow
∆ is determined by this meandering. At the same time, the magnetic field lines can
occasionally come close together, enabling fast reconnection to happen locally. In other
words, turbulence resolves the contraditiction of the Sweet–Parker model, i.e., the magnetic
fields are close together for fast Ohmic local reconnection and the magnetic fields must be
far apart for the thick outflow to exist.

The model in [21] of turbulent reconnection is presented in Figure 6. It is a natural
generalization of the classical Sweet–Parker model of reconnection in the case of turbulence.
Both fluxes share a magnetic field of the same direction perpendicular to the figure’s plane.
The value of this so-called “guide field” does not change the reconnection rate (see [51]).
This magnetic field component is ejected from the reconnection region with plasmas/fluid.

Unlike other models of fast magnetic reconnection, the [21] model does not appeal
to plasma effects but accounts for the magnetic field wandering induced by Alfvénic
turbulence. Employing the Alfvénic mode scaling that we presented in §4, [21] obtained
the expression for the reconnection rate in the turbulence with injection at the scale L and
the opposite magnetic field in contact over scale Lx:

Vrec ≈ VA min

[(
Lx

L

)1/2
,
(

L
Lx

)1/2
]

M2
A. (9)

Note that VA M2
A is proportional to the turbulent eddy speed. As we discussed earlier,

the obtained reconnection rate varies depending on the Alfvén Mach number MA and for
MA ∼ 1 can represent a large fraction of the Alfvén speed.

It is clear from Equation (9) that the turbulent reconnection rate can be both slow
and fast, depending on the system’s turbulence level. This allows the reconnection model
to explain various energetic phenomena that are impossible for the given prescribed
reconnection rate. For instance, to explain the explosive release of magnetic energy in
solar flares and gamma-ray bursts (see [52]), it may be necessary to have periods of slow
reconnection to accumulate the flux and periods of fast reconnection during which the
energy is being released. The [21] model was tested numerically ([53,54]) and compared
with observations ([55,56]). In [57], the authors carried out a statistical study of flaring
active regions that produced strong solar flares of an X-ray class X1.0 and higher during
a time period that covered solar cycles 23 and 24. It was found that in 72 percent of
cases, the flaring active regions did not comply with the empirical laws of the global
dynamo, and it appears that the flaring is governed by the turbulent component of the solar
dynamo. These observational findings are in consensus with the concept of the essential
role of nonlinearities and turbulent intermittence in the magnetic field generation inside
the convective zone, which follows from dynamo simulations.

It is important that the outflow from the reconnection zone can induce turbulence,
making turbulent reconnection self-induced. This process was successfully tested in a
number of numerical studies [58–61]. Figure 7 shows that the spectrum of turbulence in-
duced by magnetic reconnection evolves towards the Kolmogorov-type cascade of Alfvénic
turbulence.
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Figure 7. Evolution of turbulent velocity power spectra of the self-induced reconnection. From [61].

Turbulent reconnection induces particle acceleration ([62]). The predicted acceleration
was successfully tested in [63].

4.2. Violation of Flux Freezing and Reconnection Diffusion

The theorem of Alfvén (1942) predicts that magnetic flux is frozen within a conductive
fluid, i.e., the magnetic field and plasma move together. Turbulent reconnection violates
the flux freezing condition. It was suggested in [62] that in a turbulent fluid, the magnetic
field decouples from the gas and can diffuse, solving, for instance, the problem of magnetic
flux in star formation. More theoretical studies in [22] support this idea. The flux freezing
violation was demonstrated numerically in [64].

Fast turbulent reconnection allows the efficient exchange of magnetic fields and plas-
mas between adjacent turbulent eddies. This is illustrated in Figure 8, where the interaction
of eddies of a given scale is shown. In reality, such interactions proceed at every scale of
turbulent motion, which ensures the efficient diffusion of magnetic fields.

Figure 8. Illustration of reconnection diffusion. Matter and magnetic fields are exchanged as two flux
tubes of adjacent eddies interact. From [65], © AAS. Reproduced with permission.
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5. Turbulence in Spiral Galaxies
5.1. Properties of Interstellar Turbulence

The interstellar media of spiral galaxies are turbulent. Figure 9 presents the spectra of
electron density fluctuation and velocity fluctuation that are observed in the Milky Way.
Both power laws correspond to the Kolmogorov scaling, which has a natural explanation
within MHD turbulence theory.

Figure 9. Upper panel: “Extended Big Power Law” of galactic electron density fluctuations obtained
combining the scattering measurements in [1] and Hα measurements from WHAM in [2]. Lower panel:
Power law of velocity fluctuations in the direction of the Taurus molecular cloud. From [66].
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The fact that the velocity spectrum is Kolmogorov reflects the Kolmogorov scaling
of perpendicular motions in Alfvénic turbulence. These motions dominate the observed
cascade. As for the density fluctuations, the weakly compressible turbulence corresponding
to the warm galactic gas passively reflects the statistics of velocity fluctuations. Note that
for compressible parts of the media, steeper-density spectra were observed see [67].

5.2. Effects on Star Formation

Turbulence effects are essential for star formation. MHD turbulence has been used for
classical theories of star formation as a supporting molecular cloud from the gravitational
collapse. Such an approach requires long-lived turbulent motions. Thus, the authors
appealed to magnetic fields to mitigate turbulence decay. Alfvénic turbulence, as discussed
above, dissipates in one eddy turnover time. Thus, unless strong internal sources of
turbulence driving exist, turbulence is hardly a means of preventing the typical molecular
clouds from collapsing along magnetic field lines.

However, turbulence is successful in an unexpected task. In the star formation theory,
a major issue is the removal of the magnetic fields from collapsing clouds. In magnetically
mediated star formation theory (see [68–74]), magnetic fields counteract gravitational
collapse. The magnetic flux freezing is assumed to be frozen within the ionized component,
while the change in the flux-to-mass ratio is due to neutrals that flow past ions and are
concentrated towards the center of the gravitational potential. In a sense, ions act as guards
that obey the magnetic field, while neutrals percolate through their ranks, experiencing
viscosity due to neutral–ion collisions. The latter process is termed in the star formation
literature “ambipolar diffusion”. For decades, ambipolar diffusion was assumed to be the
necessary condition for star formation in the ISM.

During ambipolar diffusion, the magnetic field resists the compression and leaves the
gravitational potential, while neutrals are concentrated, forming the propostar (e.g., [75,76]).
The mediation of ambipolar diffusion was assumed to make star formation inefficient for
magnetically dominated (i.e., subcritical) clouds. The slow speed of ambipolar diffusion
entails low efficiency of star formation, which was interpreted as strong observational
support of the ambipolar diffusion paradigm (e.g., [77]).

This, however, does not solve all the problems as, for clouds dominated by gravity, i.e.,
supercritical clouds, the magnetic fields do not have time to leave the cloud through ambipo-
lar diffusion. Therefore, for such clouds, magnetic fields are expected to be dragged into
the star, forming stars with magnetizations far in excess of the observed ones (see [78,79]).

The process of reconnection diffusion illustrated by Figure 8 provides a viable expla-
nation of the magnetic flux removal processes in the star formation process. The analytical
prediction of the reconnection diffusion rate was confirmed numerically in [80]. This
process induces fast magnetic flux removal independent of the media ionization degree.

The application of reconnection diffusion allows us to solve the long-standing problem
of magnetic flux removal from accretion disks, the so-called “magnetic braking catastrophe”.
The essence of the problem is that during circumstellar disk formation, the magnetic fields
of molecular clouds are able to transfer the matter momentum from the forming disk on a
time scale shorter than the disk formation time. Figure 10, from numerical studies in [81],
shows that the problem can be solved if reconnection diffusion is accounted for. The authors
plot the results of the simulations of disk formation in a magnetized interstellar medium.
Without turbulence, there is no reconnection diffusion. Thus, magnetic flux freezing
transforms ensure that the angular momentum of the collapsing material is transported
out of the disk. The resulting disks are too small and do not correspond to observations. In
the presence of turbulence, the magnetic field diffuses from the disk due to reconnection
diffusion. The magnetic coupling of the material of the disk and the ambient interstellar
medium is reduced. As a result, there is no catastrophic loss of the angular momentum of
the disk. The resulting disks are larger and correspond to the observed ones.
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Figure 10. Left: Evolution of disk without reconnection diffusion. The formed disk is much smaller
compared to observed ones. Right: The disk produced via reconnection diffusion in 30,000 years.
From [81].

6. Turbulence and Cosmic Rays

Particles with energies ranging from MeV to PeV are usually termed cosmic rays (CRs).
Their interaction with MHD turbulence controls the CR diffusion; their acceleration also
depends on this interaction [82]. The knowledge of CR propagation is vital for under-
standing the solar modulation of galactic CRs, Fermi bubble emission and space weather
forecasting [83–85]. It is also essential for an understanding of the origin of driving for
galactic winds (e.g., [86,87]) and feedback heating in clusters of galaxies (e.g., [88,89]).

CRs can interact with the pre-existing MHD fluctuations and the magnetic fluctuations
created by them, e.g., by the perturbations created by the streaming instability (see [90]).
The suppression of streaming instability by MHD turbulence [91–94] can significantly
modify the CR propagation [95]. In [96], the authors considered the propagation of cosmic
rays in turbulent magnetic fields using the models of magnetohydrodynamic turbulence
that were tested in numerical simulations, in which the turbulence is injected on large
scales and cascades to small scales.

Earlier, the CRs’ interaction with magnetic turbulence was studied with ad hoc models
adopted for MHD turbulence [90,97–99]. These involved the model of isotropic MHD
turbulence (see [100]), as well as the 2D + slab model for solar wind turbulence [101].
These, however, do not correspond to the understanding of the modern MHD turbulence
presented in Section 2.

For CR propagation, distinguishing the propagation perpendicular to the mean mag-
netic field and the propagation parallel to the mean magnetic field is useful. The perpen-
dicular propagation is governed by magnetic field wandering as described in [21]. This
induces processes of diffusion and superdiffusion, as illustrated in Table 1 from [102].
Table 1 shows the main scales in turbulent processes. Power laws are different for sub-
Alfvénic turbulence in the weak and strong regimes, but it is the same Kolmogorov one
for superAlfvénic turbulence. Thus, for superAlfvénic turbulence, there is only one power
law with k−5/3

⊥ ; for subAlfvénic turbulence, there is a broken power law with k−2
⊥ weak

turbulence and k−5/3
⊥ at strong MHD turbulence.
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Table 1. Regimes of MHD turbulence and magnetic diffusion.

Type Injection Range Spectrum Motion Ways Magnetic Squared Separation
of MHD Turbulence Velocity of Scales E(k) Type of Study Diffusion of Lines

Weak VL < VA [ltrans, L] k−2
⊥ wave-like analytical diffusion ∼ sLM4

A

Strong anisotropic
subAlfvenic VL < VA [lmin, ltrans] k−5/3

⊥ eddy-like numerical Richardson ∼ s3

L M4
A

Strong isotropic
superAlfvenic VL > VA [lA, L] k−5/3

⊥ eddy-like numerical diffusion ∼ slA

Strong anisotropic
superAlfvenic VL > VA [lmin], lA k−5/3

⊥ eddy-like numerical Richardson ∼ s3

L M3
A

L and lmin are the injection and perpendicular dissipation scales, respectively. MA ≡ δB/B, ltrans = LM2
A for

MA < 1 and lA = LM−3
A . for MA < 1. For weak Alfvenic turbulence `‖ does not change. s is measured along

magnetic field lines.

The CR superdiffusion relates the transposition of the CR along the magnetic field to
the transposition in the perpendicular direction. The accelerated diffusion of CRs in the
perpendicular direction is illustrated by Figure 11. The superdiffusion acts on scales less
than the turbulence injection scale, radically changing the CR dynamics.

Figure 11. CRs’ superdiffusion: CRs’ trajectories are shown with MS = 0.62 and MA = 0.56. The
initial spatial separation between CRs is one pixel and the initial pitch angle is 0 degrees. From [20].

In terms of parallel to magnetic field diffusion, pitch angle scattering and Transient
Time Damping (TTD) are generally accepted processes [100]. The first process arises from
the resonant scattering of particles with both compressible and incompressible fluctuations.
In [103], pitch angle scattering by fast modes was identified as the dominant process of
scattering. The second is from particles surfing the compressible magnetic fluctuations,
which, in many cases, arise from particles surfing slow modes [104]. Understanding the CR
perpendicular superdiffusion allowed [105] to introduce a new process termed bouncing
diffusion. This type of diffusion arises from the simultaneous action of reflection from
magnetic mirrors induced by slow and fast modes and the perpendicular superdiffusion.
The bouncing diffusion acts on particles with small pitch angles; this slows their diffusion.
A comparison of the diffusion coefficients for bouncing and non-bouncing particles is
provided in Figure 12.
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Figure 12. Left: Schematic of bouncing diffusion. Trajectories of two particles with small initial
separation are shown. Right: The comparison of the parallel diffusion coefficients induced by fast
modes D‖, f ,b of bouncing CRs and D‖, f ,nb of non-bouncing CRs. From [105].

With fast modes providing efficient isotropization of CRs in terms of pitch angle µ,
ref. [105] evaluated the total distribution of scattering and bouncing particles as

D‖,tot ≈ µ2
c D‖,b + (1− µ2

c )D‖,nb, (10)

where D‖,scat is the diffusion coefficient arising from scattering. The bouncing diffusion
prevents the fast escape of particles with µ < µcr. Individual particles can generally exhibit
periods of slow bouncing diffusion separated by periods of fast diffusion when they are in
the scattering regime, i.e., Levi flights.

7. Implication of Turbulence: Gradient Technique for Studies of Magnetic Fields

Studies of astrophysical magnetic fields rely on the effects of the magnetic field on the
media. Mapping of plane-of-sky magnetic fields can be obtained with polarization from
grains aligned with long axes perpendicular to the magnetic field [106], and synchrotron
polarization [107].

The above techniques employ polarization, and polarization measurements require
significantly more effort than measurements of signal intensities. Therefore, the Gradient
Technique (GT), which allows the mapping of the plane-of-sky (POS) magnetic field without
polarization measurements, opens up a new avenue for magnetic field studies in diffuse
media. The GT employs the properties of magnetic turbulence. The versions of the
technique that do not require polarization measurements have been implemented as the
Velocity Gradient Technique (VGT) with subdivision of Velocity Centroid Gradients (VCGs)
that employ Velocity Centroids ([108,109]) and Velocity Channel Gradients (VChGs) [110]
that employ intensity fluctuations in thin channel maps, as well as Synchrotron Intensity
Gradients (SIGs [111] that employ synchrotron intensities. Note that the GT can also employ
polarization to obtain extra information about the magnetic field. For instance, as shown
in [112], Synchrotron Polarization Gradients (SPGs) can use synchrotron polarization at
different wavelengths to probe magnetic fields at different distances along the line of sight
(see [113]), while Faraday Gradients (FGs) can obtain the distribution of the plane-of-sky
direction of the magnetic field. However, we do not discuss polarization versions in the
present paper.

Due to MHD turbulence’s properties, as discussed in Section 3, the eddies are aligned
with the magnetic field. The eddies’ rotation along the magnetic field’s local direction
induces velocity and magnetic field gradients perpendicular to the magnetic field. In
Kolmogorov-type turbulence of Alfvénic and slow modes, the gradients increase with
the decrease in eddy scale as vl/l⊥ ∼ l−2/3

⊥ . Thus, the smallest resolved eddies well
aligned with the magnetic field dominate the gradients. Consequently, the gradients
are perpendicular to the local direction of the magnetic field, revealing the magnetic
field structure.
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Figure 13 demonstrates the power of Synchrotron Gradients (SIGs). The maps of
the magnetic field obtained with Planck synchrotron polarization are compared to those
obtained with SIGs. In most cases, the difference in the obtained directions is negligible. A
major advantage of SIGs is that they are not subject to Faraday rotation distortions. These
are especially harmful for low frequencies.

Figure 13. Comparison of galactic magnetic fields obtained with polarization and SIGs. From [111].

Figure 14 shows the magnetic field structure of the active galaxy M51 mapped by
Velocity Gradients (VGT) and synchrotron polarization. The structure of the galactic
magnetic field is better resolved with gradients compared to VLA synchrotron polarization
measurements. Comparing the magnetic field maps obtained with the VGT and dust
polarization in [114] reveals important details of the effects of the magnetic field on the
central black hole accretion.
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Figure 14. Velocity gradients obtained from publicly available 12CO maps from ALMA provide
better-resolution magnetic field maps compared to VLA. From [114].

The GT can provide magnetic fields in situations where all other techniques fail.
For instance, in [115], the POS magnetic fields were mapped with VChGs for a tenuous
high-velocity Smith cloud, which would be impossible with any other existing technique.
Figure 15 presents a similar case where the unique abilities of gradients allow magnetic
field studies of galaxy clusters. The Chandra X-ray emission is used for mapping. For sub-
sonic turbulence, the density inhomogeneities that control X-ray emission mimic velocity
fluctuations. Thus, the Intensity Gradients (IGs) act similarly to velocity gradients.

Figure 15. Velocity gradients obtained from publicly available 12CO maps from ALMA provide a
better-resolution magnetic field map compared to VLA. From [114].



Fluids 2023, 8, 142 20 of 23

8. Discussion

This review provides a brief outlook on the modern state of the theory of MHD
turbulence and its implications. The theory of MHD turbulence is an area of intensive
research, and new discoveries of subtle turbulence properties are expected. However,
despite the available advances, the MHD turbulence theory is a powerful tool for exploring
astrophysical processes.

We have discussed a wide variety of processes radically changed by turbulence. These
include cosmic ray propagation and acceleration, star formation and dynamo. This review
does not focus in depth on the particular applications. Instead, it provides a guide for
researchers interested in the various astrophysical applications of MHD turbulence theory.
A more thorough study is possible with the original papers and focused reviews that we
refer to.

In the review, we emphasize the intrinsic, deep connection between the theory of MHD
turbulence and the theory of turbulent reconnection. The fundamental properties of MHD
turbulence, e.g., magnetic field wandering, cannot be understood without understanding
turbulent magnetic reconnection. In fact, it is the turbulent reconnection that makes the
description of MHD turbulence self-consistent. In magnetized turbulent fluids, turbulent
reconnection is responsible for a process of reconnection diffusion that removes magnetic flux
from molecular clouds and resolves the problem of the catastrophic breaking of matter in
circumstellar disks.

To exemplify the power of MHD turbulence theory, we have discussed the technique
of magnetic field study that utilizes the properties of MHD turbulence; specifically, the
turbulent reconnection is a part of the MHD turbulent cascade. This new technique, called
the Gradient Technique (GT), has proven to be a powerful tool for studying magnetic fields
in the Milky Way, nearby galaxies and galaxy clusters.
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