
Citation: Burmasheva, N.; Ershkov,

S.; Prosviryakov, E.; Leshchenko, D.

Exact Solutions of Navier–Stokes

Equations for Quasi-Two-Dimensional

Flows with Rayleigh Friction. Fluids

2023, 8, 123. https://doi.org/

10.3390/fluids8040123

Academic Editors: Joseph J. Kuehl

and D. Andrew S. Rees

Received: 19 February 2023

Revised: 20 March 2023

Accepted: 28 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Exact Solutions of Navier–Stokes Equations for
Quasi-Two-Dimensional Flows with Rayleigh Friction
Natalya Burmasheva 1 , Sergey Ershkov 2,* , Evgeniy Prosviryakov 1 and Dmytro Leshchenko 3

1 Institute of Engineering Science UB RAS, Ural Federal University, 620049 Ekaterinburg, Russia
2 Department of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998,

36 Stremyanny Lane, 117997 Moscow, Russia
3 Odessa State Academy of Civil Engineering and Architecture, 65029 Odessa, Ukraine
* Correspondence: sergej-ershkov@yandex.ru

Abstract: To solve the problems of geophysical hydrodynamics, it is necessary to integrally take
into account the unevenness of the bottom and the free boundary for a large-scale flow of a viscous
incompressible fluid. The unevenness of the bottom can be taken into account by setting a new force
in the Navier–Stokes equations (the Rayleigh friction force). For solving problems of geophysical
hydrodynamics, the velocity field is two-dimensional. In fact, a model representation of a thin
(bottom) baroclinic layer is used. Analysis of such flows leads to the redefinition of the system of
equations. A compatibility condition is constructed, the fulfillment of which guarantees the existence
of a nontrivial solution of the overdetermined system under consideration. A non-trivial exact
solution of the overdetermined system is found in the class of Lin–Sidorov–Aristov exact solutions. In
this case, the flow velocities are described by linear forms from horizontal (longitudinal) coordinates.
Several variants of the pressure representation that do not contradict the form of the equation system
are considered. The article presents an algebraic condition for the existence of a non-trivial exact
solution with functional arbitrariness for the Lin–Sidorov–Aristov class. The isobaric and gradient
flows of a viscous incompressible fluid are considered in detail.

Keywords: exact solutions; Navier–Stokes equations; Rayleigh friction; Kolmogorov flow; isobaric
flows; gradient flows; overdetermined system; solvability condition

1. Introduction

The study of flows that take place in nature and technical hydrodynamic systems
is often characterized by the predominance of the horizontal component of the velocity
field over the vertical one [1–7]. Examples of such flows are large-scale flows both in the
ocean and in atmospheres of rotating planets, the convective circulation on the Sun and
other stars, the spatial evolution of gas and plasma flows in galaxies, and flows both in
magnetized plasma and in thin layers of fluid [1–7]. In addition, a class of such flows can
be implemented in laboratory conditions, in which direct and indirect measurements of
various parameters in complex geometry and topologies of flows can be reproduced [1–7].

The suppression of the vertical velocity component can be due to various reasons. As
an illustrative example, we indicate the following factors: the physical competition between
regimes of a uniform rigid-body rotation and differential rotation in a fluid, the presence
of a magnetic field for an electrically conductive fluid, a pronounced stratification of the
force field that induces the movement of a fluid (for example, by a non-uniform density), a
small thickness of the fluid layer, and a combination of the phenomena listed above [1–7].
To describe large-scale incompressible fluid flows moving in thin layers, mathematical
models based on the representation of the velocity field by a quasi-two-dimensional flow
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have proved themselves well [3,4,8,9]. In other words, quasi-two-dimensional flows are
two-dimensional in velocity but three-dimensional in geometric coordinates [8,10–12].(

Vx(t, x, y, z), Vy(t, x, y, z), 0
)

The construction of exact solutions for the Navier–Stokes equations describing quasi-
two-dimensional flows is sometimes a more difficult task than finding exact solutions for
three-dimensional flows. The main difficulty in finding exact solutions for the velocity
field with two nonzero components depending on three coordinates is due to the fact that
the reduced equations of motion for an incompressible fluid are overdetermined [8,13–17].
Overdetermination means that the number of equations of the system exceeds the number
of functions found from these equations. For isobaric flows of incompressible fluids, exact
solutions that take into account the horizontal inhomogeneity of the velocity field were re-
ported in [14,16–18]. The study of gradient shear flows in the exact formulation was carried
out in [19–23]. For problems of convection, thermal diffusion, and inhomogeneous flows of
geophysical hydrodynamics, the exact solutions presented in [16–18] were generalized in
articles [24–26] and in a review [8].

The exact solutions found in [8,13–26] for various force fields can be used to solve
boundary value problems with a free boundary [27–32]. When describing ocean flows, there
is the problem of taking into account the effect of bottom roughness on the structure of the
velocity field. In [3], the authors proposed introducing a new force into the Navier–Stokes
equations to take into account the roughness of the bottom. This force, which takes into
account an external friction according to the Rayleigh law, makes it possible to more
accurately describe large-scale flows that take place in natural and technical systems.
Note that the Rayleigh friction coefficient depends on both the physical features of the
hydrodynamic system and the edge conditions at the flow boundaries [3].

So far, exact solutions for strictly two-dimensional flows (Vx (t,x,y,z), Vy (t,x,y,z), 0)
have been considered, and then their stability has been studied [3–7]. Already in pioneering
articles [33–35] devoted to the study of the Kolmogorov flow with an initial sinusoidal
profile, there was a lack of exact solutions for quasi-two-dimensional flows of the form (Vx
(t,x,y,z), Vy (t,x,y,z), 0).

We repeat once again that the fundamental difficulty in constructing exact solutions is
related to the overdetermination of the system of Navier–Stokes equations together with
the incompressibility equation.

This article partially fills the gap in the finding of exact solutions for quasi-two-
dimensional flows considered additionally with Rayleigh frictions for various classes of
flows. Note that the study of isobaric and gradient flows does not take into account the
rotation of the fluid.

Neglecting the influence of the Coriolis force on the fluid flow is due to the intention
of the authors to demonstrate the main difficulties associated with the establishment of
the solvability condition for the overdetermined system of hydrodynamic equations and
the structure of exact solutions, in comparison with the known results obtained from the
classical form of the Navier–Stokes equations. This is performed by the authors as they
wanted to show the main difficulties that arise when constructing a solvability condition
for the overdetermined system of equations that arises during modeling.

2. Problem Statement

Isothermal shear flows of a viscous incompressible fluid are considered here, taking
into account the integral influence of the near-bottom boundary layer, which are described
by the following system of nonlinear differential equations in partial derivatives [3,36]:

∂Vx

∂t
+ Vx

∂Vx

∂x
+ Vy

∂Vx

∂y
= −∂P

∂x
+ ν

(
∂2Vx

∂x2 +
∂2Vx

∂y2 +
∂2Vx

∂z2

)
− λVx (1)
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∂Vy

∂t
+ Vx

∂Vy

∂x
+ Vy

∂Vy

∂y
= −∂P

∂y
+ ν

(
∂2Vy

∂x2 +
∂2Vy

∂y2 +
∂2Vy

∂z2

)
− λVy (2)

∂P
∂z

= 0 (3)

∂Vx

∂x
+

∂Vy

∂y
= 0 (4)

Navier–Stokes systems (1)–(4) consist of projections of the momentum equations
(Equations (1)–(3)) on the axes of the orthogonal coordinate system and the continuity
equation (Equation (4)) for the case of incompressible fluids. In systems (1)–(4), the standard
denotation is introduced: Vx(t,x,y,z) and Vy(t,x,y,z) are projections of the velocity vector;
P(t,x,y,z) = p/ρ0 is the pressure p normalized to the fluid density ρ0; ν is the kinematic viscosity.

A distinctive feature of Equations (1) and (2) is the consideration of the Rayleigh
friction force, characterized by the value of the friction coefficient λ. An additional term on
the right-hand sides of Equations (1) and (2), containing this coefficient, makes it possible
to take into account the bottom roughness. The value of the parameter λ is determined by
the edge conditions of the boundary value problem in the geophysical hydrodynamics [3].

Equation (3) means that the pressure does not change with depth. In fact, we are
talking about a narrow baroclinic layer existing in the world’s ocean and its internal
(near-continental) seas, where the temperature practically does not change.

Among all the equations of the system under consideration, only Equation (3) is iso-
lated, implying that normalized pressure P depends only on part of the spatial coordinates.

However, at the same time, generally speaking, the dependence of the pressure on the
other two spatial coordinates and time remains. That is, Equation (3) does not mean the
constancy of pressure, but simply narrows the range of parameters on which the pressure
value depends:

P = P(t, x, y) (5)

Let us remark that the consideration of shear flows (i.e., flows with a zero vertical
velocity) leads to the need to investigate the system of constitutive relations (systems (1)–(4)
for compatibility of solutions for separate equations of the aforementioned system). Indeed,
the system under the consideration includes four scalar equations for determining three
unknown functions—namely, velocities Vx and Vy and pressure P.

To conclude, regarding the solvability condition for systems (1)–(4), we apply the
approach presented in [17] for the classical equations of the hydrodynamics of incompress-
ible Newtonian fluids. We differentiate the first equation of the system with respect to x
and the second with respect to y, and we sum up the results. As a result of the algebraic
manipulations, due to the fact that partial derivatives on analytical functions are always
commutative, we obtain the following equation:

∂

∂t

(
∂Vx

∂x
+

∂Vy

∂y

)
+

(
∂Vx

∂x

)2
+

(
∂Vy

∂y

)2

+ Vx
∂

∂x

(
∂Vx

∂x
+

∂Vy

∂y

)

+Vy
∂

∂y

(
∂Vx

∂x
+

∂Vy

∂y

)
+ 2

∂Vy

∂x
∂Vx

∂y

= ν

[
∂2

∂x2

(
∂Vx

∂x
+

∂Vy

∂y

)
+

∂2

∂y2

(
∂Vx

∂x
+

∂Vy

∂y

)
+

∂2

∂z2

(
∂Vx

∂x
+

∂Vy

∂y

)]

−∂2P
∂x2 −

∂2P
∂y2 − λ

(
∂Vx

∂x
+

∂Vy

∂y

)
. (6)
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Let us take into account during our calculations that the continuity equation (Equation (4))
in the resulting equation (Equation (6)) simplifies the latter as follows:(

∂Vx

∂x

)2
+

(
∂Vy

∂y

)2

+ 2
∂Vy

∂x
∂Vx

∂y
= −∂2P

∂x2 −
∂2P
∂y2 . (7)

The derivation of the compatibility condition for solutions of the overdetermined
system of Equations (1)–(4), written in the form of (7), does not bring the result closer
to constructing the solution itself. First, let us study the solvability of systems (1)–(4) in
the Lin–Sidorov–Aristov class of exact solutions [4,8,37,38]. Within the specified class, the
velocities Vx and Vy are linear forms of two spatial coordinates with a non-linear arbitrary
dependence of the coefficients in these forms on both the third spatial coordinate and time:

Vx(x, y, z, t) = U(z, t) + u1(z, t)x + u2(z, t)y,

Vy(x, y, z, t) = V(z, t) + v1(z, t)x + v2(z, t)y. (8)

The Lin class, with its external simplicity, first allows us to study the behavior of the
velocity and acceleration fields. Secondly, it allows us to preserve the nonlinearity of the
Navier–Stokes equations and to describe the nonlinear effects observed in real fluids.

We substitute expressions (5) and (8) into the above-considered systems (1)–(4), and
we obtain as a result the following:

∂U
∂t

+
∂u1

∂t
x +

∂u2

∂t
y + (U + u1x + u2y)u1 + (V + v1x + v2y)u2

= −∂P
∂x

+ ν

(
∂2U
∂z2 +

∂2u1

∂z2 x +
∂2u2

∂z2 y
)
− λ(U + u1x + u2y),

∂V
∂t

+
∂v1

∂t
x +

∂v2

∂t
y + (U + u1x + u2y)v1 + (V + v1x + v2y)v2

= −∂P
∂x

+ ν

(
∂2V
∂z2 +

∂2v1

∂z2 x +
∂2v2

∂z2 y
)
− λ(V + v1x + v2y),

u1 + v2 = 0. (9)

Let us reduce the number of equations and unknown terms in subsystem (9) using
the relation

v2 = −u1 (10)

between spatial accelerations, which is a direct consequence of the last equation of this
system. As a result, we obtain:(

∂U
∂t

+ Uu1 + Vu2 − ν
∂2U
∂z2 + λU

)
+

(
∂u1

∂t
+ u1

2 + u2v1 − ν
∂2u1

∂z2 + λu1

)
x

+

(
∂u2

∂t
− ν∂2u2

∂z2 + λu2

)
y = − ∂P

∂x,(
∂V
∂t

+ Uv1 −Vu1 − ν
∂2V
∂z2 + λV

)
+

(
∂v1

∂t
− ν∂2v1

∂z2 + λv1

)
x

−
(

∂u1

∂t
−
(

u1
2 + u2v1

)
− ν∂2u1

∂z2 + λu1

)
y = −∂P

∂y
. (11)
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Obviously, the left-hand sides of Equation (11) are linear forms in the spatial coordi-
nates x and y. Hence, the right-hand sides of these equations (pressure derivatives with
respect to x and y) must also be linear forms of the same coordinates. Therefore, the degree
of the polynomial P does not exceed two.

The same conclusion also follows from the compatibility condition. By a direct substi-
tution, one can verify that the compatibility condition for solution (7) for class (8), taking
into account condition (9), takes the following form:

2
(

u1
2 + u2v1

)
= −∂2P

∂x2 −
∂2P
∂y2 . (12)

Equation (12) has a function on the left-hand side that depends only on both time t
and the vertical coordinate z, which means that the right-hand side of this equation can
also be thought to depend only on these parameters. Thus, terms higher than the second
degree cannot enter into pressure P.

3. Case 1: The Pressure P Depends Only on Time t

Let us assume that the pressure depends only on the current time t, i.e., represented in
the form of

P = P0(t). (13)

The structure of pressure (13) allows us to consider it as a known function, specified at
the boundaries of the fluid flow region. Therefore, what remains is to determine only the
components of the velocity field (8).

In addition, due to (13), the compatibility condition (12) takes a simpler form:

u1
2 + u2v1 = 0. (14)

Note that relation (14) was obtained earlier, for example, in [9,17,39], but only steady
flows were considered there. In view of the similarity of the form of condition (14) and the
compatibility conditions given in [9,17,39], expression (14) is suitable for both steady and
unsteady flows.

By virtue of Equations (13) and (14) and the independence of spatial coordinates on
each other, the equations of system (11) are reduced to several autonomous equations in
the following form:

∂u1

∂t
− ν∂2u1

∂z2 + λu1 = 0,
∂u2

∂t
− ν∂2u2

∂z2 + λu2 = 0,
∂v1

∂t
− ν∂2v1

∂z2 + λv1 = 0, (15)

∂U
∂t

+ Uu1 + Vu2 − ν
∂2U
∂z2 + λU = 0,

∂V
∂t

+ Uv1 −Vu1 − ν
∂2V
∂z2 + λV = 0 (16)

Note that all equations of system (15) are isolated. These are linear partial differential
equations of the heat conduction type with a source [40].

Let us further introduce into consideration the linear differential operator of a parabolic type:

L(·) = ∂

∂t
− ν ∂2

∂z2 + λ

System (15) can then be represented as a set of the following operator equations of the
same type:

Lu1 = 0, Lu2 = 0, Lv1 = 0 (17)

After finding the proper solution to system (17), one should return to the integration
of the quasi-nonlinear equation (Equation (16)).
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Let us consider the special case of a steady flow. The operator L takes the following form:

L(·) = −ν ∂2

∂z2 + λ.

Consequently, Equation (17) turns into second-order ordinary differential equations
with constant coefficients.

The general solution of the homogeneous operator equation Lu = 0 can be easily
written out:

u(z) = c1 exp(kz) + c2 exp(−kz). (18)

where c1 and c2 are constants of integration:

k =

√
λ

ν
∈ R.

In view of compatibility condition (14) and the structure of solution (18), the appropri-
ate solution to the system of the operator equation (Equation (17)) is determined by the set
of functions:

u1 = u cos θ sin θ, u2 = u cos2 θ, v1 = −u sin2 θ, (19)

where u is the function in the form of (18) and θ is some number.
Note that if we put λ = 0 (ignoring the Rayleigh friction), then the characteristic

equation corresponding to the differential equation will have a multiple (zero) root. In this
case, the solution presented in [9,39] will be obtained. Thus, despite the external similarity
of the structure of solution (19) with congruent solutions given in [9,39], we can assume
that our current study has generalized the previously presented results.

Then, to completely determine the structure of the velocity field, what remains is to
solve the system of two linear equations, which is a simplification of Equation (16) for the
case of steady flows under consideration:

λU + Uu1 + Vu2 − ν
d2U
dz2 = 0, λV + Uv1 −Vu1 − ν

d2V
dz2 = 0. (20)

To construct an exact solution of these linear equations with variable coefficients, let
us substitute solution (19) for spatial accelerations into Equation (20):

λU + Uu cos θ sin θ+ Vu cos2 θ− νd2U
dz2 = 0,

λV −Uu sin2 θ−Vu cos θ sin θ− νd2V
dz2 = 0. (21)

Let us consider a special case when sin θ = 0. System (21) is then greatly simplified:

λU + Vu− νd2U
dz2 = 0, λV − νd2V

dz2 = 0. (22)

The last equation can be written as LV = 0, the solution of which has form (18):

V = c3 exp(kz) + c4 exp(−kz).

Consequently, the inhomogeneity Vu in the first equation of system (22) will be
equal to:

Vu = c1c3 exp(2kz) + c2c4 exp(−2kz) + c1c4 + c2c3.

We look for a particular solution corresponding to it in the form:

Upart = c5 exp(2kz) + c6 exp(−2kz) + c7.
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By substituting the expression above into the first equation of system (22), we obtain:

λ(c5 exp(2kz) + c6 exp(−2kz) + c7) + c1c3 exp(2kz) + c2c4 exp(−2kz) + c1c4 + c2c3

−ν
(

4k2c5 exp(2kz) + 4k2c6 exp(−2kz)
)
= 0.

Taking into account the linear independence of the functions involved, we arrive at
the following system of equations:

λc5 + c1c3 − 4νc5

(√
λ

ν

)2

= 0, λc6 + c2c4 − 4νc6

(√
λ

ν

)2

= 0,

λc7 + c1c4 + c2c3 = 0.

The solution of such systems as above is easy to find:

c5 =
c1c3

3λ
, c6 =

c2c4

3λ
, c7 = − c1c4 + c2c3

λ
.

Thus, the final solution to system (22) takes the form:

U = c8 exp(kz) + c9 exp(−kz) +
c1c3

3λ
exp(2kz) +

c2c4

3λ
exp(−2kz)− c1c4 + c2c3

λ

V = c3 exp(kz) + c4 exp(−kz). (23)

Let us now return to the analysis of system (21). In the general case, if we consider sin
θ 6= 0, we can multiply the first equation of system (21) by sin θ and the second one by cos
θ, and then we can add them as a result. After algebraic transformations, we obtain:

λ(U sin θ+ V cos θ)− ν d2

dz2 (U sin θ+ V cos θ) = 0

or
L(U sin θ+ V cos θ) = 0.

The solution of the last equation in view of Equation (18) has the form:

U sin θ+ V cos θ = c3 exp(kz) + c4 exp(−kz). (24)

Let us express the velocity U from the resulting relation and substitute it into any
equation of system (21) that we are solving here, for example, into the second equation:

λV − (c3 exp(kz) + c4 exp(−kz)−V cos θ)u sin θ−Vu cos θ sin θ− νd2V
dz2 = 0.

Having carried out elementary transformations, we obtain an inhomogeneous equa-
tion of the form

LV = sin θ(c1c3 exp(2kz) + c2c4 exp(−2kz) + c1c4 + c2c3).

Relying on the actions performed in the process of searching for a solution to the
inhomogeneous equation of system (22) and its final solution (23), we can easily write out
the general solution of the last inhomogeneous equation:

V = c5 exp(kz) + c6 exp(−kz)
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− sin θ
(

c1c3

3λ
exp(2kz) +

c2c4

3λ
exp(−2kz)− c1c4 + c2c3

λ

)
. (25)

What remains is to substitute expression (25) into relation (24) to obtain the exact
solution describing the behavior of the velocity U:

U =
1

sin θ
(c3 exp(kz) + c4 exp(−kz)−V cos θ)

=
c3 − c5

sin θ
exp(kz) +

c4 − c6

sin θ
exp(−kz)

+ cos θ
(

c1c3

3λ
exp(2kz) +

c2c4

3λ
exp(−2kz)− c1c4 + c2c3

λ

)
. (26)

4. Case 2: The Pressure P Is a Linear Form of the Horizontal Coordinates x and y

In this case, the pressure can be represented as the following linear form:

P(x, y, t) = P0(t) + xP1(t) + yP2(t). (27)

Note that despite adding more terms in the pressure representation (in comparison
with form (13)), the compatibility condition in form (14) remains relevant, as the right-hand
side of condition (12) for function (27) will be equal to zero.

Let us see how the change in the pressure structure P (27) will affect the form of the
equations of system (11). It is easy to verify that by a direct substitution of expression (27),
due to the independence of spatial coordinates, system (11) can be reduced to the
following system:

∂u1

∂t
− ν∂2u1

∂z2 + λu1 = 0,
∂u2

∂t
− ν∂2u2

∂z2 + λu2 = 0,
∂v1

∂t
− ν∂2v1

∂z2 + λv1 = 0, (28)

∂U
∂t

+ Uu1 + Vu2 − ν
∂2U
∂z2 + λU = −P1,

∂V
∂t

+ Uv1 −Vu1 − ν
∂2V
∂z2 + λV = −P2. (29)

Comparing systems (15) and (16), and (28) and (29), we notice that the equations
for determining the spatial gradients remain unchanged. Let us account for additional
terms in expression (27) affecting only the equations for the U and V components. They
become inhomogeneous and therefore even more difficult for the exact integration in a
general form.

In the particular case of steady flows, the spatial gradients, as in the case of the uniform
pressure, will be described by solution (19). So, system (29) will take the form:

λU + Uu cos θ sin θ+ Vu cos2 θ− νd2U
dz2 = −P1,

λV −Uu sin2 θ−Vu cos θ sin θ− νd2V
dz2 = −P2. (30)

In this case, the terms on the right-hand side of both equations in Equation (30) are
constant. If we assume that sin θ = 0, then, by analogy with the abovementioned case, we
arrive to the system of inhomogeneous equations:

LU = −P2 −Vu, LV = −P2. (31)
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If sin θ 6= 0, then, by carrying out transformations similar to those made in the case of
a uniform pressure, we again come to an inhomogeneous equation as a result:

L(U sin θ+ V cos θ) = −P1 sin θ− P2 cos θ. (32)

Obtaining the solution to Equation (32) above is not difficult, as the inhomogeneity
on the right-hand side is constant. This means that we will obtain a linear relationship
connecting both homogeneous velocity components.

Expressing further the velocity U in terms of the velocity V (as it was performed above)
and substituting into the second equation of system (32), we can, after integration, write
out the exact solution for the velocity V. Then, afterward, using the relationship between
the components U and V, we can find the exact solution for the velocity U. Calculations and
transformations that should be performed according to the above-specified algorithm are
not given here, due to two reasons. First, we have already described above the application of
the standard technique for finding a particular solution corresponding to the inhomogeneity.
Secondly, this entire algorithm has already been considered in sufficient detail using the
example of the case of the uniform pressure.

5. Case 3: The Pressure P Is Determined by a Quadratic Dependence on the
Coordinates x and y

In this case, the pressure is described by the following sum:

P(x, y, t) = P0(t) + xP1(t) + yP2(t) +
x2

2
P11(t) + xyP12(t) +

y2

2
P22(t).

The appearance of the quadratic terms in expression (25) (in comparison with
form (22)) changes the structure of the compatibility condition (12) (with respect to the
condition (14)):

P11 + P22 + 2
(

u1
2 + u2v1

)
= 0. (33)

In addition, taking into account the terms of the second order also affects the resulting
system of equations for the components of the velocity field:

∂u1

∂t
+ u1

2 + u2v1 − ν
∂2u1

∂z2 + λu1 = −P11,
∂u2

∂t
− ν∂2u2

∂z2 + λu2 = −P12,

∂v1

∂t
− ν∂2v1

∂z2 + λv1 = −P12,−
(

∂u1

∂t
−
(

u1
2 + u2v1

)
− ν∂2u1

∂z2 + λu1

)
= −P22, (34)

∂U
∂t

+ Uu1 + Vu2 − ν
∂2U
∂z2 + λU = −P1,

∂V
∂t

+ Uv1 −Vu1 − ν
∂2V
∂z2 + λV = −P2. (35)

As of now, all equations have become obviously inhomogeneous. This means that the
structure of the solution becomes more complicated and the form of some equations has
also to be changed.

Let us pay attention to the first and last equations of system (34), presented in the
following form:

∂u1

∂t
− ν∂2u1

∂z2 + λu1 = −P11 −
(

u1
2 + u2v1

)
,

∂u1

∂t
− ν∂2u1

∂z2 + λu1 = P22 +
(

u1
2 + u2v1

)
.
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Both equations are equations for determining the component u1 of the velocity
field (8). Note that the left-hand sides of these equations coincide, so the right-hand
sides must also match:

−P11 −
(

u1
2 + u2v1

)
= P22 +

(
u1

2 + u2v1

)
.

Obviously, the last equation coincides with Formula (33). Thus, if relation (33) is
satisfied, the first equation in system (34) or the last one can be ignored. The choice of
the “discarded” equation is determined conveniently by solving the particular boundary
value problem.

Note that in the case of steady flows, the integration of systems (34) and (35) is to be
reduced again to solving a set of inhomogeneous equations with linear operator L. The
integration of these systems should be carried out completely in a similar way as in case of
the uniform pressure, which has been analyzed above in detail.

We perform the appropriate actions to obtain a solution for steady-state flows. In this
case, the solution class (8) takes the form:

Vx(x, y, z) = U(z) + u1(z)x + u2(z)y,

Vy(x, y, z) = V(z) + v1(z)x + v2(z)y. (36)

The pressure P is described by a quadric of horizontal coordinates x and y with
constant coefficients:

P(x, y) = P0 + xP1 + yP2 +
x2

2
P11 + xyP12 +

y2

2
P22.

We construct the solution for systems (34) and (35) for the special case of class (36):

Vx(x, y, z) = U(z) + u2(z)y, Vy(x, y, z) = V(z). (37)

The choice of class (37) is explained by the fact that by the invertible transformation of
horizontal coordinates (a rotation in the horizontal plane around the origin of coordinates),
it is possible to move from class (37) to class (36) using the following expressions:

x → cosϕx + sinϕy , y→ − sinϕx + cosϕy ;

Vx → cosϕVx + sinϕVy , Vy → − sinϕVx + cosϕVy (38)

The reverse transition from class (36) to class (37) is also possible with the correct
choice of the rotation angle value in expression (38).

So, the component u2 from class (37) can be found from the corresponding equation of
system (34):

−νu′′2 + λu2 = −P12.

Here, the stroke denotes the derivative by the z coordinate. The solution of the latter
equation is easily constructed using the characteristic equation:

u2 = A exp(kz) + B exp(−kz)− P12

λ
, (39)

as before k =
√

(λ/ν), A and B are constants of integration.
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In this case, system (35) for class (37) becomes weakly related, i.e., an isolated equation
is clearly distinguished in it:

V ′′ − k2V =
P2

ν
, U′′ − k2U =

Vu2 + P1

ν
. (40)

The solution of the first equation of system (40) is easily constructed:

V = C1 exp(kz) + D1 exp(−kz)− P2

λ
. (41)

Here, C1 and D1 are constants of integration.
The solution of the second equation of system (40) consists of two parts—the general

solution U1 of a homogeneous equation and a particular solution U2 of an inhomogeneous
equation. Solution U1 has a structure similar to expression (41):

U1 = C2 exp(kz) + D2 exp(−kz).

Here, C2 and D2 are constants of integration.
The form of solution U2 is determined by the structure of the heterogeneity Vu2 + P1:

Vu2 + P1

ν
=

1
ν

(
AC1 exp(2kz)− P12C1 + P2 A

λ
exp(kz)− P12D1 + P2B

λ
exp(−kz)

+ BD1 exp(−2kz) + AD1 + BC1 + P1

)
. (42)

In other words, we look for the solution U2 in the following form:

U2 = α1 exp(2kz) + α2 exp(kz) + α3 exp(−kz) + α4 exp(−2kz) + α5. (43)

Let us substitute expression (43) into the second equation of system (40):

U′′2 − k2U2 = 3k2α1 exp(2kz) + 3k2α4 exp(−2kz)− k2α5. (44)

Comparing the coefficients for linearly independent functions exp(2kz), exp(kz), exp(−kz),
and exp(−2kz) in expressions (42) and (44), we conclude that the solution exists only if the
conditions are met:

P12C1 + P2 A = P12D1 + P2B = 0.

So, as a result, we obtain the following solution for the component U:

U =
C1 A
3λ

exp(2kz) + C2 exp(kz) + D2 exp(−kz) +
D1B
3λ

exp(−2kz)− AD1 + BC1 + P1

λ
. (45)

Now, we can write out the solution for class (37):

Vx = U + u2y =
C1 A
3λ

exp(2kz) + (Ay + C2) exp(kz) + (By + D2) exp(−kz)

+
D1B2

3λ
exp(−2kz)− AD1 + BC1 + P1

λ
.

Vy = V = C1 exp(kz) + D1 exp(−kz). (46)

Finally, we apply the rotation transformation (38) to solution (46):

Vx = cosϕ
[

C1 A
3λ

exp(2kz) + (A(− sinϕx + cosϕy) + C2) exp(kz)
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+(B(− sinϕx + cosϕy) + D2) exp(−kz) +
D1B2

3λ
exp(−2kz)− AD1 + BC1 + P1

λ

−P2

λ
(− sinϕx + cosϕy)

]
+ sinϕ[C1 exp(kz) + D1 exp(−kz)],

Vy = − sinϕ
[

C1 A
3λ

exp(2kz) + (A(− sinϕx + cosϕy) + C2) exp(kz)

+(B(− sinϕx + cosϕy) + D2) exp(−kz) +
D1B2

3λ
exp(−2kz)− AD1 + BC1 + P1

λ

−P2

λ
(− sinϕx + cosϕy)

]
+ cosϕ[C1 exp(kz) + D1 exp(−kz)]. (47)

Thus, the exact solution of systems (34) and (35) is obtained for steady-state flows
within the framework of class (8).

Note that the coefficients before the x and y coordinates in the constructed solution (47)
are linear combinations of the functions exp(kz), exp(−kz). In other words, the coefficients
before x and y are expressions of the form (39) that satisfy the equations of system (34) for
determining the components of the velocity field (8).

6. The Analysis of the Solution

We consider a boundary value problem for a visual illustration of the influence of the
friction force on the properties of a steady flow of fluid. The velocity and pressure fields
have the following structure:

Vx = U(z), Vy = V(z), P(x, y) = P0 + xP1 + yP2. (48)

Expressions in (48) are a special case of class (8) for u1 = u2 = v1 = v2 = 0. System (28)
for these values takes the form

λU − νd2U
dz2 = −P1, λV − νd2V

dz2 = −P2. (49)

If friction is ignored (i.e., assuming λ = 0), equations in Equation (49) describe a flow
with a parabolic profile, i.e., Couette–Poiseuille-type flow:

U =
P1

2ν
z2 + s1z + s2, V =

P2

2ν
z2 + s3z + s4. (50)

However, taking into account the drag coefficient λ fundamentally changes the struc-
ture of the solution, and it ceases to be polynomial:

U = s1 exp

(√
λ

ν
z

)
+ s2 exp

(
−
√
λ

ν
z

)
− P1

λ
, V = s3 exp

(√
λ

ν
z

)
+ s4 exp

(
−
√
λ

ν
z

)
− P2

λ
. (51)

To determine the integration constants s1, s2, s3, and s4, consider the following bound-
ary conditions. We now assume that the flow occurs in an extended horizontal layer with
non-deformable boundaries. At the lower boundary z = 0, the no-slip condition is satisfied:

U(0) = V(0) = 0. (52)

On the upper boundary z = h, the distribution of velocities is given:

U(h) = W cosϕ, V(h) = W sinϕ. (53)
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Under conditions (52) and (53), the exact solution (51) takes the form:

U(Z) =
exp(a(1− Z))(−1 + exp(2aZ))

−1 + exp(2a)
W cosϕ

+
exp(−aZ)(−1 + exp(aZ))(− exp(a) + exp(aZ))

1 + exp(a)
P1

λ
,

V(Z) =
exp(a(1− Z))(−1 + exp(2aZ))

−1 + exp(2a)
W sinϕ

+
exp(−aZ)(−1 + exp(aZ))(− exp(a) + exp(aZ))

1 + exp(a)
P2

λ
. (54)

In solution (54), the substitutions are introduced:

a =
h
√
λ√
ν

, Z =
z
h
∈ [0; 1].

We normalize solution (54) to the characteristic flow velocity W, retaining the notation:

U =
exp(a(1− Z))(−1 + exp(2aZ))

−1 + exp(2a)
cosϕ

+
exp(−aZ)(−1 + exp(aZ))(− exp(a) + exp(aZ))

1 + exp(a)
γ1

Reδa2 ,

V =
exp(a(1− Z))(−1 + exp(2aZ))

−1 + exp(2a)
sinϕ

+
exp(−aZ)(−1 + exp(aZ))(− exp(a) + exp(aZ))

1 + exp(a)
γ2

Reδa2 . (55)

Here,

γ1 =
h3P1

ν2 , γ2 =
h3P2

ν2 , Re =
Wl
ν

, δ =
h
l

,

l is a characteristic scale in horizontal x and y coordinates.
Note that the following passage to the limit is performed for solution (55):

lim
a= h

√
λ√
ν
→0

U =
2Reδ cosϕ+ γ1(−1 + Z)

2Reδ
Z,

lim
a= h

√
λ√
ν
→0

V =
2Reδ sinϕ+ γ2(−1 + Z)

2Reδ
Z. (56)

Solution (56) describes the Couette–Poiseuille flow profile, and if we additionally put
γ1 = 0 and γ2 = 0 (i.e., ignore the possible pressure drop in horizontal directions), then there
will be a classic linear Couette profile:

U = cosϕZ, V = sinϕZ.

The velocity field profile (55) is determined by the interaction of two nonlinear flows,
one of which is induced by the movement of the upper boundary, the other by the pressure
difference (Figure 1). The hodograph of the velocity vector is shown in Figure 2.
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sults from the expression λ = 2ν/h2 [3]. For comparison, Figure 3 shows the profiles
of the velocity field determined by exact solution (50) taking into account boundary
conditions (52) and (53).
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As can be seen from Figure 3, there is a qualitative similarity of the hodographs: there
is a return section on both curves, and both curves intersect the axes, which indicates
the occurrence of countercurrents, but significant differences in quantitative estimates
are visible.

7. Conclusions

In this article, the problem of the overdetermination for the system of equations used
to describe shear flows of viscous fluids, additionally introducing into consideration the
Rayleigh friction, is studied. The reduced systems of equations for the velocity field that is
linear in the x and y coordinates are given. It is shown that the pressure should be a poly-
nomial depending on the aforementioned coordinates, and the degree of such polynomials
does not exceed two. Conditions for avoiding the abovementioned overdetermination are
derived for the constructed class of solutions. It is shown that the form of the compatibility
condition for solutions of such systems depends on the chosen structure of the pressure
field. It is also shown that this structure affects the form of equations for determining the
components of the velocity field. Among other findings, new nontrivial exact solutions
(within the suggested class) that take into account the Rayleigh friction are constructed for
the particular case of steady flows.
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