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Abstract: Balloon pumps are employed to assist cardiac function in cases of acute myocardial
infarction, ventricular arrhythmias, cardiogenic shock, unstable angina, refractory ventricular failure,
or cardiac surgery. Counterpulsation, through increasing the diastolic pressure and reducing the
systolic pressure, increases coronary perfusion and assists the heart to pump more blood at each
contraction. An expanding-contracting balloon, modifying the Poiseuille flow in a straight circular
duct, is examined in this study. The balloon is spheroid-shaped, with the length of its minor axis,
which is perpendicular to the flow direction, changing in time following a sinusoidal law. The inlet
flow volume rate is steady while the rate that the fluid volume leaves the duct varies in time due
to the presence of the balloon. For a pulsation frequency of 60 pulses/min, the pressure difference
across the pulsating balloon exhibits significant phase lagging behind the outflow volume waveform.
The outlet pressure depends on the balloon radius oscillation amplitude and is computed for a range
of such. The flow field around the spheroid, periodically expanding-contracting balloon in the steady
flow stream is presented, in which the exact pattern of the gradual downstream intensification of the
flow pulsation alongside the spheroid body is also identified.

Keywords: Poiseuille flow; pulsatile flow; Womersley flow; expanding-contracting balloon;
intra-aortic balloon pump; counterpulsation; curvilinear immersed boundary method

1. Introduction

Blood flow in large arteries is pulsatile and laminar, described by a Fourier series
whose zeroth harmonic is a steady Poiseuille flow, and its fundamental frequency is equal
to the cardiac rhythm [1]. Womersley developed a method for calculating velocity, rate of
flow, and viscous drag in arteries when the pressure gradient is known, which is commonly
referred to as the “Womersley problem” [2].

Tsangaris and Stergiopulos addressed the inverse Womersley problem, which involves
determining the time-varying flow field given the evolution of flow rate through a circular
pipe over time [3]. They derived an equation expressing the developed flow velocity profile
as a function of the time derivative of the flow rate and integrated it using finite differences.
A first-order approximation was used for time derivatives, and a second-order central
scheme was used for spatial derivatives.

The expanding-contracting balloon is used to contribute to the heart-driven pulsatile
flow in the form of the intra-aortic balloon pump (IABP). Treatment with IABP is found
to have a positive impact if received by patients facing situations such as unstable angina,
acute myocardial infarction, ventricular arrhythmias, acute ischaemic mitral regurgitation,
post infarct ventricular septal rupture, and percutaneous coronary intervention (PCI) [4].
Introduced by Moulopoulos et al., the IABP increases the diastolic blood flow in the
arteries and lowers the end-diastolic arterial pressure, thus resulting in the amelioration of
coronary blood circulation and decreased myocardial work, without taking blood out of
the body [5].
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In vitro experiments and clinical studies of the role of arterial stiffness in IABP therapy
were presented by [6,7]. The authors found that augmentation of the arterial stiffness leads
to a reduction of the systolic and the end-diastolic aortic pressure. Arterial stiffness is
found to be more important than arterial pressure for the effectiveness of the IABP and
is a potential additional parameter for deciding the use of IABP treatment. Applanation
tonometry is proposed for compliance measurements and stiffness gain via pharmacological
interventions. Using an in vitro bench, the increase of cardiac output under IABP treatment
was examined by Xie et al. [8]. The placement of an aortic stent at the upstream end of the
balloon gives augmented product of heart rate and stroke volume.

A rigid duct model for the thoracic aorta with cylindrical shaped IABP is examined by
Bruti [9]. Pressure boundary conditions are imposed at both ends of the vessel, which are
obtained by a zero-dimensional model of the arterial system. Computation of the flow field
around the IABP during pulsed cardiopulmonary bypass (CPB) by Graminga et al. [10]
showed increased perfusion during balloon inflation through the innominate, the left
carotid, and the left subclavian arteries. It also recorded the transition from a rotational
flow to an untwisted one in comparison with the case of non-pulsatile CPB. Different sizes
and positions of the IABP were studied by Caruso et al. [11]. They found that flow volume
through renal, mesenteric, and iliac arteries increases by decreasing the maximum balloon
volume and the distance of the balloon from the left subclavian artery. The IABP therapy
weaning process is calculated by Caruso et al. [12].

Using their zero-dimensional framework for the simulation of the cardiovascular
system and mechanical circulatory and ventilation support [13], De Lazzari et al. verified
the measured flow patterns present in the case of hemodynamic flow with an IABP for
varying timing ratios [14]. The blood flow through the aorta in the presence of IABP or/and
extracorporeal membrane oxygenation (ECMO) was studied by Gu et al. [15,16] using a
finite element model.

In the present work, an expanding-contracting balloon modulates the steady incoming
flow of a circular cross-section pipe. A numerical simulation of Poiseuille flow influenced
by a spheroid shaped balloon expanding and contracting in the straight vessel is conducted
using the curvilinear immersed boundary method. The Womersley number of the flow
refers to 60 pulses per minute and the Reynolds number is a value corresponding to mean
blood flow through the human thoracic aorta during a cardiac cycle. The output pressure
wave of the configuration is presented and the correlation with the balloon volume change
rate is discussed. The presentation of the time-evolving velocity and pressure fields around
the prolate spheroid-shaped, sinusoidally pulsating balloon is an additional contribution
of this research, clarifying the flow details of balloon pumping in this setting.

2. Materials and Methods
2.1. Governing Equations

Blood perfusion in large arteries can be considered Newtonian [17] and with negligible
compressibility [18] for the range of human hematocrit values. Under these assumptions,
the mass conservation is expressed as

∇ · v = 0, (1)

and the conservation of momentum is expressed as

∂v
∂t

+∇ · (v⊗ v) = −1
ρ
∇p + ν∇2v, (2)

in which v(x, t) is the fluid velocity, x is the position vector, t is time, p(x, t) is the pressure
field, ρ is the fluid density, and ν is the kinematic viscosity of the fluid.
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2.2. Vessel Model

A schematic of the setting is shown in Figure 1. The vessel which contains the balloon
is modeled as a straight tube of circular cross-section. The radius of the pipe is ra and its
length is la.

xy
ra

rigid wall

la
xl

αbβb

∂v
∂x

= 0

Figure 1. Schematic of the prolate spheroid balloon and the coaxial to it, surrounding circular pipe.

The balloon shape is that of a prolate ellipsoid of revolution. The spheroid major axis
identifies with the pipe axis of symmetry and its middle is at the longitudinal position xl .
The balloon surface in Cartesian coordinates follows the equation

(x− xl)
2

αb
2 +

y2

βb
2(t)

+
z2

γb
2(t)

= 1, |x− xl | ≤ ab, βb(t) < rα, γb(t) < rα, (3)

where αb > βb = γb are the corresponding semi axes. The major semi axis length is steady
in time whereas the median and minor semi axis vary in time following a cosine law,

βb(t) = γb(t) = rb0 − Abcos
(

2π

T
t
)

, (4)

where T is the period of the oscillation. Consequently, the balloon volume evolves in
time as

V(t) =
4
3

π · αb · βb(t) · γb(t) =
4
3

π · αb ·
(

rb0 − Abcos
(

2π

T
t
))2

. (5)

Hence, the fluid volume through the outlet, i.e., the pulsating flow volume rate is

Qout(t) = Qin(t) +
dV(t)

dt
= Qin(t) +

8
3
· αb ·

Abπ2

T

(
2 · rb0 · sin

(
2π

T
t
)
− Ab · sin

(
4π

T
t
))

. (6)

The geometric values of the setting are presented in Table 1. The vessel radius is
determined as the average value of the aorta radius at the locations corresponding to the
aortic arch and the renal arteries, respectively, as reported in the work of Caruso et al. [11].

Table 1. Values of the geometric quantities of the simulation.

Quantity Value (cm)

ra 0.925
la 18 (for Qin = 0.01 L/s), 40 (for Qin > 0.01 L/s)
αb 3
rb0 0.32, 0.36, 0.44
Ab 0.02, 0.06, 0.14
xl 7

The inlet and outlet flow volume rate curves are depicted in Figure 2.
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Figure 2. Inlet and outlet flow volume rate of the pipe for Qin = 0.01 L/s, rb0 = 0.32 cm and
Ab = 0.02 cm.

The fluid properties for the simulation are as in Table 2.

Table 2. Values of the fluid properties in the CGS system of units.

Quantity Value

dynamic viscosity µ 0.04 g/(cm·s)
density ρ 1.06 g/cm3

For period T = 1s, the non-dimensional frequency parameter (Womersley number) of
the pulsating flow is

α = rα

√
ω

ν
= 11.936, (7)

where ω =
2π

T
is the angular frequency of the balloon oscillation.

2.3. Numerical Method

The Navier–Stokes equations (Equations (1) and (2)) are handled via the curvilinear
immersed boundary method [19] implemented in the Virtual Flow Simulator software [20].
The decoupling of the solution mesh from the body motion, which characterizes the
immersed boundary method, ceases the need for mesh regeneration at each time step.
Moreover, the curvilinear variant enables the exact imposition of the boundary conditions
on the pipe surface. Application of the method for flow fields driven by deformable bodies,
where fluid computational volume is not preserved in time, has provided satisfying re-
sults [21]. For the classification of the underlying mesh nodes as fluid, solid, and immersed
boundary nodes, firstly a bounding box around the immersed surface is introduced. Points
at the exterior of the box are marked as fluid. For points at the interior, uniform partitioning
in blocks and implementation of the ray-tracing algorithm are performed. From each block
or point of interest, a beam is emitted. In case the number of intersection points of the beam
with the immersed boundary is congruent to 2 modulo 2, the beam source is labeled fluid,
otherwise it is labeled solid (Figure 3) [22]. Finally, nodes with corresponding cells sharing
a face with a solid cell are marked as immersed boundary nodes.

The immersed boundary surface is tessellated by triangles. Decision of the intersection
of a ray with the immersed boundary is made by implementing the Möller–Trumbore
algorithm [23]. Increased accuracy is required for the epsilon constant, used to decide
whether the ray is parallel to the triangle in order to determine the relative position of a
node and the immersed balloon

(
ε = 10−15).
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Figure 3. Decision of relative position of closed surface and underlying grid points in two-
dimensional projection. A single ray is emitted from blocks (ix, iy) without intersection with the
immersed boundary and a ray for each point of a block is emitted otherwise. The number of
ray-immersed boundary intersections is noted in exemplary rays. Block (1,1): fluid, block (3,2): solid.

To comply with the solution framework, the conservation laws are converted on the
basis of a curvilinear coordinate system ξ = {ξ1, ξ2, ξ3}. The transformation is achieved by
leveraging the curvilinear form of the derivative operators involved in Equations (1) and (2).
By introducing the contravariant base,

ggg1 =∇ξ1 =

(
∂ξ1

∂x
,

∂ξ1

∂y
,

∂ξ1

∂z

)
=(ξ1

x, ξ1
y, ξ1

z)

ggg2 =∇ξ2 =

(
∂ξ2

∂x
,

∂ξ2

∂y
,

∂ξ2

∂z

)
=(ξ2

x, ξ2
y, ξ2

z)

ggg3 =∇ξ3 =

(
∂ξ3

∂x
,

∂ξ3

∂y
,

∂ξ3

∂z

)
=(ξ3

x, ξ3
y, ξ3

z),

(8)

for a scalar field φ and a vector field YYY holds [24]

∇ ·YYY =
1
J

∂

∂ξ j (Jgggj ·YYY) (9)

∇φ = gggj ∂φ

∂ξ j =
1
J

∂

∂ξ j (Jgggjφ) (10)

∇2φ =
1
J

∂

∂ξ j

(
Jgggj · gggk ∂φ

∂ξk

)
. (11)

Hence, the governing equations take the form

1
J

∂

∂ξ j (JU j) = 0 (12)

∂
(

JU k
)

∂t
+ ξk

xi

∂

∂ξ j (J U jui) = −ξk
xi

∂

∂ξ j

(
J ξ

j
xi

p
ρ

)
+

1
ν

ξk
xi

∂

∂ξ j

(
J gjm ∂ui

∂ξm

)
, (13)

where

J =
∣∣∣∣∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

∣∣∣∣ (14)
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is the Jacobian determinant of the transformation from the Cartesian to the curvilinear
coordinate system. The symbols U k are for the contravariant velocity components, and the
symbols ui are for the Cartesian ones. The quantities

gjm = g j · gm =

(
∂ξ j

∂x1
,

∂ξ j

∂x2
,

∂ξ j

∂x3

)
·
(

∂ξm

∂x1
,

∂ξm

∂x2
,

∂ξm

∂x3

)
(15)

are the elements of the metric tensor.
Equations (12) and (13) are solved for fluid nodes. At an immersed boundary node P,

the flow field is computed by linear interpolation between two known velocity values along
the normal to the immersed surface, passing through P. The first sample is the velocity
of the immersed boundary and the second is the velocity of the intersection point of the
closest fluid nodes triangle (Figure 4).

Figure 4. Satisfaction of boundary condition on an immersed boundary node P. Velocity for P is
estimated by linear interpolation between the velocity of the closest element C of the immersed surface
and point A. Point A arises by extending the half line CP and finding its closest to P intersection with
a triangle of fluid nodes. The example is presented in two dimensions for simplicity, i.e., the triangle
of fluid nodes is represented by the line segment BD.

Flow equations are discretized via finite differences [25] and the Crank–Nicolson
formulation is applied for time marching [26]. For the coupling of the momentum and
continuity equations, the projection method of Chorin is employed [27]. The time step is
constrained by the demand that a solid node of the underlying mesh cannot convert to a
fluid node at the successive time step. Every solid node that is about to become a fluid one
should necessarily convert firstly to an immersed boundary node in an intermediate step,
in order to acquire valid flow variable values. Hence, the time step is bounded as

∆t ≤ min
i∈1,2,3

∆ξ i(xxx)
U i(xxx)

, xxx ∈ {solid points converting to fluid}. (16)

The discrete momentum equations are handled by means of a Newton-based nonlinear
iterative solver that uses a trust region [28]. The resulting linear systems are solved by
the GMRES method [29], with the (block) Jacobi preconditioner. The discretized Poisson
equation that arises for pressure is solved with the GMRES method, using the algebraic
multigrid method as a preconditioner [30].

2.4. Boundary Conditions

By employing cylindrical coordinates (x, r, θ) for the axial, the radial, and the tangent
direction, respectively, the velocity is expressed as (u, Ur, Uθ), where Ur is the radial velocity
component and Uθ is the peripheral velocity component.

On the inner boundary, namely on the surface of the balloon, fixed boundary condi-
tions are imposed;
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u

(
x, r, θ, t

∣∣∣∣∣ (x− xl)
2

αb
2 +

r2

βb
2(t)

= 1 , |x− xl | ≤ ab

)
= 0

Ur

(
x, r, θ, t

∣∣∣∣∣ (x− xl)
2

αb
2 +

r2

βb
2(t)

= 1 , |x− xl | ≤ ab

)
=

∂r(x, t)
∂t

=
√

a2
b − (x− xl)2 · 2πAb

αbT
sin
(

2π

T
t
)

Uθ

(
x, r, θ, t

∣∣∣∣∣ (x− xl)
2

αb
2 +

r2

βb
2(t)

= 1 , |x− xl | ≤ ab

)
= 0.

(17)

On the outer boundary of the computational domain, mixed boundary conditions are
imposed. At the inlet, only the axial velocity is non-zero with a parabolic profile,

u(x = 0, r, θ, t) =
Qin
πra2 2

(
1− y2 + z2

ra2

)
Ur(x = 0, r, θ, t) = 0

Uθ(x = 0, r, θ, t) = 0.

(18)

At the vessel wall, no slip condition is set,

u(x, r = ra, θ, t) = 0

Ur(x, r = ra, θ, t) = 0

Uθ(x, r = ra, θ, t) = 0.

(19)

At the downstream end of the tube, zero longitudinal derivative of the velocity is demanded

∂u
∂x

(x = lα, r, θ, t) = 0

∂Ur

∂x
(x = lα, r, θ, t) = 0

∂Uθ

∂x
(x = lα, r, θ, t) = 0.

(20)

Taking advantage of the symmetry of the geometry and the flow field, and taking
into consideration the structure of the solution algorithm, a quarter cylinder geometry is
examined. Symmetry boundary conditions are imposed at the two longitudinal section
planes, i.e., steady meridional velocity with respect to the tangent direction and zero
peripheral velocity,

∂u
∂θ

(x, r, θ = 0, t) =
∂u
∂θ

(x, r, θ =
π

2
, t) = 0

∂Ur

∂θ
(x, r, θ = 0, t) =

∂Ur

∂θ
(x, r, θ =

π

2
, t) = 0

Uθ(x, r, θ = 0, t) = Uθ(x, r, θ =
π

2
, t) = 0.

(21)

2.5. Space and Time Domain Discretization

Flow Equations (12) and (13) are solved on both curvilinear and Cartesian underlying
meshes. In the first case, the boundary conditions at the curved surface of the cylinder are
set exactly, while in the second, they are imposed by interpolating between the closest trian-
gle of fluid nodes and the neighboring immersed boundary nodes. To certify independence
of the solution from the computational grid, meshes of increasing density are used.

The concluding, finest curvilinear, consists of 80× 80 nodes in a parallel plane to the
cylinder vessel base, while the Cartesian consists of 97× 97 nodes. Both the curvilinear
and the Cartesian grids in the flow direction in the interval 3.6 ≤ x(cm) ≤ 10.6 consist of
cells with δx = 0.02 cm. In the region 0 ≤ x(cm) ≤ 3.6, δx follows a geometric sequence
starting from the value δx = 0.08 cm and concluding to δx = 0.02 cm. Finally, downstream
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of the balloon, within the region 10.6 ≤ x(cm) ≤ 18, δx increases, following a geometric
sequence with first term δx = 0.02 cm and last δx = 0.12 cm. The total number of nodes
in the axial direction is 558. For a Cartesian mesh consisting of 66× 66× 410 nodes in the
transverse plane and the flow direction, respectively, the maximum difference in outlet
pressure comparing to the finest Cartesian mesh is 0.7%. The respective difference in
outflow velocity at the center of the pipe is 0.019 cm/s.

The expanding-contracting balloon is triangulated by a 31, 206 nodes and 62, 408 elements
grid and the pipe discretization consists of 72, 756 nodes and 145, 508 elements as shown in
Figure 5.

Time integration is performed with steps of magnitude δt = 0.00002 s.

(a) Balloon dense quarter. (b) Pipe surface mesh.

(c) Curvilinear immersion. (d) Cartesian immersion.

Figure 5. Surface grids of the prolate spheroid pulsating balloon and the circular pipe, along with
their integration in the computational domain.

3. Results

The resulting velocity vectors on a plane defined by the pipe main axis and a generator
axis of the cylinder are depicted in Figure 6. Axial velocity contours are given in Figure 7.
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Figure 6. Velocity vectors on a meridional plane, for a balloon pulsating according to Equation (4)
with an inlet velocity profile given by Equation (18), for 8 instances during the period (left side titles
refer to the fraction of the period T). The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.36 cm and
Ab = 0.06 cm.

Figure 7. Cont.
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Figure 7. Velocity vectors on a meridional plane, for balloon pulsating according to Equation (4),
with inlet velocity profile given by Equation (18), for 8 instances during the period (left side titles
refer to the fraction of the period T). The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.36 cm and
Ab = 0.06 cm.

Radial velocity contours are given in Figure 8 and pressure distribution contours are
given in Figure 9. More detailed depiction of the velocity field is given in Appendix A.

Figure 8. Cont.
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Figure 8. Radial velocity contours on a meridional plane, for balloon pulsating according to
Equation (4) with inlet velocity profile given by Equation (18), for 8 instances during the period
(left side titles refer to the fraction of the period T). The inlet volume rate is Qin = 0.01 L/s,
rb0 = 0.36 cm and Ab = 0.06 cm.

Figure 9. Pressure on a meridional plane, for balloon pulsating according to Equation (4), with inlet
velocity profile given by Equation (18), for 8 instances during the period (left side titles refer to the
fraction of the period T). The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.36 cm and Ab = 0.06 cm.

The evolution of the outlet pressure, pout, in time is given in Figure 10.
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Figure 10. Pressure pout − pin during a period for various values of rb0 and Ab.

The outlet longitudinal velocity profiles are given in Figure 11.
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Figure 11. Outlet axial velocity profile uout(r) sampled 8 times during the period. The inlet volume
rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.

The difference between the outlet and inlet axial velocity profiles is given in Figure 12.
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Figure 12. Difference between outlet axial velocity profile uout(r) and inlet axial velocity profile
uin(r), sampled 8 times during the period. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and
Ab = 0.02 cm.

4. Discussion

The flow around an expanding-contracting balloon is studied, where the pulsating
closed surface membrane is spindle-shaped, with an oscillating equatorial radius magni-
tude. The Womersley number is 11.936, which corresponds to the periodic cardiac flow
in the human aorta. The mean Reynolds numbers used in the present paper are 182, 730,
and 1515. The lower value corresponds to inlet flow Qin = 0.01 L/s, while the higher
value corresponds to inlet volume Qin = 0.0833 L/s, which is the average resting cardiac
output for both trained and sedentary individuals [12,31,32]. The flow fields, computed
via (a) structured curvilinear meshes, body fitted at the vessel geometry and (b) structured
Cartesian meshes, considering the vessel an immersed boundary, are in good agreement.

The inlet parabolic profile at the pipe cross section transitions to a toroid profile
around the pulsating balloon’s lengthwise center, with a cross section resembling that
of the oscillating flow over the cross section of an annular pipe [33]. Downstream of the
balloon, the radial velocity component tends to restore the maximization of the longitudinal
velocity profile on the pipe axis. The maximum, over the cross section, vectors are of a
larger magnitude near the inlet and are shorter at the balloon region, as expected by
mass conservation.
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As shown in Figure 7, at the part of the period where the balloon volume change rate
increases, the outflow volume rate increases. The maximizer of Equation (6) is

arg max
t∈[0,T)

Qout(t) =
T

2π
arccos


rb0
Ab
−
√

r2
b0

A2
b
+ 8

4

, (22)

for which a dark red region emerges near the outflow. For the rest of the period, where the
balloon volume change rate decreases, the outflow volume rate follows the same trend. For
t = 3T/4, the longitudinal velocity near the outlet is minimal. The low velocity region near
the outer wall has a smaller thickness in the region 4 ≤ x(cm) ≤ 10, where the balloon is
placed, due to the viscous effects in the duct between the wall and the moving surface of
the balloon.

At the position where the incoming fluid velocity profile attacks the balloon, a high
radial velocity region is created, as the streamlines curve in order to adjust to the geometry
(Figure 8). The length of the high radial velocity component region achieves grosso modo
higher values during inflation than during deflation. The radial velocity field exhibits the
maximum intensity for t = T/4, triggered by the maximization of the balloon surface’s
oscillation velocity. The most extended intensely negative region emerges for t = 3T/8 as
the result of large balloon oscillation displacement and high flow volume rate.

As depicted in Figure 9, outlet pressure rises for the latest part of the balloon inflation
phase and falls for the latest part of the balloon deflation phase. The outlet pressure is not
in phase with outlet velocity. For the time instances t = 3T/4 to t = 5T/4, the pressure
distribution is non-monotonic with respect to the streamwise direction and reaches its
minimum values near the lengthwise position of the balloon center of symmetry, where the
cross-section area is minimized.

For identical lower extreme position of the balloon small axis length oscillation, the
amplitude of the balloon oscillation and the pressure fluctuation are positively correlated,
as Figure 10 suggests. For larger Reynolds numbers and for identical oscillations, the
output pressure with respect to the inlet reaches lower values.

The enhanced importance of inertia results in significant lagging of the output pressure
curve behind the flow volume rate curve [34]. The phase difference between the maximum
flow volume rate and the maximum outlet pressure is found to be almost independent of
the amplitude of oscillation and the equilibrium position and to increase slightly for larger
Reynolds number cases.

The mean value of the waveform of the outlet surplus pressure with respect to the
inlet is −4.319 Pa for Qin = 0.01 L/s, rb0 = 0.32 cm, and Ab = 0.02 cm.

The phase shift between the maximization of the outlet flow volume rate and the
outlet pressure is

δφ = 2π

(
arg max

t∈[0,T)
pout(t)− arg max

t∈[0,T)
Qout(t)

)
=

109π

100
− arccos

(
4−
√

66
2

)
= 0.57025π,

for Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm. The above value of δφ is typical
for large Womersley numbers phase shifting between pressure gradient and volume flow
rate [35,36].

Because of the balloon pulsation, the vessel outlet velocity profile is not parabolic
as in the inlet, and the maximum axial velocity is notably lower in comparison with the
corresponding Poiseuille value for the same flow rate (Figure 11). The high value of the
non-dimensional frequency parameter (11.936), which results in the increased relative
significance of the inertia effects, leads to flattened velocity profiles around the axis, near to
the outlet [37]. Downstream of the balloon, at a sufficient distance from it, shear stresses
are significant in the wall’s vicinity and are almost absent at the flow core.
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Near the outlet of the pipe, where the flow is developed, the simplified form of the
Navier–Stokes equations,

∂2u
∂r2 +

1
r

∂u
∂r
− 1

ν

∂u
∂t

=
1
µ

∂p
∂x

, (23)

is linear for the velocity profile and pressure [35]. Therefore, in cases where the steady
and time-dependent pressure gradient parts coexist, they satisfy independently
Equation (23) [36,38]. As shown in Figure 12, the effect of the pulsation of the balloon
at the outlet is more intense for radii in the middle of the narrowest duct, created by the
inner and outer solid boundaries.

5. Conclusions

In this work, the curvilinear immersed boundary method is employed for the com-
putation of the laminar flow around an ellipsoidal expanding-contracting balloon in a
straight pipe with a circular cross section. The median and minor axes of the balloon are
equal and the major axis is at the direction of the flow. The minor axis length is oscillating
sinusoidally with a period that is that of the cardiac pulse. The inflow is considered a
developed Poiseuille profile. The effect on the pressure of the evolution of the balloon
volume is investigated and the corresponding pulsating flow produced is described. The
flow field around the dilating-shrinking body is documented analytically.

The next step of the current study is the use of the framework presented, aug-
mented with a fluid–structure interaction, to take into consideration the compliance of the
artery [39]. Moreover, the cardiac output pulse could be substituted for the steady inlet
velocity and the IABP timing could be used to simulate the three-dimensional flow around
the IABP in the human aorta.
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Abbreviations
The following abbreviations are used in this manuscript:
IABP Intra-Aortic Balloon Pump
PCI Percutaneous Coronary Intervention
CPB Cardiopulmonary Bypass
ECMO Extracorporeal Membrane Oxygenation
Nomenclature
Ab oscillation amplitude of the equatorial radius of the prolate balloon
gij metric tensor element, i = 1, 2, 3, j = 1, 2, 3
gggj contravariant base vector, j = 1, 2, 3
J Jacobian determinant
lα length of the aorta
p flow field pressure
pin inlet pressure
pout outlet pressure
Qin(t) inlet flow volume rate
Qout(t) outlet flow volume rate
r radial coordinate
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rα radius of the aorta
rb0 central value in time of the equatorial radius of the prolate balloon
t time
T period of balloon oscillation
u longitudinal Cartesian velocity component
ui Cartesian velocity component, i = 1, 2, 3
U j contravariant velocity component, j = 1, 2, 3
Ur radial velocity component
Uθ angular velocity component
vvv flow field velocity vector
V(t) balloon volume
x streamwise coordinate
xi Cartesian coordinate, i = 1, 2, 3
xl longitudinal position of prolate balloon center of symmetry
y Cartesian cross-stream coordinate
z Cartesian cross-stream coordinate

α Womersley number
αb length of ellipsoid major semi-axis
βb(t) length of ellipsoid median semi-axis
γb(t) length of ellipsoid minor semi-axis
δt numerical time step
δx numerical longitudinal step
δφ phase shift between outlet pressure and outlet volume rate
θ angular coordinate
µ dynamic viscosity of the fluid
ν kinematic viscosity of the fluid
ξ j curvilinear coordinate, j = 1, 2, 3
ξk

xi
partial derivative of ξk with respect to xi

ρ density of the fluid
ω angular frequency of balloon oscillation

Appendix A. The Flow Field around the Balloon for Qin = 0.01 L/s, rb0 = 0.32 cm and
Ab = 0.02 cm

The axial and radial velocity profiles for 4 instances in time and 24 axial positions
is given in Figures A1–A8. Downstream of the intersection of the three perpendicular
ellipsoid planes of symmetry, negative radial velocity component values emerge. The
radial velocity component has its maximum in space at the point where the input stream
attacks the balloon and in time at t = T/2

max
x,t

Ur(x, 0, θ, t) = 2.17 cm/s.

The minimum in time, maximum value for the radial velocity emerges for t = 6T/8

min
t

(
max

x
Ur(x, 0, θ, t)

)
= 1.88 cm/s.

For x = 15 the maximum cross section axial velocity is on the pipe axis.
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Figure A1. Axial velocity profiles for t = 0T/8 (continuous line). The dashed line indicates the
balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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Figure A2. Radial velocity profiles for t = 0T/8 (continuous line). The dashed line indicates the
balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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Figure A3. Axial velocity profiles for t = 2T/8 (continuous line). The dashed line indicates the
balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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Figure A6. Radial velocity profiles for t = 4T/8 (continuous line). The dashed line indicates the
balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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Figure A8. Radial velocity profiles for t = 6T/8 (continuous line). The dashed line indicates the
balloon profile. The inlet volume rate is Qin = 0.01 L/s, rb0 = 0.32 cm and Ab = 0.02 cm.
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