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Abstract: Transition of ideal, homogeneous, incompressible, magnetohydrodynamic (MHD) turbu-
lence to near-equilibrium from non-equilibrium initial conditions is examined through new long-time
numerical simulations on a 1283 periodic grid. Here, we neglect dissipation because we are primarily
concerned with behavior at the largest scale which has been shown to be essentially the same for
ideal and real (forced and dissipative) MHD turbulence. A Fourier spectral transform method is used
to numerically integrate the dynamical equations forward in time and results from six computer runs
are presented with various combinations of imposed rotation and mean magnetic field. There are five
separate cases of ideal, homogeneous, incompressible, MHD turbulence: Case I, with no rotation or
mean field; Case II, where only rotation is imposed; Case III, which has only a mean magnetic field;
Case IV, where rotation vector and mean magnetic field direction are aligned; and Case V, which has
nonaligned rotation vector and mean field directions. Dynamic coefficients are predicted by statistical
mechanics to be zero-mean random variables, but largest-scale coherent magnetic structures emerge
in all cases during transition; this implies dynamo action is inherent in ideal MHD turbulence. These
coherent structures are expected to occur in Cases I, II and IV, but not in Cases III and V; future
studies will determine whether they persist.
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1. Introduction

“One cannot deal with the physics of cosmic fluids without encountering at
almost every turn the problem of turbulence.” [1]

In particular, one encounters the problem of magnetohydrodynamic (MHD) turbu-
lence, since ‘cosmic fluids’, such as those found in planetary interiors and in stars, are
electrically conducting and stirred into turbulence by buoyant forces. A universal fea-
ture of these objects is that they are rotating and often possess a quasi-stationary, mostly
dipole magnetic field, i.e., a magnetic coherent structure. Just over a hundred years ago,
ref. [2] hypothesized that internal magnetic fields coupled to fluid motions within the Sun,
and by extension, the Earth, were responsible for the creation and maintenance of global
magnetic dipole fields. Determining exactly how this was done came to be called ‘the
dynamo problem’.

In regard to Earth, numerical simulations of the geodynamo [3–5] established that
MHD processes within the Earth are capable of creating a magnetic field similar to the actual
geomagnetic field, including reversals of the dominant dipole component. In addition,
there have been many laboratory experiments [6], some of which have shown the growth
of a self-generated magnetic field, i.e., a dynamo [7–9]. Although numerical simulations
have been successful in proving the MHD nature of the geodynamo and experiments
have shown a dynamo effect, the fundamental MHD origin of the dominant, quasi-steady
geomagnetic dipole field still appear to be a theoretical mystery [10].

Our approach to resolving this mystery is to study three-dimensional (3-D) homoge-
neous, incompressible MHD turbulence, i.e., to examine a turbulent magnetofluid confined
to a 3-D periodic box (a three-torus). This allows for the use of Fourier expansions to
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represent turbulent velocity and magnetic fields in order to study the nonlinear dynamics
of a magnetofluid without the complicating factor of boundary conditions; in fact, introduc-
ing boundaries with no-slip conditions also requires introducing compressibility [11] and
further complicates the problem. Fourier methods transform the problem from the partial
differential equations of MHD (presented in Section 2.1) in x-space (physical space) to a
dynamical system of nonlinear, coupled ordinary differential equations in k-space (Fourier
space), which describe the evolution of the Fourier modes associated with velocity and
magnetic field; this is discussed in Section 2.3. In x-space, the continuum magnetofluid
is represented on an N3 grid of velocity u(x, t) and magnetic field b(x, t) values, while in
k-space, it is represented by the velocity and magnetic vector Fourier coefficients ũ(k, t)
and b̃(k, t), where the wavevectors k define length-scales λ = 2π/k, k = |k| ≥ 1, in the
turbulent magnetofluid and explicitly separate the largest length-scale modes from all of
the smaller length-scale modes. This is particularly useful as the largest length-scale modes
are analogous to the magnetic dipole components in a planet or star.

Viscous and ohmic dissipation occur in a real magnetofluid but ‘cosmic fluids’ gener-
ally have very large Reynolds numbers so that one may remove dissipation from a model
system and study ideal homogeneous MHD turbulence for the following reason. We neglect
dissipation because we are primarily concerned with behavior of a turbulent magnetofluid
at the largest scale; large-scale dynamics have been shown to be essentially the same for
ideal and real (forced and dissipative) MHD turbulence [12,13]. The real MHD equations
appear in (1) and (2) of Section 2.1 and become the ideal MHD equations when we set the
viscosity ν and magnetic diffusivity η equal to zero. There are differences between solutions
of the real and ideal MHD equations as the highest derivative terms (the dissipative terms)
in the real MHD equations methods are removed to produce the ideal MHD equations; the
connection between real and ideal solutions is examined by singular perturbation theory,
e.g., [14]. These differences are critical in real fluid and MHD flows since there may be
thin regions, such as boundary layers, where the second-order dissipative terms become
dominant, or in regions far from boundaries where there is a direct cascade of energy to the
dissipation length-scale and where, again, dissipative terms are dominant. However, ideal
results are often very useful. For example, in studying fluid turbulence, while it is usually
necessary to retain the dissipative term in the Navier–Stokes equation because it determines
the wavenumber spectrum in the medium-scale inertial and small-scale dissipative ranges,
it is nevertheless possible to use ideal results to draw conclusions on the nature of real,
helical fluid turbulence [15].

The fundamental difference between fluid and MHD turbulence is induced by the
presence of a dynamic magnetic field, in that fluid turbulence only has a direct cascade
to higher wavenumbers [16], while MHD turbulence has an inverse cascade as well as
a direct one [17]. This difference between fluid and MHD turbulence, due to the MHD
inverse cascade, can create an energetically dominant large-scale magnetic field, depending
on the particular case of MHD turbulence under consideration; these cases are given in
Table 1 and the various helicities listed there are defined by equations described in the
next two paragraphs and discussed in more detail in Appendix A. Ideal MHD statistical
theory Appendix B predicts that in Cases I and II of Table 1, the large-scale magnetic field
is quasi-stationary and has energy that is essentially equal to magnetic helicity, a result
that also seems to apply to Case IV. These ideal MHD spectra are strongly peaked at the
largest length scale, i.e., smallest wavenumber, where dissipation is weakest in the real case.
That this survives the addition of forcing and dissipation to the magnetofluid has been
shown in studies of helically forced, dissipative MHD turbulence using Fourier method
simulations [12,13]. Thus, if we wish to study the large-scale dynamics and structure of
MHD turbulence, either ideal or real MHD turbulence simulations can be employed. Here,
we choose ideal MHD.
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Table 1. Cases and associated Runs with different integral invariants for ideal MHD turbulence. The
‘parallel helicity’ of Case IV is HP = HC − σHM and occurs when Ωo = σBo, i.e., Ωo is parallel to Bo.

Case Mean Field Rotation Invariants 1283 Runs

I Bo = 0 Ωo = 0 E, HC, HM 1
II Bo = 0 Ωo 6= 0 E, HM 2a,b
III Bo 6= 0 Ωo = 0 E, HC 3
IV Bo 6= 0 Ωo = σBo E, HP 4
V Bo 6= 0 Ωo × Bo 6= 0 E 5

Ideal MHD turbulence, as represented by a finite set of Fourier modes, is a conservative
system with energy and up to two different helicities being integral invariants; again, the
different cases are shown in Table 1. The number and form of the helical invariants depend
on whether or not rotation or a mean magnetic field or both are imposed on the system
(a mean magnetic field Bo is one that is spatially and temporally constant and frame rotation
is given by a vector Ωo). Energy E, cross helicity HC, magnetic helicity HM and parallel
helicity HP, as well as other quantities, are fully defined in Appendix A; here, we will, for
easy reference and to serve as a ‘nomenclature section’, briefly discuss how E, HC, HM and
HP, as well as other integrals, are determined.

First, we define the volume average of a quantity Φ(x, t) multiplied by a quantity
Ψ(x, t) as {ΦΨ}, which is an integral over the volume of interest, here, a periodic box of
side length 2π:

{ΦΨ} ≡ (2π)−3
∫

Φ(x, t)Ψ(x, t)d3x =
1

N3 ∑
k

Φ̃∗(k, t)Ψ̃(k, t).

The k-space functions Φ̃∗(k, t) and Ψ̃(k, t) are Fourier transforms of the x-functions
Φ(x, t) and Ψ(x, t) (Fourier transforms are defined in Section 2.2). Energy and the various
helicities listed in Table 1 are then (HM is defined in terms of the magnetic vector potential
a, where ∇× a = b, ∇ · a = 0)

E = 1
2

{
|u|2 + |b|2

}
, HC = 1

2{u · b}, HM = 1
2{a · b}, HP = HC − σHM.

Again, velocity u and magnetic fields b can be represented in x-space or k-space; their
basic equations are given in (1) and (2) for x-space and (23) and (24) for k-space, and either
set can be used to prove invariance. In terms of the mean magnetic field and rotation
vector magnitudes Bo = |Bo| and Ωo = |Ωo|, one defines the ratio σ = Bo/Ωo when Ωo
is parallel to Bo. Other quadratic forms, in addition to those given above, are also useful
measures of the turbulent state:

EM = 1
2

{
|b|2

}
, EK = 1

2

{
|u|2

}
, HK = 1

2{u ·ω}, A = 1
2

{
|a|2
}

, Ω = 1
2

{
|ω|2

}
, J = 1

2

{
|j|2
}

.

Above, we have EM (magnetic energy), EK (kinetic energy), HK (kinetic helicity, where
ω = ∇× u is the vorticity), A (mean squared vector potential), Ω (‘enstrophy’, i.e., mean
squared vorticity) and J (mean squared electric current, where j = ∇× b); please note
that enstrophy Ω is different from rotation vector magnitude Ωo. For the computer runs
discussed here, time-averages of these appear in Table 2.
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Table 2. Time averages and standard deviations (avg ± std) for various global quantities over the last
half of each run are given below for six new ideal MHD turbulence long-time 1283 runs A, B, C, D, E
and F. These global quantities are: energy E, kinetic energy EK , magnetic energy EM, mean squared
vector potential A, kinetic helicity HK , magnetic helicity HM, cross helicity HC, parallel helicity HP,
enstrophy Ω and mean squared current J.

Run: 1 2a 2b 3 4 5

tend 1095 1136 1037 714 895 461
Ωo 0 10ẑ 10ẑ 0 2ẑ 1ẑ
Bo 0 0 0 1ẑ 1ẑ 1

2 ŷ

Eavg 1.0075e+00 1.0089e+00 1.0083e+00 1.0203e+00 1.0250e+00 1.0040e+00

Estd 1.3852e−03 1.4918e−03 1.5526e−03 3.9857e−03 4.8861e−03 7.6450e−04

Eavg
M 5.6108e−01 5.3617e−01 5.6590e−01 5.1059e−01 5.1355e−01 5.0233e−01

Estd
M 7.2553e−04 5.2272e−04 4.7956e−04 2.0012e−03 2.4628e−03 5.0589e−04

Eavg
K 4.4645e−01 4.7271e−01 4.4235e−01 5.0972e−01 5.1146e−01 5.0170e−01

Estd
K 7.6388e−04 1.6473e−03 1.2414e−03 2.0452e−03 2.4816e−03 5.8068e−04

Havg
K 6.0800e−03 5.1370e−04 −1.1159e−03 3.7043e−04 3.2017e−02 8.1015e−04

Hstd
K 2.1656e−02 2.2737e−02 2.1814e−02 2.4703e−02 2.4743e−02 2.3758e−02

Aavg 1.1570e−01 6.0391e−02 1.2008e−01 1.2509e−03 2.1313e−03 7.4948e−04

Astd 1.4644e−05 1.9213e−04 7.4346e−05 6.9214e−06 1.8649e−05 2.1832e−05

Havg
C 5.6545e−02 −7.2107e−05 −5.7265e−06 5.2397e−02 −1.2683e−01 6.1309e−05

Hstd
C 7.1983e−05 3.6793e−04 3.6892e−04 5.7005e−05 2.0936e−04 3.4230e−04

Havg
M 1.1570e−01 6.0840e−02 1.2070e−01 1.0008e−05 2.1639e−03 −1.2837e−05

Hstd
M 7.5363e−15 5.4128e−16 9.7293e−15 3.9642e−05 2.8651e−05 1.7278e−05

Havg
P · · · · · · · · · · · · −1.3116e−01 · · ·

Hstd
P · · · · · · · · · · · · 1.7467e−04 · · ·

Ωavg 9.7244e+02 1.0323e+03 9.6604e+02 1.1132e+03 1.1167e+03 1.0957e+03

Ωstd 1.7385e+00 3.6272e+00 2.7515e+00 4.4614e+00 5.4717e+00 1.3995e+00

Javg 9.7300e+02 1.0329e+03 9.6663e+02 1.1132e+03 1.1172e+03 1.0957e+03

Jstd 1.7036e+00 3.5585e+00 2.7671e+00 4.4315e+00 5.4706e+00 1.3820e+00

The ideal invariants given in Table 1 can be used to create a multi-invariant canonical
probability density function and a statistical mechanics applicable to ideal MHD turbulence
(Appendix B). This statistical theory was initiated by [18], applied to fluid turbulence by [16]
and to MHD turbulence by [17,19]; these initial results were extended later, e.g., [20–24].
This extension is relevant to the planets and stars as it provides an, at least qualitative,
explanation for the emergence of a dominant, quasi-stationary, dipole magnetic field
through broken ergodicity, which is defined by [25] as occurring if ‘In a system that is non-
ergodic on physical timescales the phase point is effectively confined in one subregion or
component of phase space’. The phase space itself is defined by the real and imaginary
parts of the coefficients of the independent Fourier modes in the model system.

Numerical simulations have played an essential part in MHD turbulence research,
starting with [26] using a 643 grid (which was large for that time), while advances in
computer hardware have allowed more recent simulations to have much larger grid sizes,
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e.g., 10243 [27]. However, these simulations were only run for short simulation times, with
tmax = 3 in the former and tmax = 10 in the latter, as the emphasis was on large grid sizes
rather than on longer simulation time. In contrast, we have focused on long-time runs
with tmax∼103 to gather statistics and this dictated smaller grid sizes of 643 [22–24]; there
is always this trade-off between grid size and simulation time. To illustrate the trade-off
between grid size and maximum simulated time, ref. [28] presented runs from 643 up to
5123, but as the grid size went up, the time-step size decreased and number of time-steps
increased, so that simulation time (number of ‘eddy turnover times’) decreased and only
for the 643 run was quasi-equilibrium attained (see their figure 5).

Improved computational resources have allowed us to increase our grid size to 1283

while still keeping tmax ∼ 103. We have recently run six of these 1283 simulations, each
for over a million time-steps, in a reasonable amount of calendar time (over half a year
each) and they allow us to examine the transition of ideal MHD turbulence for each of
the cases in Table 1, where the runs associated with each case are indicated. All of our
1283 runs have moved through or are near the end of their transition periods and appear
either to achieve equilibrium or to approach it asymptotically. Here, we focus on this initial
period of transition to near-equilibrium and plan to examine the full equilibrium phase and
present results in the future when these become available.

From our earliest numerical simulations [20] to those presented here, we have con-
sistently seen the lowest-wavenumber (largest length-scale) modes grow from very small
initial values into energetic, quasi-stationary, coherent structures. To understand this, it is
necessary to develop the statistical theory of ideal MHD turbulence beyond that introduced
by [17]. In particular, we analyzed the entropy of the model dynamical system to discover
the origin of this energetic structure; we have presented this analysis before [24,29] and will
place it here in Appendix B. Furthermore, the statistical mechanics of an ideal, turbulent
magnetofluid in a periodic box is essentially the same as that of one contained in a spherical
shell [30] and thus, the smallest wavenumber Fourier modes are surrogates for geomagnetic
dipole components.

Key discoveries in our past work are: (i) That the energy of a quasi-stationary magnetic
dipole in Cases I and II is directly proportional to the absolute value of the magnetic helicity
of the equilibrium turbulent magnetofluid [29,31]; this also appears to apply to Case IV, as
will be shown here; and (ii) that the assumed ergodicity of the statistical ensemble is actually
broken at the largest scale [20,24]. Again, these ideal results have been seen to apply at
the largest length-scale to real (i.e., forced and dissipative) MHD turbulence [12,13]; thus,
modeling and theory provide a solution to the ‘dynamo problem,’ at least for the model
systems considered here. (Again, ideal MHD statistical theory is reviewed in Appendix B
of this paper for ease of referral).

Next, following a brief discussion of the mathematical model and numerical procedure,
new computational results drawn from 1283 simulations are presented. These are followed
by a discussion of these results and their relevance to the dynamo problem. Lastly, we offer
a conclusion to summarize our results and emphasize their importance.

2. Mathematical Model
2.1. Basic Equations

Magnetohydrodynamics (MHD) is the physics of electrically conducting fluids and
principles and applications can be found in, e.g., [32,33], as well as in many other texts.
The nondimensional form of the 3-D incompressible MHD equations in a rotating frame of
reference with constant angular velocity Ωo and mean magnetic field Bo (i.e., constant in
space and time) can be written as

∂ω

∂t
= ∇× [u× (ω + 2Ωo) + j× (b + Bo)] + ν∇2ω, (1)

∂b
∂t

= ∇× [u× (b + Bo)] + η∇2b. (2)
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These are described, for example, by [22]; these equations can be augmented to
include thermal effects in the Boussinesq approximation [34], but we will not consider this
here. Above, u(x, t) and b(x, t) are the turbulent velocity and magnetic fields, respectively.
Velocity and magnetic fields are solenoidal: ∇ · u = ∇ · b = 0, as is appropriate for
laboratory experiments and the Earth’s outer core [3]. The vorticity ω(x, t) and electric
current density j(x, t) are defined by

ω = ∇× u, j = ∇× b. (3)

Nondimensional density does not appear in (1) because it equals unity. The symbols
ν in (1) and η in (2) are shorthand for 1/RE and 1/RM, i.e., the inverses of the kinetic
and magnetic Reynolds numbers, respectively. In the dimensional form of the equations,
ν is the kinematic viscosity, while η is the magnetic diffusivity and ν = η = 0 for ideal
MHD turbulence. Again, we avoid the complication of boundary conditions by placing the
magnetofluid in a periodic box and expanding the various fields in terms of Fourier series.

In studying MHD turbulence, it is also possible to use other orthogonal function
expansions, such as those appropriate to a cylinder [35], sphere [36] or spherical shell [30].
However, the statistical mechanics of ideal MHD turbulence has the same form and predic-
tions as in the Fourier case. In addition, the Fourier spectral transform methods used to
simulate MHD turbulence in a periodic box are much more computationally efficacious in
that they allow for larger grid sizes (more dynamical resolution) and longer runs (for time
averaging). In fact, no spectral transform methods for these other geometries yet exist (the
creation of which may be considered a ‘grand computational challenge’) and nontransform
methods [36,37], in comparison, will always have insufficient resolution. In essence, Fourier
transform methods in a periodic box are efficient and also serve as a surrogate for methods
based on other orthogonal function expansions more suited to other geometries.

2.2. Fourier Representation

Discrete Fourier transforms for u and b, connecting x-space to k-space, are

[
u(x, t)
b(x, t)

]
= ∑

k

[
ũ(k, t)
b̃(k, t)

]
exp(ix · k)

N3/2 , (4)

[
ũ(k, t)
b̃(k, t)

]
= ∑

x

[
u(x, t)
b(x, t)

]
exp(−ix · k)

N3/2 . (5)

Here, N is the number of grid points in each x-space dimension, so we have a grid of
N3 points. The set of positions x and wave vectors (modes) k appearing in (4) and (5) are

x = xx̂ + yŷ + zẑ =
2π

N
(
nxx̂ + nyŷ + nzẑ

)
, (6)

k = kxx̂ + kyŷ + kzẑ. (7)

The components nj and k j, j = x, y, z, are integers. The nj satisfy 0 ≤ nj < N, while the
integers k j lie in the range −N/2 + 1 and +N/2; thus, there are N3 points in both spaces.
The dot product k · x in (4) and (5) is

k · x =
2π

N
(
nxkx + nyky + nzkz

)
. (8)

The Fourier coefficients ũ(k, t) and b̃(k, t) are nonzero only for 1 ≤ k ≤ K < N/2,
where k = |k|. The exact value of K is set by a de-aliasing requirement of [38]: K2 is the
largest integer such that K2 ≤ 2N2/9, e.g., for N = 128, K2 = 3640.

Note that the reality of u(x, t) and b(x, t) imply that ũ(k, t) = ũ∗(−k, t) and b̃(k, t) =
b̃∗(−k, t). In a Cartesian coordinate system, ũ(k, t) and b̃(k, t) are
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ũ(k, t) = ũx(k, t)x̂ + ũy(k, t)ŷ + ũz(k, t)ẑ, (9)

b̃(k, t) = b̃x(k, t)x̂ + b̃y(k, t)ŷ + b̃z(k, t)ẑ. (10)

The vector fields u(x, t) and b(x, t) can be defined in a similar manner.
The periodic box of the model system is a cube of equal length edges. Although we

will not do so here, we could have allowed for the possibility that it might be elongated
or compressed in the x, y or z directions, which simulates a difference in oblateness that
may occur in the Earth’s inner and outer cores. We ignore this possibility because we have
examined it and the dynamical effect is insignificant when compared to rotation [29].

Dynamically interacting coefficients fit within a sphere of radius K in k-space; all
coefficients outside this k-sphere, as well as at k = 0, are initially zero and remain so during
any numerical simulation. Since ũ(k, t) = ũ∗(−k, t) and b̃(k, t) = b̃∗(−k, t), only half of
the k that satisfy 1 ≤ k2 ≤ K2 identify independent coefficients. Therefore, the number
of independent modes k isM∼= 2πK3/3; for example, with N = 128 and K2 = 3640, we
haveM∼= 459,950, while the actual numerical count isM = 459,916.

In k-space, the requirements ∇ · u = ∇ · b = 0 become ik · ũ(k, t) = ik · b̃(k, t) = 0.
Thus, ũ(k, t) and b̃(k, t) have two independent complex vector coefficients each, which
can be defined as follows: First, determine a coordinate system for each k by starting with
a unit vector ê3(k) = k/k = k̂; then choosing a unit vector ê1(k) orthogonal to ê3(k),
and then the remaining unit vector ê2(k) is a vector product of the first two, forming a
right-handed orthonormal basis for each k:

ê1(k) · ê3(k) = 0, ê2(k) = ê3(k)× ê1(k),

êi(k) · êj(k) = δij, ê1(k) · ê2(k)× ê3(k) = 1.
(11)

(This is similar to a Craya–Herring decomposition [39]). Explicit choices [23] for any
of the êj(k) will be mentioned as needed.

In terms of the êj(k) defined above, the Fourier vector coefficients (9) and (10) are

ũ(k, t) = ũ1(k, t)ê1(k) + ũ2(k, t)ê2(k), (12)

b̃(k, t) = b̃1(k, t)ê1(k) + b̃2(k, t)ê2(k). (13)

However, an equivalent but very useful helical representation is:

ũ(k, t) = ũ+(k, t)ê+(k) + ũ−(k, t)ê−(k), (14)

b̃(k, t) = b̃+(k, t)ê+(k) + b̃−(k, t)ê−(k). (15)

Here, the positive and negative helicity unit vectors and components are

ê±(k) =
1√
2
[ê1(k)± iê2(k)], (16)

ũ±(k, t) =
1√
2
[ũ1(k, t)∓ iũ2(k, t)], (17)

b̃±(k, t) =
1√
2

[
b̃1(k, t)∓ ib̃2(k, t)

]
. (18)

Note that ê∗±(k) = ê∓(k). The orthonormality properties of the ê±(k) are

ê±(k) · ê∗±(k) = 1, ê±(k) · ê±(k) = 0 = ê3(k) · ê±(k). (19)

An important property of the helical unit vectors concerns the curl operation:
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ik× ê±(k) = ±kê±(k), (20)

The vorticity and current in helical form are then

ω̃(k, t) = k[ũ+(k, t)ê+(k)− ũ−(k, t)ê−(k)], (21)

j̃(k, t) = k[b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)]. (22)

Thus, the helical ± components of vorticity ω̃±(k, t) = ±kũ±(k, t) and current
j̃±(k, t) = ±kb̃±(k, t) are directly connected to velocity and magnetic field ± helical
components. The helical representation is very useful for theoretical analysis and graphical
presentation of numerical data, although numerical simulation is actually performed using
the Cartesian components (9) and (10).

2.3. A Dynamical System

The Fourier-transformed 3-D MHD equations are found by placing expansions for
ω(x, t) and b(x, t) of the form (4) into (1) and (2). The result is a set of coupled, nonlinear
ordinary differential equations that represents a dynamical system in the sense of [40]:

d ω̃(k, t)
dt

= S̃(u, ω; k, t) + S̃(j, b; k, t) + 2i(k ·Ωo) ũ(k, t)− νk2ω̃(k, t), (23)

d b̃(k, t)
dt

= S̃(u, b; k, t) + i(k · Bo) ũ(k, t)− ηk2b̃(k, t). (24)

The nonlinear terms denoted by S̃ are vector convolutions:

S̃(u, b; k, t) =
i

N3/2 k× ∑
p+q=k

[
ũ(p, t)× b̃(q, t)

]
. (25)

The double summation in (25) is over all wavevectors p and q inside the truncation
volume in k-space that satisfy p + q = k. In 3-D numerical simulations, these equations
are integrated as described in Section 3. For N = 128, the phase space Γ of the dynamical
system (23) and (24) has a dimension of NΓ = 3,679,328, as discussed in Appendix B. For
ideal MHD, Table 1 indicates that the dynamical system conserves energy and various
helicities depending on whether Bo and Ωo are zero or not; these quantities and others are
defined in Appendix A. The important Case II of Table 1, where Ωo 6= 0 and Bo = 0, applies
to the Earth and most other planets (and stars), so in these cases, energy and magnetic
helicity are of primary interest. The Cases III, IV and V, where Bo 6= 0, are appropriate for
laboratory experiments and perhaps compact regions of solar wind turbulence where Bo is
the local interplanetary magnetic field.

2.4. Linear Modes

Using (11)–(18), the MHD Equations (23) and (24) can be linearized to yield

dũ±(k, t)
dt

= ±2iΩo · k̂ ũ±(k, t) + iBo · k b̃±(k, t), (26)

db̃±(k, t)
dt

= iBo · k ũ±(k, t). (27)

These can be put into a matrix form:

dU±(k, t)
dt

= iM±U±(k, t), U±(k, t) =
[

ũ±(k, t)
b̃±(k, t)

]
, (28)
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M± =

[ ±2A B
B 0

]
, A = Ωo · k̂, B = Bo · k. (29)

It is a straightforward procedure to find linear eigenmodes of (28) by diagonalizing
M±; there is one transform matrix for each k:

T =




T11 T12

T21 T22


 =




(
A +
√

A2 + B2
)

/N+ B/N+

(
A−
√

A2 + B2
)

/N− B/N−


, (30)

N± =
[
2
(

A2 + B2 ± A
√

A2 + B2
)]1/2

. (31)

The solution to (28) are the eigenmodes

W±(k, t) = TU±(k, t) = E±V±(k, t), (32)

where the time dependence of the linear modes is in the matrix

E± =




exp[±iΩ1(k)t] 0

0 exp[±iΩ2(k)t]


,

Ω1(k) = A +
√

A2 + B2,

Ω2(k) = A−
√

A2 + B2
. (33)

In the linear case, V±(k, t) is constant, while in the nonlinear case, it becomes time-
dependent. In slightly more detail, V±(k, t) has the form

V±(k, t) =




Ṽ±1 (k, t)

Ṽ±2 (k, t)


 = E±†

TU±(k, t)

(34)

=




exp[∓iΩ1(k)t] T11 ũ±(k, t) + exp[∓iΩ1(k)t] T12 b̃±(k, t)

exp[∓iΩ2(k)t] T21 ũ±(k, t) + exp[∓iΩ2(k)t] T22 b̃±(k, t).




The matrix elements Tnm, n, m = 1, 2, are given in (30).
If there is no nonlinearity, Ṽ±1 (k, t) and Ṽ±2 (k, t) of (34) will have constant, complex

values determined by the initial conditions; they are the coefficients of traveling helical
waves∼exp[i(k · x±Ω1,2(k)t)] if the Ω1,2(k) are nonzero. If there is nonlinearity, then these
coefficients will generally change with time and it is these changes that contain information
about MHD turbulence.

3. Numerical Procedure

A Fourier spectral transform method [41] on an N3 grid with N = 128 is used; the min-
imum wave number is k = |k| = 1 and the maximum wave number is K =

√
3640 ' 60.34.

Time-integration is performed with a third-order Adams–Bashforth-Adams–Moulton
method [42] with a time-step of ∆t = 0.0005; initial, non-equilibrium magnetic and ki-
netic modal energy values (spectra) are ĒM(k2)∼ĒK(k2)∼ k4 exp(−k2/k2

o), where ko = 6.
Viscosity and magnetic diffusivity are set to zero so that the flow is ideal. A grid size of
1283 was used so that the six single core Runs listed in Table 1 could be completed in a
reasonable amount of time with the resources available, the Hopper Cluster at George Ma-
son University, with each simulation running at ≈11 s/∆t; thus, a single run of 2× 106∆ts
requires about 36 weeks of CPU time.

As mentioned, six computer simulations covering the five cases in Table 1 have been
run and are identified in that table. The ideal invariants for each case are quadratic forms
(global quantities) with terms that are scalar products of the vector Fourier coefficients
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ũ(k, t) and b̃(k, t), with 0 < k ≤ K, as defined in Appendix A. The partial differential
equations for MHD in x-space are given by (1) and (2), while the transformed set of ordinary
differential equations in k-space are given by (23) and (24). The set of equations in k-space
is a finite dynamical system, as discussed in Section 2.3. The k-space Equations (23) and
(24) are numerically integrated to advance the ũ(k, t) and b̃(k, t), as described in Section 3.

As seen in Table 1, the integral invariants of ideal MHD turbulence are the volume-
averaged energy E and magnetic helicity HM when Bo = 0, as well as the cross helicity
HC when Ωo = 0 and HP when Ωo = σBo 6= 0. In a numerical simulation, these ideal
invariants typically have a standard deviation of less than 1% per million time-steps, while
kinetic helicity HK, though an ideal invariant for hydrodynamic turbulence, falls to zero
very quickly and then has small fluctuations about that value, as Table 2 shows. We
mentioned that these runs came to ‘near equilibrium’. To understand what this means,
consider Figure 1 where we show, at different times for Runs 1 and 4, the average magnetic
and kinetic energy spectra, ĒM(k2) and ĒK(k2), for modes k with the same value of k2 = |k|2.
There are 3036 different values of k2, where 1 ≤ k2 ≤ 3640, for N = 128; the number of
independent k (i.e., k but not −k) is n(k2).
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Figure 1. Average magnetic and kinetic energy spectra, ĒM(k2) and ĒK(k2), for Runs 1 and 2b. These
are averages over modes k with the same value of k2 = |k|2; there are 3036 different values of
k2, where 1 ≤ k2 ≤ 3640, for N = 128. The spectra are shown for times t = 0, 0.01tend, 0.1tend
0.5tend and tend, where tend = 1095 for Run 1 and 1037 for Run2b. Spectra are approaching their
expectation values and are near equilibrium; they are in true equilibrium when they fully match the
ideal expectation values.

The definitions of the averaged spectra ĒM(k2) and ĒK(k2) are

ĒM(k2) =
1

n(k2)

|k|2=k2

∑
k

|b̃(k)|2
N3 , (35)

ĒK(k2) =
1

n(k2)

|k|2=k2

∑
k

|ũ(k)|2
N3 . (36)
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Here, n(k2) is the number of independent k that satisfy |k|2 = k2. The number n(k2)
jumps around as k2 increases; for example,

n(1) = 3, n(2) = 6, n(3) = 4, n(4) = 3,
n(5) = 12, n(6) = 12, n(7) = 0 · · ·
n(3628) = 36, n(3629) = 552, n(3630) = 264, n(3631) = 0,
n(3632) = 60, n(3633) = 144, n(3634) = 144 · · ·

(37)

(We have n(k2) = 0 whenever k2 = 4a(8m + 7), a, m = 0, 1, 2, . . . ; see [43]). The
full energy spectra are n(k2)ĒM,K(k2) at each value of k2 and thus jumps wildly as k2

increases, which is why we prefer to look at the average energy spectra (35) and (36), as in
Figure 1. (However, its running average over near neighbors n̄(k2) is well approximated
by n̄(k2) = πk.)

If we use the results in Appendix C or in [24], we find that the ideal expectation values
of ĒM(k2) and ĒK(k2) are

〈
ĒM(k2)

〉
=

2
N3

α̂2

4 − α̂2γ̂2/k2 , (38)

〈
ĒK(k2)

〉
=

2
N3

α̂(2 − γ̂2/k2)
4 − α̂2γ̂2/k2 . (39)

Here, 2 = α̂2 − β̂2/4 and α̂, β̂ and γ̂ are the normalized inverse temperatures related
to inverse temperatures appearing in the phase space probability density (A20); please see
Appendix B for details. For each of the cases, α̂, β̂ and γ̂ are determined by numerically
finding the minimum of the entropy functional (A38) with the proviso that for Case II
(Runs 2a and 2b), β̂ = 0; for Case III (Run 3), γ̂ = 0; and for Case V (Run 5), β̂ = γ̂ = 0. The
values of α̂, β̂ and γ̂ for the different runs are given in Table 3.

Table 3. Values of the inverse temperatures α̂, β̂ and γ̂ for the Runs in Table 1 with the proviso that
for Runs 2a and 2b, β̂ ≡ 0; for Run 3, γ̂ ≡ 0; and for Run 5, β̂ ≡ 0 and γ̂ ≡ 0. When needed, E , HC,
andHM took their values from Eavg, Havg

C and Havg
M , respectively, in Table 2. (The need for precision

here is due to the possible smallness of the denominators in (38) and (39))

Run α̂ β̂ γ̂

1 0.99078516013 −0.19837547796 −0.98084304500
2a 0.92168445878 0 −0.92166079071
2b 0.98388128912 0 −0.98386939908
3 0.83881629327 −0.17608431628 0
4 0.90195599886 0.42568629498 −0.85137258997
5 0.86630471441 0 0

The spectra are shown in Figure 1 for times t = 0, 0.01tend, 0.1tend, 0.5tend and tend,
where tend = 1095 for Run 1 and 1037 for Run2b. The spectra are approaching their
expectation values and are near equilibrium; when they fully match the ideal expectation
values, then they are in true equilibrium. The spectra ĒM(k2) and ĒK(k2) for Runs 3 and 5
will both be similar to those in Figure 1d, i.e., becoming flat, while the spectra for Run 4
will be similar to Figure 1a,b, though not as highly peaked at k2 = 1.

4. Computational Results

In Figures 2 and 3, we show how the six runs in Table 1 change over time with respect
to volume-averaged energy E, magnetic energy EM, kinetic helicity HK, mean squared
magnetic vector potential A, cross helicity HC, magnetic helicity HM, enstrophy (mean
squared vorticity) Ω and mean squared electric current J; for Run 4, parallel helicity HP
is also shown; again, please see Appendix A for precise definitions of these quantities.
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The time-averages and standard deviations for these quantities over the course of the
runs are given in Table 2. For each run in Table 2, the quantities that are supposed to be
conserved are, in fact, conserved as shown in Figures 2 and 3. The most conserved quantity,
by far, is the magnetic helicity HM in Runs 1, 2a and 2b. Those quantities in Table 2 that
have standard deviations larger in magnitude than their average values are basically just
fluctuating around zero; in particular, this seems to be true for the kinetic helicity HK
in every run except for Run 4. Note also that statistics for the enstrophy Ω and mean
squared current J are essentially equal in each run, indicating that smaller length-scales
have equipartition in magnetic and kinetic energy.

For all the runs in Table 1, the values of all the ũ(k, t) and b̃(k, t) with k2 ≤ 3 were
saved every 0.1 units of simulation time t (i.e., every 200 ∆ts). From these, we can calculate
a time history of modal energies

EK(k, t) = N−3|ũ(k, t)|2, E(k)
K (t) = ∑

k=|k|
EK(k, t), (40)

EM(k, t) = N−3|b̃(k, t)|2, E(k)
M (t) = ∑

k=|k|
EM(k, t). (41)

In Figures 4 and 5, we see how the EM(k̂, t), k̂ = x̂, ŷ, ẑ, for each run varies with time.
In Figure 4, EM(k̂, t) and E(1)

M (t) are compared to HM(t) in each of Runs 1, 2a, 2b and 4;

the result is compelling: E(1)
M (t) is tending to become equivalent to HM(t), even for Run 4

where HM(t) is not an integral invariant of the dynamical equations (instead, we use its
value at t = tend for Run 4). This is again verification of the theoretical result E(1)

M = |HM|
given by [29,31], which also seems to apply to Run 4 because HM has reached a steady
constant value. Figure 5 shows the evolution of EM(k̂, t) for Runs 3 and 5; in these runs,
HM(t)∼0, as Table 2 shows. Furthermore, in Figure 5a (Case III) and Figure 5b (CaseV),
we see EM(k̂, t) ≈ 0 for k̂ aligned with Bo; additionally, in Figure 5b, EM(k̂, t) is largest
for k̂ aligned with Ωo, a ‘dipole alignment’ that has been seen before [29]. The ensemble
prediction for both (a) and (b) in Figure 5 is

〈
E(1)

M

〉
= 3/(4M) ' 2× 10−7, which is to

be equally divided among the three EM(k̂, t); thus, the steady values during transition
here are several orders of magnitude too large, perhaps being supported by an increased
magnetic energy inverse cascade during transition (and they do not correlate with |HM|).
Continuing these runs well into equilibrium (to be done) will determine whether these
anomalous values persist.

In all six runs, a running time-average of the vector coefficients ũ(k, t) and b̃(k, t)
was kept: ũavg(k, t) and b̃avg(k, t). The expectation has been that these will tend to zero;
however, this is not the case for k = 1. These time-averaged vector coefficients can be used
to calculate the ‘coherent total energy’ EC, ‘coherent magnetic energy’ EC

M and ‘coherent
kinetic energy’ EC

K . The coherent kinetic and magnetic energies for the six runs are shown
in Figure 6; the coherent kinetic energy EC

K levels off to a constant nonzero only for Run 1,
as seen in Figure 6a, while the coherent magnetic energy EC

M levels off to a constant nonzero
for Runs 1, 2a, 2b and 4, as seen in Figure 6b and these values of EC

M appear to approach
their respective values of |HM|, which are shown in Figure 6c. With regard to Runs 3 and 5,
Figure 6a,b indicates what seems to be exponential fall-off, while Figure 6c shows that HM

for Runs 3 and 5 is fluctuating about zero; thus, the anomalously high values of E(1)
M for

Runs 3 and 5 seen in Figure 5 may only be transitory.
After numerical integration, components of the vectors ũ(k, t) and b̃(k, t) can be trans-

formed into helical components ũ+(k, t), ũ−(k, t), b̃+(k, t) and b̃−(k, t), as discussed in
Section 2.2. These are useful but can be further transformed into cyclic linear modes whose
noncyclic factors are Ṽ+

1 (k, t), Ṽ+
2 (k, t), Ṽ−1 (k, t) and Ṽ−2 (k, t), as defined in Section 2.4. If

there were no nonlinear interactions in the MHD equations, the Ṽ±1,2(k, t) would be complex
constants; however, the MHD equations are nonlinear, so the Ṽ±1,2(k, t) may wander around



Fluids 2023, 8, 107 13 of 32

with time. Since we have recorded data that can give us the time-histories of these for
k2 ≤ 3, we can plot their trajectories on a complex plane and clearly see the nature of ideal
MHD turbulence, at least at the larger length-scales (i.e., smaller wave numbers k). These
‘phase portraits’ are projections of the dynamical trajectory in the high-dimensional phase
space onto a 2-D plane which enables us to visualize the concepts of coherent structure,
broken ergodicity and broken symmetry (please see Appendix E for a review of these
concepts). For the six runs discussed here, some phase portraits are shown in Figures 7–13.
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Figure 2. Global quantities (see Appendix A) versus time t for 1283 homogeneous MHD Runs (a) 1,
(b) 2a and (c) 2b. Notice how the integral invariants in Table 1 remain constant in their associated runs.
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10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2

10
4

t

(b) Run 4, Ω0 = 1ẑ, B0 = 0.5ẑ
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Figure 3. Global quantities (see Appendix A) versus time t for 1283 homogeneous MHD Runs (a) 3,
(b) 4 and (c) 5. Notice how the integral invariants in Table 1 remain constant in their associated runs.
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Figure 4. Magnetic energies for the k = 1 modes, normalized by HM > 0, versus time t for Runs (a) 1,

(b) 2a, (c) 2b and (d) 4. Notice how the total magnetic energy for k = 1, E(1)
M → HM with time. (In (d),

Havg
M for Run 4 from Table 2 is used.)
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Figure 5: (colour online) Magnetic energies for the k = 1 modes versus time t for Runs (a) 3 and (b) 5. In these runs, Bo ̸= 0
so that HM is not an invariant, although HP is an invariant in Run 4 where Ωo = σBo ̸= 0. In Run 5, Bo is not aligned with

Ωo, and the only invariant is E. The ensemble prediction for both (a) and (b) is

〈
E

(1)
M

〉
≃ 2 × 10−7, so the relatively very

large and steady values during transition are anomalous.

Note that ê∗±(k) = ê∓(k). The orthonormality properties of the ê±(k) are

ê±(k) · ê∗±(k) = 1, ê±(k) · ê±(k) = 0 = ê3(k) · ê±(k). (19)

An important property of the helical unit vectors concerns the curl operation:

ik× ê±(k) = ±kê±(k), (20)

The vorticity and current in helical form are then

ω̃(k, t) = k[ũ+(k, t)ê+(k)− ũ−(k, t)ê−(k)], (21)

j̃(k, t) = k[b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)]. (22)

Thus, the helical ± components of vorticity ω̃±(k, t) = ±kũ±(k, t) and current j̃±(k, t) = ±kb̃±(k, t) are
directly connected to velocity and magnetic field ± helical components. The helical representation is very
useful for theoretical analysis and graphical presentation of numerical data, although numerical simulation
is actually done using the cartesian components (9) and (10).

II.3. A Dynamical System

The Fourier-transformed 3-D MHD equations are found by placing expansions for ω(x, t) and b(x, t) of
the form (4) into (1) and (2). The result is a set of coupled, nonlinear ordinary differential equations that
represents a dynamical system in the sense of Birkhoff [1927]:

d ω̃(k, t)

dt
= S̃(u,ω;k, t) + S̃(j,b;k, t) + 2i(k ·Ωo) ũ(k, t)− νk2ω̃(k, t), (23)

d b̃(k, t)

dt
= S̃(u,b;k, t) + i(k ·Bo) ũ(k, t)− ηk2b̃(k, t). (24)

The nonlinear terms denoted by S̃ are vector convolutions:

S̃(u,b;k, t) =
i

N3/2
k×

∑

p+q=k

[
ũ(p, t)× b̃(q, t)

]
. (25)

The double summation in (25) is over all wavevectors p and q inside the truncation volume in k-space that
satisfy p + q = k. In 3-D numerical simulations, these equations are integrated as described in section III.
For N = 128, the phase space Γ of the dynamical system (23) and (24) has a dimension of NΓ = 3679 328
as discussed in Appendix B. For ideal MHD, Table 1 indicates that the dynamical system conserves energy
and various helicities depending on whether Bo and Ωo are zero or not; these quantities and others are
defined in Appendix A. The important Case II of Table 1, where Ωo ̸= 0 and Bo = 0, applies to the Earth
and most other planets (and stars), so in these cases, energy and magnetic helicity are of primary interest.
The Cases III, IV and V, where Bo ̸= 0, are appropriate for laboratory experiments and perhaps compact
regions of solar wind turbulence where Bo is the local interplanetary magnetic field.
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Bo 6= 0 so that HM is not an invariant, although HP is an invariant in Run 4 where Ωo = σBo 6= 0. In
Run 5, Bo is not aligned with Ωo, and the only invariant is E. The ensemble prediction for both (a,b)
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Figure 6. Coherent (a) kinetic and (b) magnetic energies compared to (c) total magnetic helicity
versus time t for all runs. In (a), a constant coherent EK has only appeared in Run 1, while in (b) Runs
1, 2a, 2b and 4, constant coherent EM have evolved and in (c)—constant HM, with EM → |HM|, as
indicated in Figure 4.

Phase portraits from Run 5 are presented in Figure 7. Referring to Section 2.4, we see
that (with Ω1(ŷ) = 0.5 and Ω2(ŷ) = −0.5)

Ṽ±1 (ŷ, t) =
1√
2

exp[∓iΩ1(ŷ)t][b̃±(ŷ, t) + ũ±(ŷ, t)],

(42)

Ṽ±2 (ŷ, t) =
1√
2

exp[∓iΩ2)(ŷ)t][b̃±(ŷ, t)− ũ±(ŷ, t)].

The transformed variables Ṽ±1,2(ŷ, t) have no cyclic time variation and their evolution
from initial values (which are all close to zero) shows the effect of the nonlinear terms
in (23) and (24). In Figure 7, the Ṽ±1,2(ŷ, t) appear to be zero-mean random variables whose
fluctuations match statistical expectations as to mean and standard deviation; in fact, all
Ṽ±1,2(k, t) for Case V of Table 1 are expected to be zero-mean random variables with the
same standard deviation. (Please see Appendix B of a review of the statistical theory.)
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However, if we take a look at Figure 8 corresponding to Run 5, we see the unexpected
nonlinear behavior of (a) Ṽ±2 (x̂, t) and (c) Ṽ±2 (ẑ, t); we compare this with the trajectory of
Ṽ±1,2(ŷ, t) that is shown in Figure 8b (which is the same as Figure 7c). In other words, what
we see in Figure 8a,c are not the expected zero-mean random variables of small fluctua-
tion, but very large nonzero mean random variables of small fluctuation; we see ‘broken
ergodicity’ (as discussed in Appendix E). The quasi-steady end stage of the trajectories of
Figure 8a,c represent a quasi-stationary coherent structure in the magnetofluid. This is, at
first, surprising, but nonetheless, it occurs: ergodicity is dynamically broken for Case V,
at least during transition to equilibrium; however, longer run-times (which are planned)
are needed to examine behavior in equilibrium. At the largest length-scales, where k2 = 1,
these coherent structures seem very robust during transition in Run 5 and in other runs
where they appear, while at smaller length-scales, k2 > 1, ‘random walk’ trajectories appear
to be converging towards zero-mean, both for Run 5 and for the other Runs in Table 1;
again, longer run-times are planned to study equilibrium behavior.

Phase portraits from Run 4 are shown in Figure 9. Parts (a) and (b) show phase
trajectories of ũ±(ẑ, t) and b̃±(ẑ, t) before cyclic behavior is removed. In Figure 9c, an
example is given of Ṽ±1 (ẑ, t) trajectories where cyclicity is removed. In Figure 9d, quasi-
stationarity indicates coherent structure. Again, statistical expectations are that all Case
IV variables Ṽ±1,2(k̂, t) have zero-mean; yet, they do not behave as expected and indicate
that broken ergodicity has occurred. In fact, the behavior seen in Figure 9d is the same as
that expected of Case II in Table 1, i.e., the three k2 = 1 magnetic modes altogether have
energy |HM| and thus, average magnitudes each of

√
|HM|/3 = 0.0269. (In Figure 9d,

Havg
M from Table 2 is used for HM.) In Figure 9, these Run 4 Ṽ±1,2(k̂, t) are, explicitly (with

Ω1(ẑ) = 2 +
√

5 ' 4.236 and Ω2(ẑ) = 2−
√

5 ' −2.236),

Ṽ±1 (ẑ, t) = exp[∓iΩ1(ẑ)t][0.230b̃±(ẑ, t) + 0.973ũ±(ẑ, t)], (43)

Ṽ±2 (x̂, t) = b̃±(x̂, t), Ṽ±2 (ŷ, t) = b̃±(ŷ, t)

(44)

Ṽ±2 (ẑ, t) = exp[∓iΩ2(ẑ)t][0.973b̃±(ẑ, t)− 0.230ũ±(ẑ, t)].

In Figure 9d, we also see ‘broken symmetry’ in that the magnitudes of the quasi-
stationary values of Ṽ+

2 (x̂, t), Ṽ+
2 (ŷ, t) and Ṽ+

2 (ẑ, t) are unequal.
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Figure 7. Phase portraits from Run 5; white + marks the origin; variables are normalized by N3/2,
N = 128. Yellow circles indicate predicted average magnitude. Ṽ±1 (ŷ, t)∼[b̃±(ŷ, t) + ũ±(ŷ, t)]
and Ṽ±2 (ŷ, t)∼[b̃±(ŷ, t)− ũ±(ŷ, t)]. Please see Section 2.4 for detailed discussions of relations be-
tween variables.
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Ṽ
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Figure 8. Phase portraits of Ṽ+
2 (k̂, t), k̂ = (a) x̂, (b) ŷ and (c) ẑ, from Run 5. (The variables are

normalized by N3/2, N = 128.) Here, Ṽ+
2 (x̂, t) ∼ b̃+(x̂, t), Ṽ+

2 (ŷ, t) ∼ [b̃+(ŷ, t) − ũ+(ŷ, t)] and
Ṽ+

2 (ẑ, t) ∼ b̃+(ẑ, t). Light parts are the full trajectories, while dark parts are the last half of the
trajectories, i.e., from 0.5tend to tend. (a,c) indicate stationarity and coherent structure, dynamic results
quite different from expected behavior as exemplified by (b). Yellow circles indicate the predicted
average magnitude.
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Ṽ
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Figure 9. Phase portraits from Run 4; the white + marks the origin; the variables are normalized by
N3/2, N = 128. Parts (a,b) show phase trajectories of ũ±(ẑ, t) and b̃±(ẑ, t) before cyclic behaviors is
removed. In (c) is an example of Ṽ±1 (k̂, t) trajectories when cyclicity is removed. In (d), stationarity
indicates coherent structure. The yellow circle in (c) indicates predicted average magnitude of each

variable; the large black circle in (d) has radius
√

Havg
M /3 = 0.0269, where Run 4 Havg

M is from

Table 2. Here, Ṽ±1 (ẑ, t) ∼ [0.23b̃±(ẑ, t) + 0.97ũ±(ẑ, t)], Ṽ±2 (x̂, t) = b̃±(x̂, t), Ṽ±2 (ŷ, t) = b̃±(ŷ, t) and
Ṽ±2 (ẑ, t) ∼ [0.97b̃+(ẑ, t)− 0.23ũ+(ẑ, t)].

Phase portraits from Run 3 are shown in Figure 10. The yellow circles around the
origin show the expected average magnitudes; in (a) and (b), these circles have also been
placed around the ends of the trajectories, indicating that the fluctuation levels are as
predicted, but the values are far from the predicted zero-mean, compared with the expected
behavior seen in Figure 10c. In Figure 10, the Ṽ±2 (k̂, t) are [with Ω2(ẑ) = −1], explicitly

Ṽ±2 (x̂, t) = b̃±(x̂, t), Ṽ±2 (ŷ, t) = b̃±(ŷ, t),

(45)

Ṽ±2 (ẑ, t) =
1√
2

exp[∓iΩ2(ẑ)t][b̃±(ẑ, t)− ũ±(ẑ, t)].

The statistical ensemble expectation is that the Ṽ±1,2(k, t) for all k, 0 < k ≤ K, in addition
to being zero-mean, will have the same standard deviation, (4M)−1/2 = 2.6× 10−4. In
Figure 10a,b, we see that this expectation is not met and that, again, we have broken
ergodicity manifested during transition as large-scale coherent structure. Additionally, the
magnitudes at the ends of the trajectories in Figure 10a,b are much larger than predicted;
whether or not these persist will be determined by allowing Run 3 to continue running, as
is planned for the next phase of our work.
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Phase portraits from Runs (a) 1, (b) 2a and (c) 2b are presented in Figure 11. Light
parts are the full trajectory, while dark ends are from the last half of the trajectory, i.e., from
0.5tend to tend. The black circles have radius

√
HM/3, where HM = Havg

M , is given for Runs
1, 2a and 2b in Table 2. In Figure 11, all Ṽ+

2 (k̂, t) = b̃+(k̂, t). These phase trajectories all
clearly show broken ergodicity and broken symmetry, for although their rms magnitudes
are predicted, their quasi-stationarity is not and is, instead, a dynamical phenomenon.
Now, we turn to Figure 12 for close-ups of ends of Run 1 trajectories in Figure 11a; these
also serve as examples of the level of quasi-stationarity in Runs 2a and 2b.

In Figure 12, we see close-up phase portraits of Ṽ+
2 (k̂, t), k̂ = (a) x̂, (b) ŷ and (c) ẑ,

from the ends of the Run 1 phase trajectories shown in Figure 11a. Light gray is part of
the full trajectory, while dark gray is the last half of the trajectory, i.e., from 0.5tend to tend,
and the black part is from 0.9tend to tend. Again, in these figures, Ṽ+

2 (k̂, t) = b̃+(k̂, t). The
small extent of the parts from 0.9tend to tend indicate the high level of quasi-stationarity
in the coherent structure that has been created as MHD turbulence transitioned from an
initially small-scale distribution of energy at t = 0 to the states appearing in Figure 11;
in this figure, Runs 2a and 2b are particularly relevant to understanding the origin of the
MHD dynamo in rotating planets and stars: it is an inherent property of MHD turbulence.
Again, Figure 12 presents a close-up example of the energetic, quasi-stationary, coherent
structures that arise in MHD turbulence.
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Figure 10. Phase portraits from Run 3; + marks the origin; the variables are normalized by N3/2,
N = 128. The yellow circles around the origin are the expected average magnitudes; in (a–c), these
circles have also been placed around the ends of the trajectories, indicating that the fluctuation levels
are as predicted, but the mean values are far from zero. Here, Ṽ±2 (x̂, t) = b̃±(x̂, t), Ṽ±2 (ŷ, t) = b̃±(ŷ, t)
and Ṽ±2 (ẑ, t)∼[b̃±(ẑ, t)− ũ±(ẑ, t)].
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Ṽ
+
2 (ŷ)

Ṽ
+
2 (ẑ)
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Figure 11. Phase portraits from Runs (a) 1, (b) 2a and (c) 2b; + marks the origin; the variables are
normalized by N3/2, N = 128. Light parts are the full trajectory, while dark ends are from the last half
of the trajectory, i.e., from 0.5tend to tend. The black circles have radius

√
HM/3. Please see Figure 12

for close-ups of ends of trajectories in (a). In these figures, Ṽ+
2 (k̂, t) = b̃+(k̂, t).
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Figure 12. Close-up phase portraits of Ṽ+
2 (k̂, t), k̂ = (a) x̂, (b) ŷ and (c) ẑ, from Run 1; these are the

ends of the trajectories shown in Figure 11. (The variables are normalized by N3/2, N = 128.) Light
gray is part of the full trajectory, while dark gray is the last half of the trajectory, i.e., from 0.5tend to
tend, and the black part is from 0.9tend to tend. In these figures, Ṽ+

2 (k̂, t) = b̃+(k̂, t).

The energetic coherent structure generated by MHD turbulence is essentially magnetic.
However, some coherent structure is exhibited by the velocity field, specifically in Runs
1 and 4. In Figure 13, you will find phase portraits of Ṽ+

1 (k̂, t), where k̂ = x̂, ŷ and ẑ, for
(a) Run 1 and (b) Run 4. These runs are the only ones with Ṽ+

1 (k, t) variables (these are
inertial waves) exhibiting coherent structure. These are all purely helical velocity variables
Ṽ+

1 (k̂, t) = ũ+(k̂, t), except in (b), where the one Run 4 variable exhibiting coherence is
mostly kinetic but with a small part that is magnetic:

Ṽ+
1 (ẑ, t) = exp[−iΩ1(ẑ)t][0.973ũ+(ẑ, t) + 0.230b̃+(ẑ, t)], Ω1(ẑ) = 4. (46)

Once again, details of the variables Ṽ±1,2(k, t) and their relation to the primary variables
ũ±(k, t) and b̃±(k, t) can be found in Section 2.4.
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Ṽ
+
1 (ŷ)
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Figure 13: (colour online) Phase portraits of Ṽ +
1 (k̂, t), k̂ = x̂, ŷ and ẑ, for (a) Run 1 and (b) Run 4. These are the only

Ṽ +
1 (k, t) variables exhibiting coherent structure. (The variables are normalized by N3/2, N = 128.) Here, Ṽ +

1 (k̂, t) = ũ+(k̂, t),

except in (b), where Ṽ +
1 (ẑ, t) ∼ [0.97ũ+(ẑ, t) + 0.23b̃+(ẑ, t)].

The methods used here, numerical simulation and statistical analysis, may also profitably be used in
examining other dynamical systems that have associated integral invariants. One example is a model of
quantum electrodynamic turbulence [Shebalin, 1997] in which the coupled Dirac and Maxwell equations
were numerically solved in a manner similar to that used here for a magnetofluid. This work was based on
classical field theory but allowed for a non-perturbative approach. Another possible application is to study
geometrodynamic turbulence, i.e., the evolution of space-time from arbitrary initial conditions; a preliminary
numerical simulation could be based on the Einstein equations in a synchronous reference frame [Landau
and Lifshitz, 1975] before moving on to more general reference frames. These seem to be ‘grand challenge
problems’ but should yield interesting results in terms of mathematics with perhaps some compelling physical
relevance.
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1 (k̂, t) = ũ+(k̂, t), except in (b), where Ṽ+
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5. Discussion

The primary discovery here is that all of the five Cases of ideal MHD turbulence
in Table 1 make a transition from small-scale initial conditions into a near-equilibrium
state that contains coherent structure. Since the ensemble prediction is that all variables
have zero-mean, what we have is broken ergodicity (and broken symmetry; please see
Appendix E). The most surprising phenomena are that Run 3 (Case III) and Run 5 (Case V)
developed coherent structure during transition. This was not expected, although coherent
structure was expected in Run 1 (Case I), as well as Runs 2a and 2b (both Case II), since
similar coherent structure has been seen in numerical simulations of both ideal [24,44] and
real [12,13] MHD turbulence.

Coherent structure is identified by quasi-stationary Ṽ±1,2(k̂, t), as Figures 2–13 show.
This discovery was facilitated through Fourier spectral method numerical simulations
on a 1283 grid. It has been shown with similar 643 simulations that coherent structure
also appears in dissipative MHD turbulence forced at an intermediate wavenumber and
that these dissipative, forced results obey ideal MHD statistical theory at the largest wave
lengths [12,13]. Furthermore, the statistical theory of ideal MHD turbulence developed for
a periodic box has the same form as that developed for a spherical shell [30]. Therein lies
the importance of ideal results to the real MHD turbulence contained in planetary liquid
cores and in the convective layers of stars: it is a basic, qualitative explanation of how
astrophysical dipole magnetic fields arise and thus, a solution to ‘the dynamo problem’.

MHD turbulence in astrophysical objects is covered by Cases I and II in Table 1
and as has been shown here with 1283 simulations, these are the cases with the most
energetic coherent structure, i.e., quasi-stationary ‘dipole magnetic fields.’ The energy in
the large-scale magnetic field is directly proportional to the total magnetic helicity in the
turbulent magnetofluid; in the ideal case, this is set by initial conditions, while in the real
case, the dipole field grows through inverse cascade and dynamic alignment as long as
whatever forcing mechanism is present injects magnetic helicity of primarily one sign into
the magnetofluid [12,13]. The exact nature of the helical forcing is hidden from view deep
within an astrophysical object, but our results imply that it must be there.

Cases III, IV and V of Table 1 all contain an external magnetic field and are thus
related to terrestrial experiments with turbulent magnetofluids, e.g., tokamaks, or perhaps
to concentrated regions of plasma within stellar winds, for example, rather than whole
planets and stars. The statistical mechanics of ideal MHD turbulence (see Appendix B) tells
us that the modal energies of Cases III and V are expected to be equipartitioned, while Case
IV is expected to have much more energy in the k = 1 modes. Thus, the coherent structure
seen in Runs 3 and 5 is a surprise, while in Run 4, the surprise is that it appears to be like
Case I or II once HM reaches an essentially constant value.

6. Conclusions

In summary, the primary discovery here is that all of the five Cases of ideal MHD
turbulence in Table 1 have developed quasi-stationary coherent structure. These coherent
structures appear robust as the runs appear to have finished or are close to finishing
transition from initial conditions to an equilibrium state. However, the appearance of
coherent structure for Cases III and V during transition to equilibrium may be transitory
and further long-term computation is needed to examine these cases once they fully reach
equilibrium. The importance of the computational and theoretical results, particularly for
Cases I and II which are most relevant for planets and stars, is that they show that MHD
turbulence, per se, is a dynamo. We intend to continue these runs beyond the values of tend
given in Table 2 in order to examine MHD turbulence while in full, long-term equilibrium;
we will report on the results when we have them.

Another direction future investigations can take is to add dissipation and forcing to
our 1283 simulations as was done on 643 grids [12,13]. The methods employed to force a
model magnetofluid at intermediate wavenumbers are speculative because physical forcing
mechanisms are hidden from observation within a planet or star. Nevertheless, having
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used a variety of mid-wavenumber, helical forcing methods on 643 grids, we have always
seen behavior analogous to ideal MHD turbulence at the smallest wavenumber, which is
the emergence of large-scale coherent magnetic structure whose energy is determined by
the amount of magnetic helicity in the magnetofluid turbulence. We would expect to see
this in 1283 simulations, along with perhaps some novel effects, but this remains to be done.

The methods used here, numerical simulation and statistical analysis, may also prof-
itably be used in examining other dynamical systems that have associated integral invari-
ants. One example is a model of quantum electrodynamic turbulence [45] in which the
coupled Dirac and Maxwell equations were numerically solved in a manner similar to that
used here for a magnetofluid. This work was based on classical field theory but allowed for
a nonperturbative approach. Another possible application is to study geometrodynamic
turbulence, i.e., the evolution of space-time from arbitrary initial conditions; a preliminary
numerical simulation could be based on the Einstein equations in a synchronous reference
frame [46] before moving on to more general reference frames. These seem to be ‘grand
challenge problems’ but should yield interesting results in terms of mathematics with
perhaps some compelling physical relevance.
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Appendix A. Global Quantities

Table A1. Integral invariants for ideal MHD turbulence. The ‘parallel helicity’ of Case IV is HP =

HC − σHM and occurs when Ωo = σBo, i.e., Ωo is parallel to Bo.

Case Mean Field Rotation Invariants

I Bo = 0 Ωo = 0 E, HC, HM

II Bo = 0 Ωo 6= 0 E, HM

III Bo 6= 0 Ωo = 0 E, HC

IV Bo 6= 0 Ωo = σBo E, HP

V Bo 6= 0 Ωo × Bo 6= 0 E

There are various important global quantities that can be expressed as averages over
either x-space or, equivalently, k-space. We define the volume average of a quantity Φ(x, t)
multiplied by a quantity Ψ(x, t) as {ΦΨ}, which is an integral over the periodic box of side
length 2π:

{ΦΨ} ≡ (2π)−3
∫

Φ(x, t)Ψ(x, t)d3x =
1

N3 ∑
k

Φ̃∗(k, t)Ψ̃(k, t). (A1)

Φ̃∗(k, t) and Ψ̃(k, t) are Fourier transforms of Φ(x, t) and Ψ(x, t) in the manner
of (4) and (5).

Using (A1), the volume-averaged energy E, enstrophy Ω, mean-squared current J,
cross helicity HC, magnetic helicity HM and mean-squared vector potential A (the last two
defined in terms of the magnetic vector potential a, where ∇× a = b, ∇ · a = 0) are

EK = 1
2

{
u2
}

, EM = 1
2

{
b2
}

, Ω = 1
2

{
ω2
}

, J = 1
2

{
j2
}

, (A2)

E = EK + EM, HC = 1
2{u · b}, HM = 1

2{a · b}, A = 1
2

{
a2
}

. (A3)
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Since all functions are periodic in x-space, we can use Equations (1) and (2), along
with integration by parts to derive the following relations [22]:

dE
dt

= −2(νΩ + η J), (A4)

dHC
dt

= Ωo · {b× u} − 1
2 (ν + η){j ·ω}, (A5)

dHM
dt

= Bo · {b× u} − η{j · b}. (A6)

When ν = η = 0 and Ωo = 0, the quantities E, HC and HM are the traditional ideal
integral invariants of MHD turbulence [1,18,47]. If Ωo 6= 0, then (A5) indicates that HC is
no longer an ideal invariant. If an external mean magnetic field Bo is imposed, then HM
would also no longer be an ideal invariant [22]. We note that ‘generalized helicities’ GC and
GM related to HC and HM can be defined and are ideal invariants even in the presence of
nonzero Bo and Ωo, but these are not useful for canonical ensemble theory [48]. Thus, we
will only need to refer to HM, HC and another possible invariant HP in this paper.

The helicity HP arises when Ωo = σBo; if (A5) is added to −σ times (A6), we obtain

dHP
dt

= − 1
2 (ν + η){j ·ω}+ ση{j · b}, HP = HC − σHM. (A7)

HP has been called the ‘parallel helicity’ [22] and is an invariant when Ωo = σBo and
ν = η = 0. [49] calls HP the ‘hybrid’ helicity and tries to apply this case to the geodynamo,
where he identifies Bo with the Earth’s dipole field. This does not seem appropriate as the
geomagnetic dipole field is dynamic and not external; application of his results seems more
appropriate to a tokamak [50].

Although kinetic helicity HK is not an ideal MHD invariant, it is an ideal invariant of
fluid turbulence [16]. To show this, we use (1) to find that, for a periodic box,

dHK
dt

= {ω · j× b} − ν{∂iu · ∂iω}, HK = 1
2{u ·ω}. (A8)

Thus, if b(x, t) ≡ 0 and ν = 0, then HK and E are the ideal invariants of hydrodynamic
turbulence.

Now, b = ∇× a, with∇ · a = 0, so b̃(k, t) = ik× ã(k, t). Using (11), (16) and (18), we
see that

ã(k, t) =
i

k2 k× b̃(k, t) =
1
k
[
b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)

]
. (A9)

The total energy E, magnetic energy EM, kinetic energy EK, kinetic helicity HK, mean-
squared vector potential A, cross helicity HC, magnetic helicity HM, parallel helicity
HP, enstrophy Ω and mean-squared current J are then represented in k-space by the
quadratic sums:

E = EM + EK, (A10)

EM =
1

2N3 ∑
k

[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
, (A11)

EK =
1

2N3 ∑
k

[
|ũ+(k, t)|2 + |ũ−(k, t)|2

]
, (A12)

HK =
1

2N3 ∑
k

k
[
|ũ+(k, t)|2 − |ũ−(k, t)|2

]
, (A13)
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A =
1

2N3 ∑
k

1
k2

[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
, (A14)

HC =
1

2N3 ∑
k

[
ũ+(k, t)b̃∗+(k, t) + ũ−(k, t)b̃∗−(k, t)

]
, (A15)

HM =
1

2N3 ∑
k

1
k

[
|b̃+(k, t)|2 − |b̃−(k, t)|2

]
, (A16)

HP = HC − σHM, (A17)

Ω =
1

2N3 ∑
k

k2
[
|ũ+(k, t)|2 + |ũ−(k, t)|2

]
, (A18)

J =
1

2N3 ∑
k

k2
[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
. (A19)

In the ideal MHD case with homogeneous b.c.s, E, HM (when Bo = 0), HC (when
Ωo = 0) and HP (when Ωo = σBo) are ideal invariants. The other combinations of ũ(k, t)
and b̃(k, t) given above will generally be time-dependent, particularly in numerical simu-
lations during the transition from initial conditions to an equilibrium state. The quadratic
forms (A10) and (A15)–(A17) are also used in the phase space probability density as re-
quired, where the real and imaginary components ũ±(k) and b̃±(k) are treated as phase
coordinates rather than dynamic variables, and time t will be omitted from their arguments.

Appendix B. Statistical Mechanics

Here, we briefly discuss the statistical mechanics of ideal MHD turbulence; we draw
on standard developments of statistical mechanics, such as may be found in [51–53],
concerning canonical ensembles and expectation values, and of dynamical systems, as
presented by [40]. The Equations (23) and (24) form a finite dynamical system with a
phase space Γ defined by the independent real and imaginary components of ũ(k) and
b̃(k), 1 ≤ k ≤ K; in canonical ensemble theory, these are coordinates in phase space and
not dynamical variables, i.e., they are not functions of time (so t is omitted from their
arguments). A point in Γ, called a phase point, represents a possible state of the dynamical
system. Canonical expectation values of a given quantity are determined by weighting
that quantity with a probability density and integrating over all of Γ. During a dynamical
simulation, one can think of the phase point as following a phase trajectory in Γ; if and only
if averages of the given quantity over the trajectory equal the canonical expectation value,
then we have ergodicity.

The phase space Γ may be large-dimensional. For example, if N = 128 and the number
of independent k isM = 459,916, then the phase space has dimensionNΓ = 8M = 3,679,328.
As pointed out by [18], when ν = η = 0, the system has a Liouville theorem and a phase
space Γ that represents a canonical ensemble where the probability density depends on
constants of the motion. As just discussed, these constants, also known as ideal invariants,
are the energy E, the magnetic helicity HM if Bo = 0 and the cross helicity HC if Ωo = 0,
while if Ωo = σBo, the parallel helicity HP defined in (A7) is an ideal invariant.

The probability density function that allows for a statistical mechanics of ideal MHD
turbulence has the form

D = Z−1 exp(−αE− βHC − γHM), . (A20)

Here, E, HC and HM are given by (A10), (A15) and (A16), respectively, and Z is the
partition function; for the Cases in Table A1, I: β, γ 6= 0; II: β = 0, γ 6= 0; III: β 6= 0, γ = 0;
IV: γ = −σβ 6= 0; and V: β = γ = 0. Again, [18] initiated this approach but explicitly
considered the dynamical system to be ergodic, an assumption that was unchallenged
in the early work on ideal MHD turbulence [17,19]. It was finally challenged by [20],
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when apparent non-ergodicity was first noticed and reported, and confirmed later [21].
As already mentioned, this non-ergodicity is actually ‘broken ergodicity’ [25]; a review of
broken ergodicity for ideal MHD turbulence is given by [24].

In general, there is no reason to expect ergodicity in any dynamical system, as this
can only be determined by experimentation or numerical simulation. This is because
the statistical theory averages over all probable realizations while a single experiment or
simulation only produces one dynamical realization. Remember that ergodicity is defined
as the equivalence of statistical ensemble predictions with statistics drawn from a single
dynamical realization; sometimes, this definition is ignored or unknown and erroneous
conclusions result [54]. Furthermore, one must use large enough grid sizes in simulations
(see [23,24]) since turbulence is high-dimensional; otherwise, nonergodic behavior will be
missed, as in the work of [55].

In the various cases of ideal MHD turbulence, expectation values of the global quanti-
ties in (A2) and (A3), as well as any other phase functions, can be determined with respect
to the probability density function (A20). Expectation values are integrations over the
phase space Γ, i.e., for all possible values of the coordinates in Γ, which are the real and
imaginary parts of ũ±(k) and b̃±(k) (treated as phase coordinates and not dynamical
variables). Given a quantity Q, the expectation value 〈Q〉 is defined by

〈Q〉 ≡
∫

QDdΓ. (A21)

As an example, the velocity and magnetic field coefficients are expected to have zero
mean values:

〈ũ(k)〉 =
〈
b̃(k)

〉
= 0. (A22)

In the ideal case, the integral invariants E, HM, and possibly HC, should have time-
independent values E ,HM, andHC that are equal to their expectation values:

E = 〈E〉, HM = 〈HM〉, HC = 〈HC〉. (A23)

In fact, we require that (A23) be true and use this to determine the ‘inverse tempera-
tures’ α, β and γ in (A20). Whereas (A22) is an ‘ergodic hypothesis’, (A23) is actually an
a priori axiom on which the theory of ideal MHD turbulence is based, though justified
by a posteriori numerical results. Ergodicity, or rather the lack of it, will be discussed in
Appendix E.

Appendix C. Eigenvariables and Entropy

Placing the k-space representation of E, HC and HM, as given in (A10)–(A16), into the
PDF (A20) gives an expression that contains modal 4 × 4 Hermitian covariance matrices in
the argument of the exponential:

D = ∏
k′

D(k), D(k) =
exp

[
−ỹ†(k)Mkỹ(k)

]

Z(k)
. (A24)

In ∏k′ , the notation k′ means that only independent modes k are included, i.e., if k is
included, then −k is not. Here, ỹ† = ỹ∗T is the Hermitian adjoint (T means transpose) of
the column vector ỹ, where

ỹ(k) = [ũ+(k) ũ−(k) b̃+(k) b̃−(k)]T (A25)
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The Hermitian (here, real and symmetric) 4 × 4 covariance matrix Mk is

Mk =




α̂ 0 β̂/2 0
0 α̂ 0 β̂/2

β̂/2 0 α̂ + γ̂/k 0
0 β̂/2 0 α̂− γ̂/k


. (A26)

The circumflex indicates division by N3: α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3.
Although the Mk in (A26) can also be expressed as 8 × 8 real symmetric matrices and

the ỹ(k) as 8 × 1 real arrays [17], finding eigenvalues and eigenvariables is facilitated by
using the 4 × 4 matrices Mk and 4 × 1 complex arrays ỹ, along with the properties of block
matrices given by [56].

The real, symmetric matrices Mk can be diagonalized (and more easily than the Hermi-
tian matrices used previously [23,24,57]) to yield the modal PDFs

D(k) =
4

∏
n=1

Dn(k), Dn(k) =
1

Zn(k)
exp

[
−λ̂

(n)
k |ṽn(k)|2

]
, Zn(k) =

π

λ̂
(n)
k

. (A27)

The eigenvalues λ̂
(n)
k = λ

(n)
k /N3 are also written with a circumflex to indicate division

by N3, just as for α̂, β̂ and γ̂. Implicit in the form of Dn(k) given above is the transformation
ỹ(k) = Ukṽ(k), where Uk ∈ SU(4) is a unitary transformation matrix (see below). Explicitly,
ṽ(k) is

ṽ(k) = [ṽ1(k) ṽ2(k) ṽ3(k) ṽ4(k) ]T . (A28)

The energy expectation values for the complex eigenvariables ṽn(k) is

En(k) = 〈ṽn(k)〉/N3 = 1/λ
(n)
k (A29)

This energy contains equal contributions from the real and imaginary parts of ṽn(k).
The exact forms of the λ̂

(n)
k and ṽn(k) in terms of α̂, β̂ and γ̂ will be presented next.

Appendix C.1. Eigenvariables

The eigenvariables ṽn(k) in (A27) can be determined for ideal MHD turbulence
through a modal unitary transformation [23,24,30]. In the general case (nonrotating with
zero mean magnetic field), the form of the transformation U is

ṽ1(k) = +β̄ζ −k ũ−(k)− ζ +
k b̃−(k), (A30)

ṽ2(k) = +β̄ζ −k ũ+(k) + ζ +
k b̃+(k), (A31)

ṽ3(k) = +β̄ζ +
k ũ−(k) + ζ −k b̃−(k), (A32)

ṽ4(k) = −β̄ζ +
k ũ+(k) + ζ −k b̃+(k). (A33)

Above, β̄ = sgn β̂ with β̄ = 1 for β = 0; the functions ζ +
k (β̂, γ̂) and ζ −k (β̂, γ̂) are, in

terms of a third function η̂k(β̂, γ̂),

ζ ±k =
1√
2

√
1± γ̂

kη̂k
; η̂k =

√
β̂2 +

γ̂2

k2 . (A34)
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In terms of η̂k, as defined above, the eigenvalues λ̂
(n)
k (n = 1, 2, 3, 4) are

λ̂
(1)
k = α̂− 1

2 (η̂k + γ̂/k), λ̂
(2)
k = α̂ + 1

2 (η̂k + γ̂/k), (A35)

λ̂
(3)
k = α̂ + 1

2 (η̂k − γ̂/k), λ̂
(4)
k = α̂− 1

2 (η̂k − γ̂/k). (A36)

Although it appears that the eigenvalues given above are functions of the undetermined
quantities α̂, β̂ and γ̂, there is only one unknown to be determined: ϕ ≡ 〈EM〉. Theory [23,24]
tells us that

α̂ =
2$ϕ

ϕ(E − ϕ)−H2
C

, β̂ = −2
HC
ϕ

α̂, γ̂ = −2ϕ− E
HM

α̂. (A37)

Here, $ =M/N3 ≈ 0.2194 and, again, α̂ = α/N3, β̂ = β/N3 and γ̂ = γ/N3. Basic
results of ideal MHD turbulence theory [24] are that α̂ > 0 and ϕ ≥ E/2; thus, in the
expression for γ̂, we have 2ϕ− E ≥ 0. Noting thatHC andHM are pseudoscalars, we see
that β̂ and γ̂ are also pseudoscalars and that β̂HC ≤ 0 and γ̂HM ≤ 0.

Appendix C.2. Entropy

We use (A27) to find the entropy functional s(ϕ) = −〈ln D〉/N3:

s(ϕ) = 4ρ(1 + ln π)− 1
N3 ∑

k′
ln
[(

α̂2 − β̂2/4
)2
− α̂2γ̂2/k2

]
. (A38)

Above, the sum over k′ means, again, that only independent modes k are included
(if k, then not −k). The fact that there is only one unknown quantity ϕ in (A37) means
that the entropy functional of the system is a function of only one variable. As discussed
by [51], finding the (single) minimum of s(ϕ) gives us the value ϕ = ϕo that sets the values
of α̂, β̂ and γ̂, as well as the system entropy s(ϕo).

Both the nonrotating (Ωo = 0) and rotating cases (Ωo 6= 0) have γ̂ 6= 0, and the first
derivative of the entropy functional (A38) with respect to ϕ is

ds(ϕ)

dϕ
= s′(ϕ) =

2
N3 F(ϕ)

[
G+(ϕ) + G−(ϕ)

]
. (A39)

F(ϕ) =
ϕ3 −H2

C(3ϕ− E)
ϕ2
[
ϕ(E − ϕ)−H2

C
] > 0, (A40)

G±(ϕ) = ∑
k′

k|HM| ± ϕ

k|HM|
(
1−H2

C/ϕ2
)
± (2ϕ− E) . (A41)

Theory tells us that the denominators for the terms in G±(ϕ) are positive and also that
ϕ/|HM| ≥ 1. For the Fourier case we are discussing here, kmin = 1, and for the spherical
shell model of the outer core developed by [30], kmin

∼= 1.8638. We define a wavenumber
kM = ϕ/|HM|, so that kM ≥ 1. For the purposes of discussion, let us draw from examples
found in [13]: for run NM06, Eavg = 1.0183, Havg

M = 0.6179 and ϕo = 0.8181, so that
kM = 1.324, while for run NM06c, Eavg = 1.0462, Havg

M = 0.8491 and ϕo = 0.9476, so that
kM = 1.1160; either could be used as a representative value. (The difference between Runs
NM06 and NM06c is that the former had steady forcing and the latter had cyclic forcing.)

The important point here is that dissipative, driven magnetofluids tend to have
1 < kM <

√
2; here, for ideal MHD, we will assume that this is also the case for simplicity.

There are three independent Fourier modes with smallest wavenumber k = 1, so the
summation G−(ϕ) can be broken up into the following:
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G−(ϕ) = − 3|HM|(kM − 1)
|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E)

(A42)

+ ∑
|k′ |6=1

|HM|(k− kM)

k|HM|
(
1−H2

C/ϕ2
)
− (2ϕ− E) .

Above, the first term on the right is negative, while all the rest are positive because
k > kM = ϕ/|HM| for k ≥

√
2. (Even if kM >

√
2, so that there were a few more negative

terms, the following development would still be valid.) Additionally, all the terms in G+(ϕ)
are positive. In the limit thatM→ ∞,

lim
M→∞

G+(ϕ) =
M(

1−H2
C/ϕ2

) ,

(A43)

lim
M→∞

G−(ϕ) =
M(

1−H2
C/ϕ2

) − 3(ϕ− 1|HM|)
|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E) .

Requiring s′(ϕ) = 0 is equivalent to requiring that G+(ϕ) + G−(ϕ) = 0; from the
relations given above, we see that three of negative terms (the “dipole” part, corresponding
to the smallest wavenumber, k = |k| = 1) must balance a very large number 2M− 3 of
positive terms. (For a spherically symmetric shell, there are also three independent modes
at k = kmin [30]; the following results apply with the substitution |HM| → kmin|HM|.)

Putting the expressions in (A43) into G+(ϕ) + G−(ϕ) = 0 leads to

3(ϕ− 1|HM|)
|HM|

(
1−H2

C/ϕ2
)
− (2ϕ− E)

∼= 2M(
1−H2

C/ϕ2
) . (A44)

Defining the small quantity ε = 3/(2M), we obtain the cubic equation

(2 + ε)ϕ3 − [(1 + ε)|HM|+ E ]ϕ2 − εH2
C ϕ + (1 + ε)|HM|H2

C
∼= 0. (A45)

We always have ϕ ≥ E/2, but in the nonrotating case (Ωo = 0), we also have
0 ≤ H2

C ≤ ϕ(E − ϕ), so that (approximately) E/2 ≤ ϕ ≤ 1
2 (E + 1|HM|) if |HM| < E/2; or

|HM| ≤ ϕ ≤ 1
2 (E + |HM|) if |HM| ≥ E/2.

However, the rotating case (Ωo 6= 0) case applies to essentially all planets (and stars)
and in this case, we haveHC = 0. SettingHC = 0 in (A45) leads to first order in ε = m/2M,

ϕo ∼= 1
2 (E + |HM|)− 1

4 ε(E − |HM|). (A46)

This approximation is used here for theoretical development, but when exactness
is required, ϕo is determined from (A44) by numerically finding the minimum of s(ϕ)
corresponding to E andHM for a given run, as well asHC if Ωo = 0.

From the expression (A46) for ϕo ≡ 〈EM〉, we can also determine the expectation
value of the kinetic energy, 〈EK〉 = 〈E− EM〉 = E − ϕo, as well as of the difference
〈EM − EK〉 = 〈2EM − E〉 = 2ϕo − E :

E − ϕo ∼= 1
2 (1 + 1

2 ε)(E − |HM|). (A47)

2ϕo − E ∼= |HM| − 1
2 ε(E − |HM|). (A48)

We will now use these results, assumingHM > 0, to show how the k = 1 positive magnetic
helicity eigenvariable ṽ4(k̂) has an energy expectation value of

〈
|ṽ4(k̂)|2

〉
/N3 ∼= |HM|/m,

while all of the other eigenvariables have expected energies
〈
|ṽn(k)|2

〉
/N3∼M−1. This

will allow us to explain the large-scale coherent magnet structures (i.e., quasi-stationary
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dipole fields) that spontaneously arise within a turbulent magnetofluid such as is found in
the Earth’s outer core.

In Cases III and V in Table A1, ϕo ≡ E/2, and modal spectra are expected to become
equipartitioned in energy [24]. Case IV in Table A1 can be evaluated by setting γ = −σβ
where σ = Ωo/Bo; one can then use analysis similar to that discussed in [24] to show that,
instead of the simpler looking set in Equation (A37), we obtain

α̂ =
4$

E + β̂
α̂HP

,
β̂

α̂
=

2(2ϕ− E)
−HP ±

√
H2

P − 2ϕ(2ϕ− E)
, (A49)

E
2
≤ ϕ ≤

E +
√
E2 + 4H2

P

4
. (A50)

The exact value of ϕ = ϕo must be determined by numerically finding the minimum
of (A38). However, in (A49), a choice of ± must be made. The correct choice is + ifHP > 0
and − ifHP < 0; the choice − ifHP > 0 and + ifHP < 0 leads to a computed ϕo outside
the range (A50); and for HP ≡ 0, we have ϕ = E/2 and β̂ = 0. The two choices for
HP 6= 0 are due to the need for parity invariance in the statistical theory of ideal MHD
turbulence: (A20) becomes D = Z−1 exp(−αE− βHP) for Case IV and the product βHP
must be invariant under a parity transformation (β and HP are both pseudoscalars, while
βHP ≤ 0 is a scalar).

Appendix D. Energy Expectation Values

In a rotating frame of reference, Case II of Table A1, HC = 0 so that β̂ = 0, for which
β̄ ≡ 1. Assuming HM > 0, so that γ̂ < 1 and thus ζ +

k = 0 and ζ −k = 1, (A30)–(A33) become:

ṽ1(k) = ũ−(k), ṽ2(k) = ũ+(k),

(A51)

ṽ3(k) = b̃−(k), ṽ4(k) = b̃+(k).

Remember that the dynamical variables ũ−(k, t) and ũ+(k, t) carry negative and
positive kinetic helicity, respectively, while b̃−(k, t) and b̃+(k, t) carry negative and positive
magnetic helicity, respectively. If the magnitudes of (A51) are constant, they are essentially
the same as the linear modes (32) for Case II (and also Case I) when Ωo = 0. For Case
III, (32) and (A30)–(A33) both become [1] variables, while in Cases IV and V, the two
sets of eigenvariables are generally different, though in Case V, Elsässer variables may be
associated certain values of k.

For Case II, we take the limit β̂→ 0, so η̂k = |γ̂|/k and the eigenvariables are as given
in (A51), while the eigenvalues (A35) and (A36) become

λ̂
(1)
k = λ̂

(2)
k = α̂, λ̂

(3)
k = α̂ + |γ̂|/k, λ̂

(4)
k = α̂− |γ̂|/k. (A52)

In the rotating case, α̂ and γ̂ are determined by putting ϕ = ϕo from (A46) into their
respective expressions, as given in (A37) withHC = 0; the result is

α̂ =
2$

E − ϕo
, γ̂ = −2ϕo − E

HM
α̂. (A53)

Using these expressions, along with (A47), (A48) and (A52), gives us the unnormalized
eigenvalues λ

(n)
k , up to leading order:

λ
(1)
k = λ

(2)
k =

4M
E − |HM|

, λ
(3)
k =

k + 1
k

4M
E − |HM|

, k ≥ 1; (A54)
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λ
(4)
1 = 3|HM|, λ

(4)
k =

k− 1
k

4M
E − |HM|

, k > 1. (A55)

The eigenvariables have real (R) and imaginary (I) parts, i.e., ṽn(k) = ṽR
n (k) + iṽI

n(k),
n = 1, 2, 3, 4, each have the same eigenvalue λ

(n)
k . The associated energies of the real (R)

and imaginary (I) parts are

〈
ER,I

n (k)
〉
=
〈
|ṽR,I

n (k)|2
〉

/N3 =
1

2λ
(n)
k

, (A56)

〈En(k)〉 =
〈

ER
n (k) + EI

n(k)
〉
=

1

λ
(n)
k

. (A57)

As defined in (A51), the index n = 1 refers to negative and n = 2 to positive kinetic
helicity coefficients; similarly, the index n = 3 refers to negative and n = 4 to positive
magnetic helicity coefficients. The relations (A54) and (A55) tell us that the expected
energies with respect to helicity are

〈
E±K (k)

〉
= 〈E1,2(k)〉 =

E − |HM|
4M , k ≥ 1, (A58)

〈
E−M(k)

〉
= 〈E3(k)〉 =

k
k + 1

E − |HM|
4M , k ≥ 1, (A59)

〈
E+

M(k)
〉

= 〈E4(k)〉 =
k

k− 1
E − |HM|

4M , k > 1, (A60)

〈
Ed

M(k)
〉

= 〈E4(k)〉 =
|HM|

3
, k = 1. (A61)

The sum of these over independent modes k is E plus a term of O(M−1), as it should
be. Again, for cubical periodic boxes or symmetrical spherical shells, the three lowest-
wavenumber modes are expected to have the same energy. However, for the nonrotating
case, and especially for the rotating case, there is always some dynamical symmetry
breaking so that one of the lowest-wavenumber modes dominates dynamically, as will be
discussed further shortly.

The statistical results given above are directly related to Case II of Table A1, but also
apply approximately to Case I if HC is small compared to HM. In Case III, HM is not an ideal
invariant but HC is and the prediction is an equipartitioned distribution of energy amongst
all the kinetic variables and a different equipartition amongst the magnetic variables, while
in Case V, all the variables are predicted to have the same energy. The statistical predictions
for Case IV are discussed by [24] but not completely worked out; however, the spectrum is
expected to peak strongly at k = 1. (Please note the numbering of Cases in [24] is different
than Table A1 in that II and III are switched).

Appendix E. Broken Ergodicity and Broken Symmetry

Here, we discuss the differences between the k = 1 eigenvariables ṽ4(k̂, t) and all the
other eigenvariables ṽn(k, t) with regard to their dynamical behavior. Broken ergodicity
is expressed when some of the k = 1 variables have very large mean values dynamically
compared to their standard deviations, which obviously gives rise to a coherent structure
in x-space; broken symmetry is expressed as the random orientations that this coherent
structure can take. This creation of large-scale coherent structure is essentially a dynamo
process that is inherent in MHD turbulence. Due to its relevance for rotating planets and
stars, we will often focus on Case II, where Ωo 6= 0 and Bo = 0, so thatHC ≡ 0.
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Appendix E.1. Broken Ergodicity

The expectation values (A58)–(A61) yield rms values |ṽn(k, t)|rms ≡
〈
|ṽn(k, t)|2

〉 1
2 ,

so that

(a)
|ṽ4(k̂, t)|rms

N3/2 =

( |HM|
3

)1/2

, n = 4, k = 1;

(A62)

(b)
|ṽn(k, t)|rms

N3/2 ≈ (E − |HM|)1/2

2M1/2 , all others.

Dynamically, as in (A51), ṽ1,2(k, t) = ũ−,+(k, t) and ṽ3,4(k, t) = b̃−,+(k, t). In (b), the
expected magnitude is just the standard deviation because the associated mean of ṽn(k, t)
may be taken as zero. In (a), however, the expected magnitude may represent the magnitude
of the mean of b̃+(k̂, t), rather than its standard deviation, for the following reasons.

Consider the modal dynamic Equation (23) with ν = 0 and (24) with η = 0. Fur-
thermore, in (23), because jd(x, t)× bd(x, t) = 0, we have S̃(jd, bd; k, t) = 0 and can then
use (25) to write

S̃(j, b; t) = S̃(jd, bh; k, t) + S̃(jh, bd; k, t) + S̃(jh, bh; k, t) (A63)

Using (A62a,b) as size estimates, we see that the rms values of the first two terms on
the right are ∼M1/2 larger than the third term S̃(jh, bh; k, t), which is of the same size as
S̃(u, ω; k, t) in (23).

In (24), S̃(u, b; k, t) can be written as

S̃(u, b; k, t) = S̃(u, bd; k, t) + S̃(u, bh; k, t) (A64)

Again using (A62a,b), we also see that the rms value of the first term on the right is
∼M1/2 larger than the second term.

Using these estimates, we estimate the rms sizes of the right sides of (23) and (24) as

|S̃(j, b; k, t)|rms

N3/2 ∼ |S̃(u, b; k, t)|rms

N3/2 ∼ 1
M1/2 . (A65)

From these and (A62), we obtain

d ln |ṽ4(k̂, t)|rms

dt
∼ 1
M1/2 , k = 1, n = 4, (A66)

d ln |ṽn(k, t)|rms

dt
∼ 1, all others. (A67)

What this implies dynamically is that, in equilibrium, the ‘dipole’ eigenvariables
ṽ4(k̂, t) = b̃+(k̂, t), which may be large, have, on average, fluctuations in magnitude com-
parable in size to the other ṽn(k, t), which are all very small. In particular, the fluctuations
of these other ṽn(k, t) are of the same size as their rms magnitudes and so they behave like
zero-mean random variables, as expected. However, the rms values of one or more of the
b̃+(k̂, t) are so large compared to their fluctuations that they exhibit nonergodic behavior,
i.e., they have relatively large mean values over very long times, i.e., the exhibit ‘broken
ergodicity.’ This phenomenon will be made clearer in the next subsection, where we also
discuss ‘broken symmetry.’

Appendix E.2. Broken Symmetry

We have seen that, dynamically, the magnitudes of a ‘dipole’ eigenvariable
ṽ4(k̂, t) = b̃+(k̂, t), once large enough, can become effectively constant over a long time
because its fluctuation in magnitude are very small. Often, one of the b̃+(k̂, t), for k̂ = x̂, ŷ
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or ẑ, does not become as large as predicted by (A60). These predictions are just average
values over the ensemble and to see what is really happening, we must consider the sum of
the expectation values b̃+(k̂, t). The smallest wavenumber kmin = |k̂| = 1 occurs for the
wavevectors k̂ = x̂, ŷ or ẑ. The ensemble prediction (A61) tells us that the three complex
vector coefficients b̃+(k̂, t) are very large and unique from those for k > 1; using these, we
can define a six component vector in a 6-D real space or a three-component vector in a
complex 3-D space; for compactness, we define a vector ṽd and dot product |ṽd|2 = ṽ†

d ṽd in
a 3-D complex space:

ṽd =
1

N3/2




b̃+(x̂, t)
b̃+(ŷ, t)
b̃+(ẑ, t)


,

〈
|ṽd|2

〉
= |HM|. (A68)

The endpoint of ṽd is, for the reasons given in Appendix E.1, a quasi-stationary point
on the surface of the hypersphere of radius

√
|HM| in a 6-D subspace of the 8M-D phase

space Γ. The coordinates of the 6-D space can undergo an arbitrary orthogonal rotation (or
a unitary transformation in the complex 3-D space) that puts the point of the vector on any
desired point on the surface. Thus, although (A62a) predicts that all b̃+(k̂, t) will have the
same magnitude, this does not take into account that a suitable orthogonal transformation
of initial conditions in the whole phase space will lead to the evolution of ṽd pointing in any
direction its 6-D space that we choose, at least for the nonrotating case. Canonical ensemble
predictions can give us the mean-squared expectation values (A61) but cannot predict the
direction of ṽd; this directional symmetry is broken dynamically.

The vector ṽd will exhibit broken ergodicity, i.e., its components are not zero-mean
random variables; it will also exhibit broken symmetry because the quasi-stationary direc-
tion of ṽd is not predictable; instead, initial conditions impose a particular direction on it.
The appearance of broken ergodicity has been noted many times before [20,21,24,44], as
has the phenomenon of broken symmetry [44,58]. Here, we see how these aspects of MHD
turbulence are connected.

In equilibrium, the magnitudes of the b̃+(k̂, t), for k̂ = x̂, ŷ and ẑ are often not that
different from each other in nonrotating ideal MHD Case I but may vary appreciably when
rotation is imposed, i.e., Case II, where the eigenfunction b̃+(k̂, t) with k̂ parallel to Ωo
has essentially all the dipole energy, as we have consistently seen numerically. In the real
case of forced, dissipative MHD turbulence, this phenomenon is also usually observed
numerically, although some forcing mechanisms may disrupt this process, as seen in Figure
7 of [13].

The generation of quasi-stationary, energetic dipole magnetic fields, along with dipole
moment alignment with the rotation axis seems fairly ubiquitous in numerical simulations,
as well as in planets and stars. Perhaps, the theory of ideal MHD turbulence and its rele-
vance to real MHD turbulence at the largest scales will be accepted as a viable explanation
of these planetary and stellar phenomena. Verbum sat sapienti est.
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