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Abstract: Over the last few decades, several grid coupling techniques for hierarchically refined
Cartesian grids have been developed to provide the possibility of varying mesh resolution in lattice
Boltzmann methods. The proposed schemes can be roughly categorized based on the individual grid
transition interface layout they are adapted to, namely cell-vertex or cell-centered approaches, as well
as a combination of both. It stands to reason that the specific properties of each of these grid-coupling
algorithms influence the stability and accuracy of the numerical scheme. Consequently, this naturally
leads to a curiosity regarding the extent to which this is the case. The present study compares
three established grid-coupling techniques regarding their stability ranges by conducting a series of
numerical experiments for a square duct flow, including various collision models. Furthermore the
hybrid-recursive regularized collision model, originally introduced for cell-vertex algorithms with
co-located coarse and fine grid nodes, has been adapted to cell-centered and combined methods.

Keywords: lattice Boltzmann method; local grid refinement; advanced collision models

1. Introduction

Due to the associated significant increase in computational efficiency, local grid refine-
ment has become an indispensable part of modern computational fluid dynamics methods
(CFD), allowing for varying spatial resolution throughout the simulation domain. Regions
with, e.g., strong gradients of the flow field or flow structures of interest are thereby dis-
cretized with a larger number of grid points, whereas a coarser grid size may be used where
rather moderate flow field variations are present.

With the lattice Boltzmann Method (LBM) gaining evermore popularity among CFD
practitioners over the last few decades, several grid refinement techniques tailored to the
method have been developed in order to satisfy the aforementioned need for efficient
usage of computational resources. A widely recognized category of such techniques
takes advantage of the fact that the LBM was originally developed for Cartesian grids
by hierarchically subdividing the grid cells in a quad-(2D) or octree (3D)-like manner,
maintaining length and time scale ratios of two between neighboring grid levels.

A further conceptual categorization of methods belonging to this so-called multi-level
approach can be made according to the specific arrangement of coarse and fine grid nodes
relative to one another as depicted schematically in Figure 1 for two dimensions. Whereas
cell-vertex algorithms are characterized by grid nodes residing in cell corners and thus par-
tially co-located coarse and fine nodes along grid transition interfaces (see Figure 1a) [1–3],
cell-centered approaches apply a volumetric description without the possibility of co-
location (see Figure 1b) [4–6]. Another type of somewhat mixed arrangement arises when
both grids are shifted relative to each other with coarse nodes sitting in the coarse cell
corners and fine nodes residing in their respective cell centers (see Figure 1c) [7,8]. These
three grid layout types will herein be referred to as cell-vertex , cell-centered and combined
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approaches, and involve individual coupling procedures to enable necessary information
exchange between grid levels. Details on the algorithmic peculiarities of each coupling
mechanism will be given in Section 3.

(a) Cell-vertex (b) Cell-centered (c) combined

Figure 1. Grid transition interface layouts.

It is well known that the LBM, as an explicit finite difference method, has certain
stability limits, which was shown in [9] by means of linear stability analysis. This instability
issue is usually amplified by the use of the multi-level approach due to the introduction of
disturbances at grid transition interfaces [10]. These disturbances may manifest in the form
of spurious acoustic and vorticity waves, corrupting the solution accuracy and stability
of multi-level LBM [11], which is of utmost importance for the realization of reliable high
Reynolds number simulations.

It seems reasonable to assume the extent of occurring disturbances and thus the
stability limit and accuracy of a multi-level scheme to be influenced by the specific coupling
mechanisms of each grid arrangement type. While in [12] it is mentioned that the cell-
vertex layout qualitatively emits less spurious acoustic noise compared to the cell-centered
layout, to the best of the authors’ knowledge no further quantitative stability and accuracy
comparisons between the different types are present in the literature. The subject of this
paper is therefore an investigation of the aforementioned three grid layouts in terms of their
stability and accuracy through a series of numerical experiments on a D3Q19 lattice for a
force-driven flow through a square duct. Due to their significant impact on the stability of
the LBM, the simulations were carried out employing four different collision operators:

• Bhatnagar–Gross–Krook collision model (BGK) [13]
• Multiple relaxation time collision model (MRT) based on the work of d’Humiéres et al. [14]
• Recursive regularized collision model (RR) as proposed by Malaspinas [15]
• Hybrid-recursive regularized collision model (HRR) as first described by Jacob et al. [16].

The HRR collision operator was introduced for and applied to cell-vertex grids and
originally involves finite difference approximations of strain-rates in order to hybridize
the calculation of the stress tensor needed for the reconstruction of second-order non-
equilibrium moments. Due to a lack of neighbors on the same level, this requires some
adjustments to the multi-level collide-and-stream algorithm in grid transition interfaces if
homogeneous use of second-order central differences throughout the whole calculation
domain is to be made. Astoul et al. [12] relied on a fictitious transport step to synchronize
in time the interface nodes participating in the central finite difference computation in this
case. In our method, no such fictitious transport step is necessary to allow a continuous
calculation using central differences. Furthermore, the HRR algorithm was adapted in a
consistent way to cell-centered and combined grid layouts in the course of this work.

The paper is organized as follows. After an introduction of the theoretical basics
regarding the applied collision operators, physical models and boundary conditions in
Section 2, a detailed review of the algorithmic procedures of each of the investigated grid
layouts, extended by the specifics of the HRR algorithm with regards to the cell-vertex
grid layout follows in Section 3. Subsequently, the adaptation of the HRR algorithm to the
cell-centered and combined grid layouts is addressed and a consistent solution is presented
in Section 4. Finally, the square duct test case and the investigated variants of the numerical
experiments are presented and discussed together with the results in Section 5.
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2. Lattice Boltzmann Method

The lattice Boltzmann method, which historically evolved from lattice gas
automata [17], but mathematically can be derived directly from the Boltzmann equa-
tion, represents an explicit system of Equation (1) for the spatiotemporal evolution of
a discrete set of distribution functions fi describing phase-space densities of fictitious
particles. The equations are typically solved on a Cartesian grid, with a velocity space
discretization such that the fictitious particles travel with a velocity ξi from one grid node to
selected neighboring nodes during one time step ∆t. The left-hand side of the lattice Boltz-
mann Equation (LBE) (1) reflects this node-to-node particle transport, while the right-hand
side describes local particle redistribution by scattering processes through the collision
operator Ωi(x, t):

fi(x + ξi∆t, t + ∆t)− fi(x, t) = Ωi(x, t). (1)

Following Qian [18], the discretized phase-spaces or lattices are labeled according to a
DdQq nomenclature where d represents the number of spatial dimensions and q reflects the
finite number of discrete particle velocities that result from the restriction of velocity space.
Figure 2 shows two common velocity sets, namely D2Q9 and D3Q19, the latter being the
basis for all numerical experiments discussed in Section 5, whereas the former is used for
its simplicity in order to review and clarify concepts regarding the different grid layouts in
Section 3. With the molecular velocity ξ̃ = ∆x

∆t , particle velocity vectors for the D3Q19 lattice
are given by

Figure 2. Discrete velocity sets for D2Q9 and D3Q19 lattices.

ξi =


(0, 0, 0) i = 18(
±ξ̃, 0, 0

)
,
(
0,±ξ̃, 0

)
,
(
0, 0,±ξ̃

)
i = 0, . . . , 5(

±ξ̃,±ξ̃, 0
)
,
(
±ξ̃, 0,±ξ̃

)
,
(
0,±ξ̃,±ξ̃

)
i = 6, . . . , 17.

(2)

The connection between the molecular velocity ξ̃, grid spacing ∆x and time-step size
∆t reflects the aforementioned particle transport from one node to its neighbors along
discrete velocity directions during each time step.

In the continuous picture, macroscopic physical quantities can be extracted from the
information contained within the mesoscopic scale as so-called moments of the velocity
distribution function f (x, ξ, t). Defined as integrals of f weighted with some function
of ξ over infinite velocity space, these moments are evaluated as weighted sums using
Gauss–Hermite quadrature with discrete velocity vectors as abscissae in discretized phase
space [19]:

M(x, t) =
∫ ∞

−∞
ϕ(ξ) f (x, ξ, t)dξ =

q−1

∑
i=0

ϕ(ξi) fi (3)

fi = wi f (x, ξi, t) (4)

The quadrature weights wi in Equation (4) emerge from specific conditions imposed
upon the equivalence between the moments of the discrete distribution functions fi and the
ones based on its continuous counterpart, as expressed in Equation (3) [20]. The quadrature
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order, i.e., the degree of precision, is defined by its ability to exactly abide Equation (3)
up to a certain order of moments [21]. From this, the weight factors for the D3Q19 lattice
result to

wi =


1
3 , i = 18
1

18 , i = 0, . . . , 5
1

36 , i = 6, . . . , 17

(5)

and the relationship between the molecular velocity ξ̃ and the isothermal speed of sound
cs = p/ρ =

√
RT, also referred to as lattice constant, is then given by ξ̃ =

√
3cs. The

quadrature order of the D3Q19 lattice leads to a O
(

Ma3
)

error and violation of Galilean
invariance in the viscous stress tensor [22], which is usually negligible for small Mach
numbers or in the incompressible limit.

Regarding the right-hand side of Equation (1), a large number of different collision
operators have been developed [13–16,23–25], some of which are used in the present work
and will now be briefly discussed.

2.1. Bhatnagar–Gross–Krook Collision Model

Given that the difficulties in solving the Boltzmann equation were caused mainly by
the complexity of Boltzmann’s original collision integral, Bhatnagar, Gross and Krook [13]
proposed a considerable simplification by approximating the collision process through a
relaxation of the velocity distribution function f (x, t) towards the Maxwell–Boltzmann
equilibrium distribution f eq(ρ, u, ξ) using a single relaxation rate 1

τ , with τ being the so-
called collision time:

ΩBGK = − 1
τ
( f (x, t)− f eq(ρ, u, ξ)). (6)

Since all involved physical processes are equilibrated with the same relaxation rate,
the classical BGK approximation is also termed single relaxation time model (SRT) [20]. The
equilibrium distribution function as a function of fluid density ρ, local mean or macroscopic
velocity u and particle velocity ξ reads in D spatial dimensions [26]

f eq(ρ, u, ξ) =
ρ

(2πc2
s )

D
2

exp

(
−(ξ − u)2

2c2
s

)
, (7)

where the temperature dependency is dropped, indicated by the isothermal speed of sound
cs, since only isothermal cases are subject of the present work.

Adapting the BGK approximation to the lattice Boltzmann Equation (1), the discrete
counterpart to ΩBGK in Equation (6) becomes

ΩBGK
i = − ∆t

τ + 1
2 ∆t

(
fi − f (0)i

)
= − c2

s ∆t
ν + 1

2 c2
s ∆t

(
fi − f (0)i

)
= −ω̃ f neq

i . (8)

Here, the continuous velocity distribution function f and the Maxwell–Boltzmann
equilibrium f eq are replaced by their respective discrete equivalent fi and f (0)i . Compared to
Equation (8), the term 1

2 ∆t is added to the relaxation factor combined within dimensionless
collision frequency ω̃. This additional factor is also known as discrete lattice effect [27]
and represents numerical viscosity, absorbed into the physical model to produce correct
macroscopic transport coefficients [28].

In order to fulfill the macroscopic conservation laws, it is not necessary to consider
the complete mesoscopic Maxwell–Boltzmann distribution function. Utilizing similarities
between the generating function of Hermite polynomials ω (see definition in Equation (10))
and the Maxwell–Boltzmann equilibrium f eq a simplified equilibrium in terms of a trun-
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cated series expansion in Hermite polynomials is thus used [29], allowing for a reduction
in numerical effort [26].

Although the first three terms of the Hermite expansion are sufficient for Navier–
Stokes level hydrodynamics [26], some authors claim positive effects on numerical stability
and accuracy by including higher-order expansion terms [14]. In order to remove spurious
couplings among third-order Hermite moments [30], we rely on orthogonal third-order
Hermite polynomials in the expansion of f (0)i as in [16]. Finally, the discrete equilibrium
functions used for all single relaxation time models in the present paper are given by

f (0)i = wi

[
2

∑
n=0

1
c2n

s n!
H(n)

i : A(n)
0 +

1
2c6

s

(
H(3)

i,xxy +H
(3)
i,yzz

)(
A(3)

0,xxy + A(3)
0,yzz

)
+

1
2c6

s

(
H(3)

i,xxz +H
(3)
i,yyz

)(
A(3)

0,xxz + A(3)
0,yyz

)
+

1
2c6

s

(
H(3)

i,xyy +H
(3)
i,xzz

)(
A(3)

0,xyy + A(3)
0,xzz

)
+

1
6c6

s

(
H(3)

i,xxy −H
(3)
i,yzz

)(
A(3)

0,xxy − A(3)
0,yzz

)
+

1
6c6

s

(
H(3)

i,xxz −H
(3)
i,yyz

)(
A(3)

0,xxz − A(3)
0,yyz

)
+

1
6c6

s

(
H(3)

i,xyy −H
(3)
i,xzz

)(
A(3)

0,xyy − A(3)
0,xzz

)]
. (9)

Due to its insufficient quadrature order, isotropic Hermite tensors of the formH(3)
i,ααα

orH(3)
i,αβγ have to be excluded for the D3Q19 lattice [31,32].

Hermite equilibrium expansion coefficients A(n)
0 in Equation (9) are obtained through

a projection of the Maxwell–Boltzmann equilibrium distribution onto a nth-order Hermite
polynomial basis in D = 3 spatial dimensions, defined as [12]:

H(n)
i =

(
−c2

s
)n

ω(ξi)
∇n

ξ ω(ξi) with ω(ξ) =
1

(2πc2
s )

D
2

exp

(
−
||ξ̃||22
2c2

s

)
. (10)

These expansion coefficients are related to or directly coincide with equilibrium mo-
ments and are given by [32]

A(0)
0 = ρ,

A(1)
0,α = ρuα,

A(2)
0,αβ = ρuαuβ + ρc2

s δαβ,

A(3)
0,αβγ = ρuαuβuγδαβ where δαβ =

{
1, α = β

0, α 6= β
(11)

It should be mentioned that the equilibrium distribution function is sometimes ex-
panded as a series in macroscopic velocity u rather than Hermite polynomials. This as
Mach number expansion known procedure [19] yields identical results up to second-order,
but differs from the Hermite approach for higher-order terms due to emerging spurious
couplings between lower- and higher-order moments [26]. For this reason, the Hermite
series expansion is preferred.

2.2. Multiple Relaxation Time Collision Model

Although a significant simplification of the collision operator is achieved by applying
the single relaxation time approach described in the previous section, its use corresponds
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to a relaxation of all relevant physical processes at one and the same rate, namely the
collision frequency ω̃, towards their respective equilibrium state. In reality, however,
these processes unfold on different time scales, yielding various macroscopic transport
coefficients. The idea of the multiple relaxation time collision model is therefore to perform
collision in moment space, rather than velocity space, individually equilibrating moments
of the distribution functions.

For the D3Q19 lattice, multiple relaxation time collision was first proposed by
d’Humières et al. [14]. The MRT collision operator to be inserted into the LBE (1), which is
then sometimes referred to as generalized LBE [33], reads as

ΩMRT
i =

q−1

∑
j=0

[
M−1ŜM

]
ij

(
f (0)j − f j

)
. (12)

Here, distribution functions are first mapped onto discrete moment space via the linear
transformation matrix M. In case of the D3Q19 lattice, the diagonal matrix Ŝ contains 19
relaxation parameters Ŝ = diag(s0, s1, . . . , s18) by means of which moment equilibration
is performed. Retransformation back to velocity space is achieved by finally applying
the inverse matrix M−1 to the relaxed moments. The transformation matrix M holds 19
orthogonal base vectors ϕi, found through Gram–Schmidt orthogonalization procedure, as
rows [14], see Equation (A1). Through scalar multiplication with the vector of distribution
functions f , 19 linear independent moments are constructed [20]

m = (ϕ0 · f ,ϕ1 · f , . . . ,ϕ18 · f )T = M f (13)

m =
(
ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πxx, pxy, pyz, pxz, mx, my, mz

)T
= (m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15, m16, m17, m18)

T. (14)

For the most part, the resulting moments in Equation (14) allow a physical interpreta-
tion and are categorized based on whether they represent conserved physical quantities,
also referred to as hydrodynamic moments or non-conserved physical quantities called kinetic
moments [14]. Higher-order moments devoid of any physical interpretation are also termed
ghost moments [34].

As mentioned above, the moments contained within the moment vector m are relaxed
to their corresponding equilibrium state m(0) = M f (0), where f (0) holds equilibrium
distributions f (0)i expanded up to second order, that means identical to Equation (9) with
only the first term inside the square brackets remaining. Since f (0) only depends on ρ and
u, all equilibrium moments are also describable solely in terms of these quantities, see
Equation (A2).

Regarding individual relaxation parameters within Ŝ, all parameters except those
related to kinematic viscosity ν through the third equal sign in Equation (8), i.e., si = ω̃,
i ∈ {9, 11, 13, 14, 15}, can be freely chosen from the interval ]0, 2[. Furthermore, since
mi = m(0)

i , i ∈ {0, 3, 5, 7}, relaxation parameters for collision invariants fluid density ρ and
momentum jα = ρuα are set to 0 for simplicity. The optimal set of arbitrary parameters in
terms of stability can be determined for a particular case through a von Neumann analy-
sis [35], resulting in the following choice for a channel flow: s1 = 1.19, s2 = s10 = s12 = 1.4,
s4 = s6 = s8 = 1.2, s16 = s17 = s18 = 1.98.

Another possibility, commonly known as regularized scheme [36], would be to specify
free relaxation factors as si = 1, i ∈ {1, 2, 4, 6, 8, 10, 12, 16, 17, 18}, which corresponds to
a direct relaxation of the associated moments towards their equilibrium state. As this
also affects higher-order non-hydrodynamic moments by effectively dampening their
respective modes, stability is positively influenced [37]. These two specific choices of free
parameter sets, in this paper refered to as MRT-NEU and MRT-REG, respectively, are used
for all simulations with the multiple relaxation time model in Section 5. An alternative
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formulation of the regularized approach in velocity space, as well as various enhancements
will be discussed in more detail in the next section.

2.3. Regularized Collision Models

From a mathematical perspective, the bridge between the mesoscopic scale of the
particle distribution function and macroscopic Naiver-Stokes level hydrodynamics is built
using Chapman-Enskog analysis [38]. In case of the lattice Boltzmann equation, discrete
distribution functions fi are expanded as a perturbation series in Knudsen number around
their local equilibrium state f (0)i :

fi = f (0)i + ε f (1)i + ε2 f (2)i + ε3 f (3)i + · · · = f (0)i + f neq
i , (15)

where all deviations from equilibrium are gathered in the non-equilibrium distributions
f neq
i . The smallness parameter ε expresses each terms relative order in Knudsen number.

By Taylor expanding the LBE (1) and applying a similar multiple scale expansion to the
emerging time derivatives together with the ansatz that only the two lowest orders in
Knudsen number are necessary for an accurate description of macroscopic fluid behavior,
the Navier–Stokes equations are recovered [26].

The core idea behind regularized collision operators is to abandon contributions of
higher-order terms O(εn), n > 1 in (15) and approximate the complete non-equilibrium
distribution functions by

f neq
i = fi − f (0)i ' f (1)i , (16)

with an explicit reconstruction of the first-order non-equilibrium part f (1)i . Applying this
regularization procedure to the pre-collision distribution functions together with a single
relaxation time collision operator [39,40], results in the following form of the LBE:

fi(x + ξi∆t, t + ∆t)− f REG
i = ΩREG

i

f REG
i = f (0)i + f (1)i (17)

ΩREG
i = ω̃ f (1)i (18)

⇒ fi(x + ξi∆t, t + ∆t) = f (0)i + (1− ω̃) f (1)i (19)

Similar to the formulation of the discrete equilibrium functions f (0)i in Equation (9),

the regularized first-order non-equilibrium part f (1)i is reconstructed through Hermite
series expansion

f (1)i = wi

2

∑
n=1

1
c2n

s n!
H(n)

i : A(n)
1 . (20)

Non-equilibrium expansion coefficients A(n)
1 are obtained by projection of the non-

equilibrium functions onto the nth-order Hermite tensor [31]

A(1)
1,α = ∑

i
H(1)

i,α

(
fi − f (0)i

)
= ∑

i
ξi,α f neq

i (21)

A(2)
1,αβ = ∑

i
H(2)

i,αβ

(
fi − f (0)i

)
= ∑

i

(
ξi,αξi,β − δαβc2

s

)
f neq
i , (22)

Notice that the Hermite series expansion of f (1)i is often presented as beginning from

second-order [12,31,40,41], since A(0)
1 = 0 and A(1)

1 = 0 by definition. However, Li et al. [42]
pointed out that first-order terms must be included in the reconstruction, if semi-implicit
forcing schemes with so-called half-force correction, as proposed by Guo et al. [27,43], are
deployed, because then only the zeroth-order coefficient vanishes, while A(1)

1 6= 0. The
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importance of this was demonstrated by means of a body force-driven 2D Poiseuille flow,
showing significant differences between simulation and analytical solution. In our study,
such forcing scheme is applied to the force-driven square duct flow in Section 5 and thus
first-order terms are taken into account. The treatment of forces will be covered in more
detail in Section 2.4.

As mentioned in [30], this method can be reinterpreted in terms of a MRT collision
model with discrete moment space built upon a Hermite tensor product polynomial basis
with non-hydrodynamic moments directly equilibrated by setting their corresponding
relaxation parameters to 1.

Malaspinas proposed in [15] to further improve the stability of regularized schemes
by including higher-order Hermite expansion terms in the reconstruction of f (1)i . Us-
ing Chapman–Enskog analysis, it was proven that non-equilibrium moments of order
higher than two can be obtained recursively from lower order moments, which allows
to reconstruct f (1)i up to any order given the second order expansion coefficients and the
macroscopic velocity u. Analogous to the equilibrium functions in Equation (9), we rely on
orthogonal third-order non-equilibrium moments in order to deal with spurious couplings
among them [16,30], resulting in

f (1)i = wi

[
2

∑
n=1

1
c2n

s n!
H(n)

i : A(n)
1 +

1
2c6

s

(
H(3)

i,xxy +H
(3)
i,yzz

)(
A(3)

1,xxy + A(3)
1,yzz

)
+

1
2c6

s

(
H(3)

i,xxz +H
(3)
i,yyz

)(
A(3)

1,xxz + A(3)
1,yyz

)
+

1
2c6

s

(
H(3)

i,xyy +H
(3)
i,xzz

)(
A(3)

1,xyy + A(3)
1,xzz

)
+

1
6c6

s

(
H(3)

i,xxy −H
(3)
i,yzz

)(
A(3)

1,xxy − A(3)
1,yzz

)
+

1
6c6

s

(
H(3)

i,xxz −H
(3)
i,yyz

)(
A(3)

1,xxz − A(3)
1,yyz

)
+

1
6c6

s

(
H(3)

i,xyy −H
(3)
i,xzz

)(
A(3)

1,xyy − A(3)
1,xzz

)]
. (23)

Again, isotropic tensors H(3)
i,ααα and H(3)

i,αβγ must be ruled out for D3Q19. Due to
aforementioned recurrence properties, this method is known as recursive-regularization (RR).
Third-order moments and Hermite tensors in Equation (23) are given by

A(3)
1,ααβ = 2uα A(2)

1,αβ + uβ A(2)
1,αα, (24)

H(3)
i,ααβ =

(
ξi,αξi,α − c2

s

)
ξi,β (25)

A further improvement regarding stability was achieved with the hybrid-recursive
regularized collision operator (HRR), introduced by Jacob et al. [16]. In this method the
calculation of second-order non-equilibrium expansion coefficients A(2)

1 (see Equation (22)),
which relate to the viscous stress tensor through [31]

A(2)
1,αβ = −2

ρc2
s ∆t
ω̃

Sαβ, (26)

is hybridized before being utilized in the reconstruction of f (1)i in Equation (23):

A(2)
1 = σA(2),PR

1 + (1− σ)A(2),FD
1 where [0 ≤ σ ≤ 1]. (27)
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A(2),PR
1 represents projection-based moments computed by Equation (22), whereas the

second term A(2),FD
1 is determined by approximating strain-rates Sαβ = 1

2
(
∂βuα + ∂αuβ

)
contained within the stress tensor using central finite differences, yielding:

A(2),FD
1,αβ = −ρc2

s ∆t
ω̃

(
uα

(
x + eβ∆x

)
− uα

(
x− eβ∆x

)
2∆x

+
uβ(x + eα∆x)− uβ(x− eα∆x)

2∆x

)
. (28)

The recursive-regularized model is recovered by setting the hybridization factor σ in
Equation (27) to 1, whereof σ = 0 leads to a complete finite difference reconstruction of
the viscous stress tensor. By choosing σ ∈ [0, 1[, compared to the RR model, a significant
stability increase is achieved by injection of numerical hyper-viscosity due to the usage
of finite differences, strongly damping non-hydrodynamic mode contributions [16,44,45],
which negatively affect stability especially for non-uniform grids [12,41].

It was noted before that the insufficient quadrature order of the D3Q19 lattice leads
to a viscous stress tensor exhibiting an O

(
Ma3

)
error term and suffering from a violation

of Galilean invariance. To deal with this issue, Feng et al. [46] proposed a cubic Mach
error correction term for thermal LBM, allowing for a great improvement of the HRR
collision model in the high-subsonic regime [47]. Details on the calculation of the cubic
Mach correction term are summarized in Appendix B. The regularized LBE including the
correction term ψi becomes:

fi(x + ξi∆t, t + ∆t) = f (0)i + (1− ω̃) f (1)i +
∆t
2

ψi. (29)

Moreover, the projection-based second-order non-equilibrium moments in
Equation (27) need to be modified accordingly

A(2),PR
1 = ∑

i
H(2)

i

(
fi − f (0)i +

∆t
2

ψi

)
. (30)

Even though the numerical experiments presented in Section 5 were all conducted for
a comparatively small Mach number, HRR simulations have been exemplarily performed
and evaluated, both, with and without cubic Mach correction. Corrected HRR collision will
be referred to as HRRψ.

2.4. Treatment of Forces

The test case investigated in terms of its numerical accuracy and stability range in
Section 5, consists of a body force-driven square duct flow. Since the simulations have
been carried out for various collision operators, herein, the adopted force model is the
scheme proposed by Guo, adjusted to the respective collision operator type in use. First,
the original version [27] for the standard BGK model will be addressed.

The presence of forces in the LBE is taken into account by an additional source term [27].
The right-hand side of the LBE (1) with standard BGK collision operator then becomes:

ΩBGK
i = −ω̃

(
fi − f (0)i

)
+ ∆tFi (31)

Following the categorization in [42], Guo’s forcing is classified as semi-implicit scheme,
with the collision and force terms both being integrated in time by second-order accurate
trapezoidal rule [48] during spatiotemporal discretization of the discrete-velocity Boltz-
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mann equation. The forcing term Fi is written as part of the collision operator and derived
by means of Hermite expansion:

Fi = wi
ω̃ν

c2
s ∆t

[
ξi − v

c2
s

+
ξi · v

c4
s

ξi

]
· f. (32)

Here f = ρa symbolizes the force per unit volume, with a being the acceleration.
Notice also the influence of the discrete lattice effect on the forcing term. An important
implication of this model is the so-called half-force correction of fluid momentum

ρv =
q−1

∑
i=0

ξi fi +
1
2

f∆t, (33)

expressing its average value within one discrete time step ∆t due to the impact of force f,
yielding Guo’s forcing scheme more robust [31] and accurate compared to other existing
schemes [42]. The corrected velocity v is applied to the reconstruction of the equilibrium
functions f (0)i in Equation (9) and the forcing term Fi in Equation (32).

Guo’s forcing scheme adapted to the MRT approach presented in Section 2.2 gives the
following expression for ΩMRT

i including the forcing term F̂i [49]:

ΩMRT
i =

q−1

∑
j=0

[
M−1ŜM

]
ij

(
f (0)j − f j

)
+ ∆tF̂i (34)

Since the discrete lattice effect in Equation (32) depends on the relaxation parameter ω̃, it
is obvious that a mapping to moment space has to take place in the MRT adaption of the
forcing scheme. F̂i thus represents the ith component of the source term vector f̂ ∈ IR19 [20]:

f̂ = M−1
(

I − 1
2

Ŝ
)

M f̄, (35)

with vector f̄ consisting of discrete force components F̄i excluding the discrete lattice effect:

F̄i = wi

[
ξi − v

c2
s

+
ξi · v

c4
s

ξi

]
· f. (36)

Regarding the recursive-regularized and hybrid recursive-regularized collision models
including Guo’s forcing scheme, we implemented the procedure proposed by Yoo et al. [31].
The pre-collision distribution functions in regularized models with discrete forcing should
be defined to not include the half-force corrected velocity, similar to the standard BGK
forcing scheme. Following this line of thought, the final form of the regularized LBE with
forcing term and cubic Mach correction results to

f REG
i = f (0)i

(
v− ∆t

2
f
)
+ f (1)i = f (0)i + f (1)i − ∆t

2
(Fi − ψi) (37)

ΩREG
i = ω̃ f (1)i + ∆tFi (38)

⇒ fi(x + ξi∆t, t + ∆t) = f (0)i + (1− ω̃) f (1)i +
∆t
2
(Fi + ψi). (39)

3. Hierarchical Grid Refinement Techniques

The stream and collide algorithm of the classical LBM relies on its use of rectangular
and equidistant grids. To preserve this beneficial algorithm while simultaneously coping
with increasing demands on computational efficiency and flexibility, several hierarchical
refinement techniques for Cartesian grids are available in the literature. Despite rendering
the grid globally irregular or non-uniform, they still maintain uniformity locally at each
grid level. Characteristic of these schemes is the fact that particle populations at the various
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grid levels live on different spatial and temporal scales [5]. As addressed in Section 1,
among these, three common methods, referred to as cell-vertex, cell-centered and combined
approach within the scope of this work, represent the core of the numerical experiments
later on. The specificities inherent to each of these methods will now be introduced.

In order to keep the following algorithm descriptions for all grid layouts vivid and
clear, we will restrict ourselves to one additional level of refinement, thus two neighboring
grid levels with spacings connected through ∆xc = 2∆x f . Here, superscripts c and f
indicate the coarse and fine grid levels, respectively. To keep the molecular velocity ξ̃ and
as a consequence the isothermal speed of sound cs constant throughout the whole domain,
convective scaling is used to link time steps between levels as ∆tc = 2∆t f . The fine grid
therefore performs twice as many nested time steps as the coarse grid.

3.1. Cell-Vertex Grid Layout

Pioneering work regarding grid refinement in LBM has been achieved among many oth-
ers by Filippova and Hänel [1], Lin and Lei [50], Dupuis and Chopard [2] and Yu et al. [51],
viewing the numerical grid as conceptually based on a cell-vertex approach (abbr. cv), with
the particle populations fi at all grid levels residing in cell corners, resulting in partially
co-located coarse and fine nodes along grid transition interfaces, as depicted in Figure 3.

Figure 3. Grid transition interface for two-dimensional cell-vertex layout, : regular fine node, :
fine interface node with co-located coarse partner, : hanging middle node, : regular coarse node,

: coarse interface node with co-located fine partner.

Grid interfaces extend over an overlap width of one coarse cell [51] and are character-

ized by interface nodes at the coarse grid c and the fine grid f , hanging middle nodes
lacking neighbors on the same level in at least one direction and are therefore missing

the corresponding populations after streaming. The missing information is recovered using

co-located grid nodes, referred to as partner nodes f and c, belonging to the other grid,
under the condition that a smooth transition of hydrodynamic quantities such as density ρ,
fluid momentum ρu and the viscous stress tensor σαβ is ensured across the interface.

Equilibrium distribution functions f (0)i solely depend on ρ and u and can thus be
simply transferred between interface nodes and their overlaying partners, due to grid level
independency of ρ and u:

ρ =
q−1

∑
i=0

f (0),ci =
q−1

∑
i=0

f (0), f
i (40)

ρu =
q−1

∑
i=0

ξi f (0),ci =
q−1

∑
i=0

ξi f (0), f
i . (41)

However, since the viscous stress tensor is related to the non-equilibrium part of fi,
which itself involves the discrete lattice effect as mentioned in Section 2.3 (see Equation (26)),
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demanding equality of σαβ between grid levels leads to the subsequent correlations between
coarse and fine non-equilibrium distribution functions:

σc
αβ

!
= σ

f
αβ (42)

− ω̃cν

c2
s ∆tc

q−1

∑
i=0

ξiξi f neq,c
i = − ω̃ f ν

c2
s ∆t f

q−1

∑
i=0

ξiξi f neq, f
i (43)

ω̃c

∆tc f neq,c
i =

ω̃ f

∆t f f neq, f
i , (44)

with dimensionless collision frequencies on both levels denoted as ω̃c and ω̃ f . Thus, when
transferring populations from one grid level to another at interfaces, also known as grid
coupling, non-equilibrium parts need to be rescaled accordingly, resulting in the following
coarse-to-fine and fine-to-coarse grid coupling relationships:

c→ f : f f
i = f (0)i +

ω̃c

2ω̃ f f neq,c
i (45)

f → c : f c
i = f (0)i +

2ω̃ f

ω̃c f neq, f
i . (46)

This single relaxation time grid-coupling procedure is inserted into the core algorithm
after streaming, but before the collision step, in accordance with [2] and applied to all
collision models in the numerical experiments for the cell-vertex approach, regardless of
whether the collision process was performed in velocity or moment space.

Fine hanging nodes without a coarse partner will be referred to as middle nodes
, if they are located on the edges of the coarse interface cell and center nodes • ,

if they reside in a cell face center, as depicted in Figure 4 for three spatial dimensions.
Missing populations at these nodes are determined through cubic p(x) = ∑3

α=0 aαxα [51]
and bi-cubic p(x, y) = ∑3

α=0 ∑3
β=0 aαβxαyβ [52] polynomial interpolation, respectively, using

information of neighboring fine nodes with coarse partners. With stencil numeration as
illustrated on the right side of Figure 4, interpolation formulas for middle and center
nodes become

Figure 4. (Left): Grid transition interface for three-dimensional cell-vertex layout, : regular fine
node, : co-located fine and coarse nodes at fine interface, : hanging middle node, • : hanging
center node, : regular coarse node, : co-located fine and coarse nodes at coarse interface. (Right):
Stencil for hanging node interpolation.
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f f
i ( a, t) =

9
16

(
f f
i
(

1 , t
)
+ f f

i
(

2 , t
))
− 1

16

(
f f
i
(

5 , t
)
+ f f

i
(

8 , t
))

f f
i ( b, t) =

9
16

(
f f
i
(

1 , t
)
+ f f

i
(

3 , t
))
− 1

16

(
f f
i
(

9 , t
)
+ f f

i
(

11 , t
))

(47)

f f
i ( • , t) =

5
16

4

∑
j=1

f f
i
(

j , t
)
− 1

32

12

∑
j=5

f f
i
(

j , t
)
. (48)

Another important aspect is a consequence of the nested time-stepping described
above. Missing populations at both grid interfaces need to be provided before every respec-
tive collision step by applying grid coupling Equations (45) and (46). Nested time-stepping
by definition involves stages during which coarse and fine grids are not synchronized in
time, specifically at t + ∆t f no information on the coarse grid is available, since the coarse
iteration advances at double the pace in the case of two levels. Therefore, coarse popula-
tions in Equation (45) are interpolated linearly in time during asynchronous iteration [53],
before being transferred to the fine level:

f c
i
(

, t + ∆t f ) = 1
2
(

f c
i
(

, t + ∆tc)+ f c
i
(

, t
))

. (49)

For scale-resolving turbulent flows,it is necessary to consider that part of the scales
resolved at the fine level cannot be represented on the coarse grid due to the reduced
spatial and temporal resolution of the latter. A naive transfer of quantities from a high-
resolution region to one of reduced resolution would necessarily violate the Nyquist–
Shannon criterion [54]. On this account, a restriction of fine scales during the f → c
(fine-to-coarse) transfer can be found in the literature [3,55,56], consisting of an additional
stabilizing filtering of fine non-equilibrium distributions f neq, f

i in Equation (46) before
scaling. Lagrava et al. [3] proposed the use of a simple averaging of the non-equilibrium
parts over all lattice neighbors in this regard. For the D3Q19 lattice used in this paper, this
results in:

f̄ neq, f ,LAG
i (x, t) =

1
19

18

∑
j=0

f neq, f
i

(
x + ξ j∆t f , t

)
(50)

Alternatively, Touil et al. [56] suggested a weighted average, depending on the lattice
direction of the corresponding distributions:

f̄ neq, f ,TOU
i (x, t) =

1
7

f neq, f
i (x, t) +

1
14

5

∑
j=0

f neq, f
i

(
x + ξ j∆t f , t

)
+

1
28

17

∑
j=6

f neq, f
i

(
x + ξ j∆t f , t

)
. (51)

As recommended in [3] all populations fi, not only the missing ones, are reconstructed
during grid coupling at both coarse and fine interfaces. Even though this restriction opera-
tion is in principle advisable for turbulent flow regimes, it is still applied to laminar-regime
test cases for the square-duct in Section 5 to investigate its effects on numerical stability.

With all the aforementioned steps combined, the multi-level collide-and-stream algo-
rithm for the cell-vertex grid layout is summerized in Algorithm 1.

This sequential process reproduces the algorithm if the collision models BGK, RR and
MRT are used. When employing the HRR collision operator, some adjustments have to be
made to the algorithm, which will be discussed in the following.
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Algorithm 1: Cell-Vertex

Reference state tc = t f = t: Distribution functions fi at all nodes are valid.
1: Collision of all coarse and fine nodes.
2: Streaming step of all coarse and fine nodes. Populations on the coarse grid reach

tc = t + ∆tc, fine populations reach t f = t + 1
2 ∆tc.

3: c→ f coupling: Reconstruction of f f
i (45) and transfer onto f with temporal interpo-

lation (49) of f (0)i and f neq,c
i as well as scaling of f neq,c

i (44).

4: Spatial interpolation of f f
i at (47) and • (48). Asynchronous iteration is now complete.

5: Collision of all fine nodes.
6: Streaming step of all fine nodes. Populations on the fine grid reach t f = t + ∆tc.
7: f → c coupling: Reconstruction of f c

i (45) and transfer onto c with optional

filtering (50,51) and scaling of f neq, f
i (44).

8: c→ f coupling: Reconstruction of f f
i (45) and transfer onto f with scaling of f neq,c

i (44).

9: Spatial interpolation of f f
i at and • . Synchronous iteration is now complete.

10: Return to Algorithm 1 and repeat until the end of the simulation.

3.2. Peculiarities of the Hybrid-Recursive Regularized Collision Model

As already noted in Section 2.3, the use of the hybrid-recursive regularized collision
model typically requires an approximation of the strain-rate tensor via finite differences,
preferably of central type, due to its beneficial locality and accuracy properties. Given
the abscence of same-level neighbors at interface nodes, approximated strain-rates need
to be obtained from partner nodes (cf. Figure 3). The requirement of central differences,
however, cannot be satisfied straight-forward during c→ f coupling at fine interface nodes

f , since coarse partners c have at least one direct neighbor c belonging to the coarse
interface, i.e., without valid population state after advection. Thus, velocity information
needed for a central difference approximation of SFD

αβ at c, can not be provided by these
neighbor nodes.

During synchronous iteration, when both the coarse and fine grid are in phase at
t + ∆tc, this missing velocity information at the coarse interface nodes can be directly

substituted with help of their fine partners by u
(

f , t + ∆tc
)

.

Considering asynchronous iteration, when the fine grid reaches t + 1
2 ∆tc and thus

grids are out of phase, SFD
αβ

(
c, t + ∆t f

)
needs to be specified and transferred to the fine

interface nodes f . Astoul et al. [12] suggested temporal interpolation of the strain-rate

tensor, including a fictitious streaming step towards fine partner nodes f to synchronize
them with regular coarse nodes , which are also utilized in the central difference stencil
and temporally evolve directly from t to t + ∆tc. After the fictitious streaming step, a valid
velocity vector can be extracted from the updated fine partners.

We propose a somewhat different approach. Temporal interpolation is performed at
regular coarse nodes , in order to obtain velocity values at time t + ∆t f during the finite
difference approximation of the strain-rate tensor at c. At neighbors corresponding to
coarse interface nodes c with incomplete population state after streaming, fine partner

nodes f with populations already residing at t + ∆t f are used instead. The advantage of
this proposal is, that no fictitious streaming is necessary anymore to temporally synchronize
involved nodes.

For example, with the interface depicted in Figure 3 orthogonal to the x-direction,
strain-rate SFD

xx at coarse partners c would then be given by:

SFD
xx

(
c, t + ∆t f

)
=

ux

(
, t + ∆t f

)
− ux

( f , t + ∆t f )
2∆xc , (52)
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where u
(

, t + ∆t f ) is computed through linear temporal interpolation

u
(

, t + ∆t f ) = 1
2

(
u
(

, t + ∆tc)+ u
(

, t
))

. (53)

For the coarse interface c, no such problem arises during f → c coupling, since the
underlying fine partners are always surrounded by neighbors with valid states.

With these enhancements, the HRR adaption to the multi-level cell-vertex algorithm is
summarized in Algorithm 2.

Algorithm 2: Cell-Vertex HRR

Reference state tc = t f = t: Distribution functions fi at all nodes are valid.
1: Collision of all coarse and fine nodes with hybrid-recursive regularized collision opera-

tor (27).
2: Streaming step of all coarse and fine nodes. Populations on the coarse grid reach

tc = t + ∆tc, fine populations reach t f = t + 1
2 ∆tc.

3: c→ f coupling: Finite difference approximation of strain-rate-tensor Sαβ at coarse part-
ners c according to (52) including temporal velocity interpolation (53), transfer onto

f . Reconstruction of f f
i (45) and transfer onto f with temporal interpolation (49)

of f (0)i and f neq,c
i as well as scaling of f neq,c

i (44).

4: Spatial interpolation of f f
i and Sαβ at (47) and • (48). Asynchronous iteration is

now complete.
5: Collision of all fine nodes with hybrid-recursive regularized collision operator (27).
6: Streaming step of all fine nodes. Populations on the fine grid reach t f = t + ∆tc.
7: f → c coupling: Finite difference approximation of strain-rate-tensor Sαβ at fine part-

ners f , transfer onto c. Reconstruction of f c
i (45) and transfer onto c with optional

filtering (50,51) and scaling of f neq, f
i (44).

8: c → f coupling: Finite difference approximation of strain-rate-tensor Sαβ at coarse

partners c , transfer onto f . Reconstruction of f f
i (45) and transfer onto f with

scaling of f neq,c
i (44).

9: Spatial interpolation of f f
i and Sαβ at and • . Synchronous iteration is now complete.

10: Return to Algorithm 1 and repeat until the end of the simulation.

3.3. Cell-Centered Grid Layout

An alternative scheme for grid coupling in LBM with hierarchically refined grids, relies
on a cell-centered (abbr. cc) or volume-based arrangement of grid nodes [4,5]. Although
continuity of macroscopic physical quantities (ρ, ρu, σαβ) is ensured across grid transitions
by rescaling non-equilibrium distribution functions f neq

i during the coupling steps in the
cell-vertex algorithm previously outlined in Section 3.1; mass and momentum conservation
may be violated, due to the choice of grid layout in connection with the involved spatial
and temporal interpolation methods [3,57]. Resorting to a volumetric description, with grid
nodes at all levels located in their respective cell centers and particles considered as mass
rather than densities, being transferred between grids of various resolution, guarantees
mass- and momentum conservation on a global scale in a natural way [5].

Grid coupling in the volumetric approach is characterized by two specific steps, as
vividly illustrated using an exemplary interface region in Figure 5. During c→ f coupling,
post-collision particles traveling towards the fine grid and originating from the coarse
cell-centered interface nodes , are redistributed among fine interface nodes contained
within the same coarse parent cell. This procedure will be referred to as uniform explosion,
since particle mass is homogeneously distributed, without any type of spatial or temporal
interpolation applied. Since two rows of fine interface nodes are supplied with coarse
post-collision states, they remain valid for two consecutive fine time steps. Furthermore,
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according to [5] no rescaling of non-equilibrium distributions is performed, in contrast
to the cell-vertex method in Algorithm 1. To keep the algorithmic description consistent
between grid layouts, mathematical notation of grid coupling steps in the cell-centered
scheme will be expressed in terms of particle densities, rather than masses. Explosion then
implies equality between particle densities, and coarse provider and fine receivers. With
post-collision distribution functions symbolized by

?

fi, the explosion step is simply given as:

Figure 5. Grid transition interface for two-dimensional cell-centered layout, : Regular fine node,
: Fine interface node, : Regular coarse node, : Coarse interface node, inward pointing arrows

{ξ2, ξ5, ξ6} represent directions of pre-collision populations averaged and assigned to during
coalescence, outward pointing arrows {ξ0, ξ4, ξ7} represent directions of post-collision populations
distributed among during explosion. Solid arrows show populations provided, dashed arrows
populations received.

c→ f :
?

f f
i
(

x f , t
)
=

?

f c
i
(
xc, t

)
. (54)

Here, x f and xc represent position vectors of the involved fine and coarse nodes.
As for f → c coupling, particle masses traveling towards the coarse grid are gathered

at fine interface grid nodes inside the parent cell after two consecutive fine cycles
and transferred to the coarse interface node residing in the cell center. In this paper,
fine interface nodes with at least one regular fine neighbor will be referred to as first-
layer nodes, whereas second-layer nodes means fine interface node devoid of regular fine
neighbors. Particle collision does not take place at first- or second-layer nodes, so that
collision has to be performed at the coarse receiver node after f → c coupling. In terms of
particle densities, this as coalescence known procedure implies missing coarse densities to
be obtained by averaging fine particle densities contained within the coarse cell, resulting
in the following expression for D spatial dimensions:

f → c : f c
i
(
xc, t

)
=

1
2D ∑ f f

i
(
x f , t

)
. (55)

Here again, no rescaling of transferred non-equilibrium distribution functions is
performed during the coupling step in accordance with [5]. In contrast to the direct,
i.e., without filtering, f → c communication step (cf. Equation (46)) in the cell-vertex
approach in Algorithm 1, coalescence functions as implicit filtering of fine distributions, as
a result of spatial equalization of grids in the cell-centered layout [58].

These main differences in comparison to the grid transition algorithm for the cell-
vertex layout, consisting in the absence of any higher-order spatiotemporal interpolation or
explicit rescaling of non-equilibrium distribution functions during information exchange
in the coupling step and implicit filtering during f → c communication, renders the
computational implementation of the cell-centered approach rather simple. Still, numerical
errors depending on various factors, such as viscosity, body-force, grid spacing and time
step are introduced by the method and can be comparatively large, especially for grid
interfaces oriented perpendicular to the flow direction, as was shown by Rohde et al. [5].
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Moreover, Rohde et al. assume a scaling of the non-equilibrium part to be implicitly present
in their method.

An improved accuracy of the coarse-to-fine coupling in the cell-centered approach can
be achieved by using a linear distribution of coarse post-collision states during explosion,
as proposed by Chen et al. [59]:

?

f f
i
(

x f , t
)
=

?

f c
i
(
xc, t

)
+
(
x f − xc) ·(F i

(
xc, t

)
−

ξi
(
ξi · F i

(
xc, t

))
|ξi|2

)
, (56)

where the vector function F i (not to be confused with the force term Fi in Section 2.4)
represents gradients of coarse post-collision states

?

f c
i along directions α parallel to the

interface, so that both, xc + eα∆xc and xc − eα∆xc point to locations of coarse interface
nodes in the immediate vicinity of (xc, t) (cf. Figure 5):

Fiα
(
xc, t

)
=

?

f c
i
(

xc + eα∆xc, t
)
−

?

f c
i
(
xc − eα∆xc, t

)
2∆xc . (57)

Gradients in directions orthogonal to the interface are disregarded by setting:

Fiα
(
xc, t

)
= 0. (58)

This procedure is referred to as linear explosion in the course of this work. Both types
of explosion (54) and (56) are included in the numerical experiments in Section 5. The
resulting algorithm for the cell-centered grid layout is summarized in Algorithm 3.

Algorithm 3: Cell-Centered

Reference state tc = t f = t: Distribution functions fi at all nodes are valid.
1: Collision of all coarse nodes and regular fine nodes (see Figure 5). Fine

interface nodes do not take part in any collision step in the cell-centered algorithm.
2: c→ f coupling (explosion): Redistribution of coarse post-collision populations pointing

towards the fine grid among fine interface nodes according to Equation (54) or (56).
Neither rescaling nor temporal interpolation of distribution functions is performed.

3: Streaming step of all coarse and fine nodes. Coarse populations reach tc = t + ∆tc, pop-
ulations on the fine grid reach t f = t + 1

2 ∆tc. Asynchronous iteration is now complete.
4: Collision at regular fine nodes . Since two lines of fine interface nodes are updated

during explosion with coarse post-collision states, the corresponding states remain
valid for two consecutive fine streaming steps.

5: Streaming step of all fine nodes except fine second-layer interface nodes, since these
nodes lack valid states at this point. Populations on the fine grid reach t f = t + ∆tc.

6: f → c coupling (coalescence): Averaging of populations belonging to fine interface
nodes pointing towards the coarse grid and redistribution to coarse interface node

residing in corresponding cell center according to Equation (55). Synchronous
iteration is now complete.

7: Return to Algorithm 1 and repeat until the end of the simulation.

Qi et al. [60] improved the accuracy during the volumetric coarse-to-fine coupling
by applying a compact gradient-based interpolation method based on a second-order
polynomial expression for the macroscopic velocity very similar to the one used for the
combined grid layout in this paper. In contrast to the uniform and linear explosion in
Equations (54) and (56), their method relies on a grid interface overlap of two coarse cells
and a preceding execution of coalescence to ensure that all coarse source nodes are valid.
Another difference is that non-equilibrium distribution functions are scaled according to
Equation (44) during both coupling steps. This scheme was not implemented as part of the
present study.
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3.4. Combined Grid Layout

Another variant of grid arrangement can be constructed as a combination of both
aforementioned layouts (cf. Figure 6), with fine interface nodes residing in their re-
spective cell centers being enclosed by regular coarse nodes in cell corners, referred
to as combined method in the course of this work (abbr. cm). Similarly, coarse interface
nodes are surrounded by regular fine cell-centered nodes [7,8,58,61], as depicted in
Figure 6 in two dimensions. Unlike in the cell-vertex and cell-centered layouts, here, the
grid transition interface has an overlapping width of two coarse cells. Distribution func-
tions at interface nodes are then obtained through a decomposition into equilibrium and
non-equilibrium parts, utilizing gradient-based compact interpolation schemes to preserve
second-order accuracy of the lattice Boltzmann method. Equilibrium distribution functions
are calculated by applying Equation (9) with interpolated values of density and velocity.

There are two aspects that have to be taken into account here. First, in order to recover
correct hydrodynamic behavior, second-order derivatives of the momentum field in the
Navier–Stokes equations need to be sustained by the grid coupling method. Secondly, since
the LBM used here operates in the weakly compressible and isothermal limit and only the
first-order pressure gradient is present in the Navier–Stokes equations, it is sufficient to
interpolate the density field in a linear manner [7], that means trilinearly in our case.

Figure 6. Grid transition interface for two-dimensional combined grid layout, : Regular fine
node, : Fine interface node, : Regular coarse node, : Coarse interface node, light-red area
indicates validity range of interpolation functions, inward pointing arrows represent pre-collision
distribution functions reconstructed on both grids during c → f and f → c coupling according to
Equations (60) and (61), respectively.

Regarding the first point, we use a three-dimensional version of the compact gradient-
based velocity interpolation proposed in [62], resulting in the following third-order polyno-
mial expression for Cartesian velocity vector components uI

α:

uI
α(x, y, z) = aα,000 + aα,100x + aα,010y + aα,001z + aα,200x2 + aα,110xy

+ aα,101xz + aα,020y2 + aα,011yz + aα,002z2 + aα,111xyz, (59)

with α = x, y, z and where superscript I indicates an interpolated value. The 33 interpola-
tion coefficients aα,ijk are obtained utilizing velocity gradient information contained locally
within strain-rates, for details see Appendix C. Furthermore, besides the density field,
non-equilibrium distribution functions are also interpolated trilinearly. On this matter, our
method is similar to the one proposed by Qi et al. [60], albeit they rely on an even more
compact stencil of only four source nodes for their gradient-based second-order polynomial
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interpolation in three dimensions. This leads to the following reconstruction of distribution
functions at interface nodes during the grid coupling procedures:

c→ f : f f
i = f (0)i

(
ρI , uI

)
+

ω̃c

2ω̃ f f neq,c,I
i (60)

f → c : f c
i = f (0)i

(
ρI , uI

)
+

2ω̃ f

ω̃c f neq, f ,I
i , (61)

corresponding to the pre-collision state, so that collision on both grids has to be performed
afterwards. Similar to the cell-vertex approach, non-equilibrium functions are rescaled
before being transferred to the receiving nodes, however, as mentioned in Section 3.3,
filtering of f neq, f

i during f → c communication is achieved implicitly as a result of the spatial
offset between grids, as in the cell-centered method. Furthermore, temporal interpolation
during c→ f coupling is redundant, since two layers of fine interface nodes are updated
and thus remain valid for two consecutive fine cycles. The combined scheme merges both
previous approaches together with a beneficial compact interpolation method [58].

The necessary strain-rates in Equations (A9) to (A20) can be obtained as either second-
order non-equilibrium moments combining Equations (22) and (26) or alternatively from
finite differences. We rely on the first option.

The collide-and-stream algorithm for the combined scheme is summarized in Algorithm 4.

Algorithm 4: Combined

Reference state tc = t f = t: Distribution functions fi at all nodes are valid.
1: Collision of all coarse and fine nodes.
2: Streaming step of all coarse and fine nodes. Populations on the coarse grid reach

tc = t + ∆tc, fine populations reach t f = t + 1
2 ∆tc. No grid coupling is performed in

the asynchronous iteration, hence asynchronous iteration is now complete.
3: Collision of all fine nodes except second-layer fine interface nodes, since these nodes

lack valid states at this point.
4: Streaming step of all fine nodes except second-layer fine interface nodes. Populations

on the fine grid reach t f = t + ∆tc.
5: f → c coupling according to (61), reconstruction of f f

i at (Figure 6) including
trilinear interpolation of ρ and compact gradient-based interpolation of u (59) for the
calculation of equilibrium distributions, trilinear interpolation and scaling of f neq,c

i .
6: c→ f coupling according to (60), reconstruction of f c

i at (Figure 6) including trilinear
interpolation of ρ and compact gradient-based interpolation of u (59) for the calculation
of equilibrium distributions, trilinear interpolation and scaling of f neq, f

i . Since two
lines of fine interface nodes are updated during this procedure, the corresponding
states remain valid for two consecutive fine time steps. Synchronous iteration is
now complete.

7: Return to Algorithm 1 and repeat until the end of the simulation.

4. Adaption of the Hybrid-Recursive Regularized Collision Model to Cell-Centered
and Combined Grid Layouts

As mentioned in Section 3.2, a homogenous approximation of strain-rates through
second-order central finite differences within the hybrid-recursive regularized collision
model, requires some particularities to be considered during the collide-and-stream process
in the cell-vertex approach. Similarly, some adjustments need to be made for the cell-
centered and combined method, in order to ensure a consistent use of central differences
across the grid transition interface.

In the cell-centered procedure summarized in Algorithm 3, collision in the grid tran-
sition region is performed exclusively at coarse interface nodes (cf. Figure 5). Coarse
post-collision populations

?

f c
i traveling towards the fine grid are distributed among fine

interface nodes by either uniform or linear explosion, cf. Equation (54) and (56), respec-
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tively. However, in order to perform HRR collision beforehand, strain-rates at need to
be approximated, preferably via central finite differences. Hence, absent coarse neighbor
nodes must be replaced. Taking an exemplary interface portion as depicted in Figure 7, we
substitute the missing coarse neighbor cell in the fine grid region g, using a fictitious coa-
lescence at regular fine nodes covering its image. Fine pre-collision distribution functions
in all directions are averaged according to Equation (55) and thus provided for a calculation
of the macroscopic velocity within the strain-rate computation at . A similar approach
was adopted by Premnath et al. [63] in order to obtain test-filtered quantities across grid
transition interfaces during dynamic subgrid scale modeling.

Figure 7. Grid transition interface for two-dimensional cell-centered layout including coarse ghost
nodes g needed for central-difference approximation of velocity gradients during HRR collision
at coarse interface nodes , light-red area indicates coarse ghost cell from which fine pre-collision
populations, represented as arrows, are gathered and averaged during fictitious coalescence according
to Equation (55).

Together with this, two further modifications regarding the cell-centered algorithm
previously discussed, need to be considered. First, collision at coarse nodes with subsequent
explosion, i.e., part of step 1 and step 2 of the cell-centered algorithm, need to occur in
advance to the collision of regular fine nodes . Otherwise, invalid population states of
first-layer interface nodes would be employed in the central difference approximation
of the strain-rate tensor SFD at neighboring regular fine nodes. Secondly, in contrast to
step 2 in Algorithm 1, a complete set of coarse post-collision distribution functions is
exploded onto the first-layer interface nodes. These additional adjustments keep the HRR
procedure consistent with the rest of the cell-centered approach and are used for the HRR
test simulations later on. Steps 3 to 7 of the cell-centered algorithm remain unchanged.

For the combined method, similar adaptions, consistent with the remainder of the
combined algorithm in Section 3.4, are proposed. Here, collision is performed at coarse as
well as first- and second-layer fine interface nodes, so that missing velocity values during
central difference calculation need to be reconstructed on both sides of the interface by
appropriate measures. On the fine grid, only second-layer interface nodes lack necessary
neighbors. For this purpose, compact velocity interpolation according to Equation (59)
is applied on positions indicated by coarse g and fine g ghost nodes in Figure 8, to
achieve a central finite difference stencil relative to second-layer and coarse interface nodes.
This modification is included into step 1 of the combined Algorithm 4.

There is an additional aspect that must be taken into account here. Right after the
asynchronous iteration is completed in step 2 of Algorithm 4, second-layer interface nodes
are excluded from any further collision and propagation, due to incomplete population
state. Nevertheless, valid velocity values have to be provided by these nodes in order to
compute SFD at first-layer interface nodes during HRR collision throughout synchronous
iteration. Since populations on the fine grid still live in t + ∆t f at this point, unlike the
coarse interpolation sources, which progress from t directly to t + ∆tc, we combine the
compact spatial interpolation with a linear temporal interpolation similar to Equation (49)
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to obtain u
(

, t + ∆t f
)

at second-layer interface nodes. Steps 3 to 7 of Algorithm 4
remain unchanged.

Figure 8. Grid transition interface for two-dimensional combined grid layout including coarse
g and fine ghost nodes g needed for central-difference approximation of velocity gradients

during HRR collision at coarse and fine interface nodes , respectively, light-red area indicates
validity range of velocity interpolation function (59).

In Section 2.3, cubic Mach correction for the D3Q19 lattice was mentioned. According
to Equation (A5), spatial derivatives of deviation terms Ψ are approximated via central
finite differences, similar to strain-rates in Equation (28). All the algorithmic adaptions
discussed previously in this section apply in the same manner to the discretized gradients
of the deviation terms to obtain correction terms ψi. With these consistent modifications,
the HRR/HRRψ procedure for the combined and cell-centered layouts is complete.

5. Numerical Experiments and Results
5.1. Test Case Setup and Evaluation Strategy

Numerical experiments for the stability evaluation of the grid transition algorithms
and collision operators discussed in the previous chapters are performed using a force-
driven square duct flow test case, schematically depicted in Figure 9. Within subcritical
Reynolds number regime, the analytical solution for the laminar velocity field is given
by [64]:

u(y, z) =
16h2

νπ3 ax

∞

∑
i=1,3,5,...

(−1)
i−1

2

1−
cosh

(
iπz
2h

)
cosh

(
iπ
2

)
cos

(
iπy
2h

)
i3

(62)

Here, ν is the kinematic viscosity and ax represents the uniform flow acceleration
acting in positive x-direction, i.e., parallel to the duct center axis.

The simulations are performed in a periodic, cubic domain with characteristic width
2h, see Figure 9. A single level reference case (abbr. sl) with grid spacing 10∆xc = 2h is
used for comparison. In the multi-level case, the cubic domain is discretized using two
levels of grid resolution ∆xc = 2∆x f , with coarse cells located in the duct core and six
refinement layers of fine cells at the surrounding duct walls, resulting in approximately
104 cells in total. This rather coarse grid resolution was chosen to keep the time frame
for the numerical study within acceptable bounds. The grid transition interface with
an overlap width of ∆xc for cell-vertex and cell-centered cases and an overlap width of
2∆xc for the combined grid layout, is oriented parallel to the flow direction througout the
complete domain. No-slip walls are implemented utilizing simple half-way bounce-back
scheme, while periodic conditions enclose the domain at boundaries orthogonal to the
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flow direction. All simulations have been performed with the in-house lattice Boltzmann
package SAM-Lattice.

Figure 9. Schematic representation of the calculation domain for the square duct test case.

As was shown by means of linear stability analysis for various collision models, the
lattice Boltzmann method exhibits instabilities for high Reynolds number flows [9,10],
which materialize in the form of physically meaningless negative values for the distribution
functions fi. As can be seen directly from the connection between dimensionless collision
frequency and kinematic viscosity in Equation (8), a Reynolds number tending towards
infinity is associated with ω̃ → 2. In order to examine the influence of the various grid
transition schemes and collision models on accuracy and stability ranges for the square-
duct flow, numerical experiments are performed. Through successive variation of the flow
acceleration ax, Reynolds number and consequently the collision frequency ω̃c are modified
together with simultaneous verification of adherence to the following constraints, defining
three distinct evaluation categories:

• Category 1: Simulation remains stable, i.e., fi > 0, and within the subcritical Reynolds
number regime Reb,h < Reb,h,crit ≈ 1673 [65] . . . 2060 [66]. Furthermore, iterative
convergence u(x, t + ∆t) − u(x, t) ≤ 1× 10−15 m s−1 is reached with an averaged

relative velocity error of δu = 1
N ∑N−1

n=0
|u(xn ,t)−u(xn ,t)analytical|

u(xn ,t)analytical
< 5%.

• Category 2: Simulation remains stable, i.e., fi > 0, but either averaged relative error
increases to δu ≥ 5% in subcritical regime or Reb,h > Reb,h,crit.

• Category 3: Simulation is unstable and diverges, i.e., fi < 0 is detected.

Here, the Reynolds number Reb,h = UbDh/ν is based on the bulk velocity

Ub =
axh2

3ν

(
1− 192

π5

∞

∑
i=1,3,5,...

tanh(iπ/2)

i5

)
(63)

and hydraulic equivalent diameter Dh = 2h for the square duct flow. The simulation
parameters are summarized in Table 1. Affiliation of a particular test case to one of
these categories is expressed in terms of dimensionless collision frequency ω̃c

1/2, where
superscript c indicates a coarse grid value as before and subscript 1 or 2 represents the
respective category. Regarding the first category, the procedure stops once the relative error
increases to δu ≥ 5% in the subcritical regime and the condition for iterative convergence
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can no longer be met or Reb,h > Reb,h,crit and thus a comparison with the analytical solution
Equation (62) is not permissible anymore. Consequently, in the remainder of this paper
ω̃c

1 represents the maximum value of ω̃c that just about satisfies these critera. As for the
second category, ω̃c variation terminates as soon as negative distribution functions fi < 0
emerge. Similar to ω̃c

1 for category 1, the value ω̃c
2 reflects the maximum dimensionless

collision frequency for which this scenario has just not yet occurred up to a terminal value
of ω̃c = 1.99999, combined with the additional requirement that this must be fulfilled for
at least 3 s of physical flow time. It should be mentioned that the relatively coarse grid is
not suitable for high-accuracy simulations of turbulent flows in the sense of insufficient
resolution. However, the focus here is on finding the limits of the method or seeing how far
it can be pushed for a given configuration, as stability of the numerical scheme is of high
significance for application to flows of engineering interest.

The choice of ω̃c, i.e., dimensionless collision frequency on the coarse grid instead of
ω̃ f for the evaluation is arbitrary. To remain in the incompressible flow regime, the Mach
number is kept constantly low at Ma = 0.1.

An overview of case variants examined in the numerical study is given in Table 2. To
emphasize the influence of both, the collision model and the grid transition scheme on the
accuracy and stability range, each of the collision models reviewed in Section 2 are tested
together with the schemes addressed in Section 3 and 4 as well as on an equidistant, i.e.,
single level grid (abbr. sl). For the cv algorithm with BGK collision, two additional calcula-
tions are performed including restriction operations as expressed in Equations (50) and (51).
Furthermore, the HRR model is tested additionally with cubic Mach number correction,
referred to as HRRψ. The hybridization factor σ in Equation (27) is set to 0.98 for all HRR
cases [12,16,41], that means 2% of the stress tensor calculation in the reconstruction of non-
equilibrium distributions is achieved through centered finite differences, while remaining
98% stem from non-equilibrium moment computation. Regarding the tests of cc algorithm
with BGK and HRR models, explosion is executed with both, uniform and linearly interpo-
lated coarse post-collision particle distribution, as expressed in Equations (54) and (56),
respectively. All remaining cc simulations are performed with uniform explosion only.
Together with the procedure for the variation of ω̃c described above, this results in a total
number of simulations of approximately 500.

Table 1. Summary of simulation parameters. Top half: Constant parameters, bottom half: Changing
parameters at lower and upper limit of investigated Reynolds number range as well as critical
flow regime.

Grid resolution 2h/∆xc 10 Spacing ∆xc in m 2× 10−4

Density ρ in kg m−3 998.2 Kin. viscosity ν in m2 s−1 1× 10−6

Lattice Mach number Ma 0.1 Refined coarse cells at walls 3

Reb,h,min Reb,h,crit Reb,h,max
Flow acceleration ax in m s−2 2.075× 10−1 5.140 . . . 6.329 1.066× 103

Time step ∆tc in s 1.713× 10−4 1.449× 10−5 . . . 1.177× 10−5 3.333× 10−8

Collision frequency ω̃c 1.94990 1.99566 . . . 1.99647 1.99999
Bulk Reynolds number Reb,h 6.753× 101 1.673× 103 . . . 2.060× 103 3.470× 105

5.2. Verification

The conducted numerical experiments are verified by comparison with the analyti-
cal solution. Figure 10 shows normalized velocity profiles (ûanalytical = max{u(y, z)} in
Equation (62)) along y direction normalized with half channel height h, for all HRR cases
with σ = 0.98 and ω̃c = 1.94990, corresponding to a bulk Reynolds number of Reh,b = 67.53.
All simulation results agree very well with the solution in Equation (62), supporting the
correct numerical implementation of the adaptation of the HRR collision operator to the cell-
centered and combined types of grid transition interface layout, as discussed in Section 4.
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Velocity profiles for all other tested models exhibit similar agreement with the analytical
solution and are shown in Figure A2.

Table 2. Overview of variants examined in the numerical study, sl: Single level, cv: Cell-vertex,
cc: Cell-centered, cm: Combined, all cv and cc cases above the light grey midline are computed
without f → c restriction and with uniform explosion, respectively.

Collision Model Ω sl cv cc cm

BGK sl-0 cv-0 cc-0 cm-0
MRT-REG sl-1 cv-1 cc-1 cm-1
MRT-NEU sl-2 cv-2 cc-2 cm-2
RR sl-3 cv-3 cc-3 cm-3
HRR sl-4 cv-4 cc-4 cm-4

BGK, f → c filter Equation (50) 7 cv-5 7 7

BGK, f → c filter Equation (51) 7 cv-6 7 7

BGK, linear explosion Equation (56) 7 7 cc-5 7

HRR, linear explosion Equation (56) 7 7 cc-6 7

HRRψ 7 cv-7 7 7
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Figure 10. Normalized square duct velocity profiles for HRR models with σ = 0.98 and ω̃c = 1.94990
(Reh,b = 67.53).

Numerical accuracy of the various grid transition schemes is further examined for the
HRR collision operator by means of a grid convergence study, summarized in Figure 11 in
a double logarithmic manner. Results of the global absolute error in velocity averaged over
all N nodes, defined as

∆uRMS =

√√√√ 1
N

N−1

∑
n=0

(
u(xn, t)− uanalytical(xn, t)

)2
(64)

are given together with a slope of −1 and −2 for three successively refined grids, starting
from the coarsest grid, which serves as the basis for stability experiments. Grid resolution
is expressed in terms of number of respective fine level grid cells per duct height. The time
step is determined by diffusive scaling ∆t ∝ ∆x2 in order to ensure O

(
∆x2) convergence of

the compressibility error, see Table 3.
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Table 3. Summary of grid parameters for convergence study with ω̃c = 1.94990 (Reh,b = 67.53).

Grid resolution 2h/∆x f 20 40 80
Spacing ∆x f in m 1× 10−4 5× 10−5 2.5× 10−5

Time step ∆t f in s 4.28× 10−5 1.07× 10−5 5.35× 10−6

Lattice Mach number Ma 0.1 0.05 0.025

101 10210−5

10−4

10−3

Grid resolution 2h/∆x f

∆
u R

M
S

Figure 11. Grid convergence for HRR collision model and all grid layouts with ω̃c = 1.94990
(Reh,b = 67.53): Sl-4 ( ), cv-4 ( ), cv-7 ( ), cc-4 ( ), cc-6 ( ), cm-4 ( ), slope -1 ( ), slope -2 ( ).

The validity and correctness of the presented HRR adaption for the cc and cm algo-
rithms is again confirmed. The cc algorithm with linear explosion ( ) shows an average
slope of −2.03, while the cm HRR adaption ( ) results in an average convergence rate
of −2.30 with a slight tendency of hyper convergence between the coarsest and medium
grids, preserving the second order spatial accuracy of the LB scheme in a consistent manner.
Relying on uniform particle redistribution during cc explosion ( ), expectedly degrades the
methods accuracy to first order with an average slope of −1.11 [59]. Choosing a relatively
low Mach number of Ma = 0.1 no difference between cv HRR including ( ) and excluding
( ) cubic correction terms ψi could be observed here, with both variants exhibiting an
average slope of −2.04. The single level method ( ) yields an average convergence rate
of −2.00.

5.3. Accuracy and Stability Range Comparison

As mentioned, accuracy and stability range are considered in the context of the cat-
egories defined in Section 5.1 for the test cases summarized in Table 2. The decisive
factor is the respective maximum value of ω̃c that just fulfills the conditions imposed
on the category. Thus, for a concrete test case, ω̃c

1 describes the maximum value of ω̃c

with a precision of five significant digits, whereby the simulation satisfies the constraints
u(x, t + ∆t)− u(x, t) ≤ 1× 10−15 m s−1 and δu < 5% within a laminar flow regime. Simi-
larly for ω̃c

2, the particular test case under consideration is at the stability limit, so it does
not quite fall into the third category, since fi < 0 does not occur.

Figure 12 shows the maximum values ω̃c
1 and ω̃c

2 defined in this way for the BGK
collision model for different grid layouts. It can be seen that the cell-vertex grid without
additional restriction of the fine distributions denoted as cv-0 has the lowest values in both
categories, with ω̃c

1 = 1.98100 (Reh,b = 180.92) in category 1 and a clear distance to the
other approaches in category 2 with ω̃c

2 = 1.98312 (Reh,b = 203.85).
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Figure 12. BGK accuracy and stability range comparison for different grid layouts and cv f → c filters.

The cell-centered approach cc-5 with linear interpolation of the coarse post-collision
distributions in the explosion step shows the highest stability of ω̃c

2 = 1.99961
(Reh,b = 9256.56) for the BGK collision model, closely followed by cc-0, i.e., uniform
explosion, with ω̃c

2 = 1.99940 (Reh,b = 6183.25). Even though in the literature [3,56]
physical justification for the f → c restriction step originally consisted in filtering out
non-resolvable fine scales in turbulent flows, accuracy and stability range for the cv al-
gorithm can be increased in our test case within laminar flow regime. Regarding cate-
gory 1, the accuracy range can be expanded by including either filtering operation from
Equations (50) or (51) into step 7 of Algorithm 1 to ω̃c

1 = 1.99046 (Reh,b = 362.10) and
ω̃c

1 = 1.99060 (Reh,b = 367.53), respectively, exceeding the corresponding values of cc
and cm. Stability range is increased to ω̃c

2 = 1.99463 (Reh,b = 644.72) with both filters,
which is in the immediate vicinity of ω̃c

2 for the cm algorithm. The onset of instability is
connected to the occurrence of spurious oscillations in the transverse velocity components
v and w, the amplitude of which increases with time in the case of the cell-vertex algorithm
without restriction (cv-0). This is shown in Figure 13 along normalized y direction for
three exemplary chosen successive time steps and in comparison with the corresponding
velocity values for cc-0, cm-0 and cv-5 (filtering according to Equation (50)) at ω̃c = 1.98317
(Reh,b = 205.04), i.e., beyond cv-0’s stability limit. The spurious oscillation in transversal
velocity w is depicted only in time step t = 8.5 s since its amplitude is several orders of
magnitude below the v-oscillation until that point and then increases rapidly.

When filtering is activated in the cv algorithm during the fine-to-coarse coupling step,
as in cv-5, a significant suppression of these spurious oscillations comes into effect, yielding
the simulation more stable. Due to the spatial separation of the fine and coarse interface
nodes and the resulting implicit filtering of the distributions during the respective fine-to-
coarse coupling (cf. Equations (55) and (61)), this suppression of spurious oscillations occurs
in equal form in the cc and cm layout. Differences in the curve characteristics at t = 2.3 s
between cv-5 and cm-0 on the one hand and cc-0 on the other, are possibly associated with
missing scaling of f neq

i in the volumetric description.
As for the accuracy and stability range maps of the MRT collision model, both sets

of relaxation parameters, the one obtained by von Neumann analysis and the one corre-
sponding to a regularization step, are compared in Figure 14. For all grid layouts except cc,
MRT-REG (cases labeled -1) exhibits a slightly superior accuracy as well as stability range
in the numerical experiments compared to MRT-NEU (cases labeled -2), while both MRT
methods clearly surpass the BGK model in terms of stability. Even though MRT-NEU is
explicitly calibrated to yield higher stability, regularizing the scheme by direct equilibriation
of higher-order non-hydrodynamic moments as in MRT-REG seems to allow for further
moderate stability gain. Between all grid transition types, the volumetric description again
performs the strongest in terms of stability and also accuracy range with both MRT-REG and
MRT-NEU exhibiting negative distribution functions at our terminal value ω̃c

2 = 1.99999
(Reh,b = 3.470× 105), followed this time by the cell-vertex algorithm. Differences to the
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cm algorithm are, however, of minor extent. Since stabilizing fine-to-coarse restriction is
not active in our cv MRT test cases (cf. case overview in Table 2), the stability increase
with MRT-NEU and MRT-REG is probably associated to two aspects: An increase in bulk
viscosity and non-hydrodynamic mode filtering, weakening any destructive and parasitic
contributions that may occur, materializing in the form of spurious oscillations as seen
with the BGK model. Any harmful artifact is thus attenuated before it can reach the grid
transition interface to be amplified.
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Figure 13. Spurious transverse velocity oscillations with temporally increasing amplitude for cv-0
with ω̃c

2 = 1.98317 (Reh,b = 205.04).
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Figure 14. MRT accuracy and stability range comparison for different grid layouts.

Figure 15 summarizes the values of ω̃c
1 and ω̃c

2 of the RR and HRR collision models
for all grid layouts. Here again, differences between the cv algorithm on one side and cc
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and cm on the other in terms of stability range are overcome by the positive effects of the
collision operator: The cell-centered algorithm leads in terms of accuracy range for both,
the RR and HRR model and in terms of stability range for the RR model, followed again by
the cell-vertex and combined layouts. It should be briefly mentioned here again, that the cc
tests for all advanced collision operators except HRR have been contucted exclusively with
uniform explosion (cf. Equation (54)), that means with a degraded first order accuracy as
can be seen in the grid convergence study for the HRR model in Figure 11. Nonetheless,
the differences in terms of stability range compared to linear explosion in Equation (56)
are negligable, as discussed above and depicted in Figure 12 for BGK collision. Similarly,
no difference has been observed in terms of stability range for HRR with linear explosion
and only minor differences are present in the accuracy range map. For lucidity reasons,
test case cc-6 is not depicted in Figure 15 and an extension of the statements made here
regarding cc’s stability range with uniform explosion can be attributed in a straightforward
way to its linear enhancement.

sl-3

sl-4

cv-3

cv-4

cc-3

cc-4

cm-3

cm-4

ω̃c
1 1.9940

1.9705
1.9470
1.9235
1.9000

sl-3

sl-4

cv-3

cv-4

cc-3

cc-4

cm-3

cm-4

ω̃c
2 1.99999

1.99946
1.99893
1.99840

Figure 15. RR/HRR accuracy and stability range comparison for different grid layouts.

The recursive-regularization step aims at filtering out non-hydrodynamic modes by
explicit reconstruction of f (1)i according to Equation (23). Although the basic idea is the
same as in the MRT-REG model discussed earlier, differences in the stability ranges can be
observed when both methods are compared to each other, more precisely, the RR model
does exhibit slightly reduced stability. For example, cv MRT-REG remains in category 2
(cf. Section 5.1) up to ω̃c

2 = 1.99970 (Reh,b = 1.176× 104), while cv RR remains stable only
up to ω̃c

2 = 1.99883 (Reh,b = 2.956× 103), even though a third-order Hermite expansion of
the equilibrium functions is used as compared to a second-order one in MRT model. An
explanation for this can be found in the fact that the MRT model utilized here relies on
a raw moment space built using the Gram–Schmidt orthogonalization procedure based
on an unweighted scalar product [30], while the populations in the RR framework are
derived based on Gauss–Hermite quadrature. The specific choice of relaxation parameters
in the MRT-REG model leads to an increased bulk viscosity compared to the RR model,
contributing to the formers stability.

For the refined cases the highest values in terms of stability and accuracy range can
be found for the Hybrid-Recursive Regularized collision model, regardless of the type
of grid transition in use. All conducted HRR simulations remained in category 2 in our
study, meaning no negative distribution functions have been detected up to the terminal
value, thus yielding ω̃c

2,HRR > 1.99999 (Reh,b = 3.470× 105) in all cases. Besides the
non-hydrodynamic mode filtering properties of the HRR model [12], its accompanying
drastic stability increase is related to the injection of numerical hyper-viscosity through
the usage of a hybridized computation of the stress tensor during the reconstruction of
f (1)i , as expressed in Equation (27) [16,31]. For the single level reference case however, the
finite difference approximation of strain-rates within the stress tensor together with the
rather coarse grid resolution leads to an early increase of the relative arithmetic mean error
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δu beyond the 5% limit of category 1, as can be seen in Figures 15 and 16a. The direct
adjustment of the amount of numerical viscosity νnum through the hybridization factor
σ is depicted in Figure 17 with ω̃c = 1.94990, corrsponding to a bulk Reynolds number
of Reh,b = 67.53. By inserting the numerical velocity into the analytical solution of the
square duct flow (62), solving for kinematic viscosity ν and averaging over all nodes of
the computational domain, the relative amount of total viscosity νtotal/ν = (νnum+ν)/ν is
estimated for all collision models and grid transition algorithms. Interestingly, the RR and
MRT-REG model lead to similar amounts of total viscosity for all grids, with the MRT-REG
slightly above RR, besides showing differences in the stability ranges.

In addition to the values for the HRR hybridization factor used in the stability study,
i.e., σ = 1 (corresponding to the RR model, cf. Equation (27)) and σ = 0.98, the value of
σ = 0.99 is included. The linear trend of numerically induced hyper-viscosity can be clearly
seen by comparing the RR (σ = 1) and two HRR cases with σ = 0.99 and σ = 0.98, i.e., 0%,
1% and 2% of stress tensor approximation through central finite differences, respectively.
Whether the distinct stability gain with the HRR model could have been achieved with
even higher values of hybridization factor, i.e., less added dissipation, will be left open
for future work. Comparing the average levels of added numerical viscosity between
individual grid transition schemes in Figure 17 may give an explanation for the improved
stability properties of the cc algorithm. The increased amount of dissipation introduced
into the flow field relative to the other two approaches could be explained by the implicit
filtering of the complete distribution function fi during coalescence step 6 of Algorithm 3,
as opposed to filtering only the non-equilibrium part f neq

i in step 7 of Algorithm 1 and
step 5 of Algorithm 4. Lagrava et al. [3] mentioned that they observed a strong dissipation
by application of their averaging procedure in Equation (50) to fi or the macroscopic
quantities ρ and u, which lead to the choice of filtering only f neq

i instead. Even though ρ is
similarly interpolated trilinearly in our cm approach for the reconstruction of equilibrium
functions f (0)i on interface nodes, u is obtained through a third-order polynomial expression.
Moreover, f neq

i instead of fi is interpolated trilinearly here. However, further research needs
to be conducted on this regard.

While moderate differences between the grid transition algorithms are evident in terms
of accuracy and stability range in Figures 12–15 with the volumetric approach showing
the highest values for ω̃c

2, the influence of the collision operator is considerably greater
in this respect. This is made even more apparent by a rearrangement of the range maps
juxtaposing different collision operators for each individual grid transition algorithm as it
is shown in Figures 16 and 18. Regardless of the specific interface type in use, the highest
values of ω̃c

2 is achieved exclusively with the HRR collision model, extending beyond
the scope of ω̃c

2 > 1.99999 (Reh,b = 3.470× 105) of our numerical experiments, closely
followed by the two MRT models and then RR, with MRT-REG slightly above MRT-NEU
and lastly BGK.

sl-0

sl-1

sl-2sl-3

sl-4

ω̃c
1 1.999
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1.933
1.900

sl-0

sl-1

sl-2sl-3

sl-4

ω̃c
2 1.99999

1.99833
1.99666
1.99500

(a) Single level grid
Figure 16. Cont.
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ω̃c
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ω̃c
2 1.99999

1.99333
1.98666
1.98000

(b) Cell-vertex layout
Figure 16. Accuracy and stability range comparison for all collision models with single level and
cell-vertex grid.
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Figure 17. Comparison of νtotal/ν for all collision models and grid layouts with ω̃c = 1.94990
(Reh,b = 67.53).
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(a) Cell-centered layout
Figure 18. Cont.
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cm-0

cm-1

cm-2cm-3

cm-4

ω̃c
1 1.9890

1.9875
1.9860
1.9845
1.9830

cm-0

cm-1
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ω̃c
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1.99849
1.99700
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1.99400

(b) Combined layout
Figure 18. Accuracy and stability range comparison for all collision models with cell-centered and
combined grid.

6. Conclusions and Future Work

In this paper, we compared three established lattice Boltzmann grid transition algo-
rithms for hierarchically refined grids in terms of stability and accuracy by conducting
a series of numerical experiments for a square duct flow test case. Depending on the
specific arrangement of the nodes on the individual grid levels relative to each other, a
distinction can be made between the cell-vertex (cv), cell-centered (cc), and a combined
approach (cm). In order to simultaneously assess the influence of the collision operator,
the classical BGK model was included in the study in addition to three advanced collision
models, namely a Multi Relaxation Time model (MRT) with two sets of relaxation times
and the Recursive Regularized (RR) and Hybrid-Recursive Regularized (HRR) models.
HRR collision involves hybridization of the stress tensor calculation in the Hermite series
reconstruction of first-order non-equilibrium functions f (1)i through the usage of central
finite differences. Since this is not straightforward and the three grid types differ in the
communication between fine and coarse neighbor nodes in the grid transition region, an
adaptation of the HRR procedure, which was originally presented for cv type grids, to cc
and cm layouts was introduced and validated by comparison with the analytical solution
for the duct flow and a grid convergence study. The adapted procedures demonstrated
excellent agreement between numerical and analytical results and conserved second-order
spatial accuracy of the LB scheme.

A total of three categories were introduced for an assessment of the accuracy and
stability range. The first two categories differ in whether the relative deviation of the
calculated duct flow to its analytical solution exceeds a fixed barrier of five percent, defining
the accuracy range, while the transition from the second to the third category requires the
occurrence of unphysical negative values of distribution functions fi, defining the stability
range. For each case in the study, place value within the category was evaluated by finding
the maximum value of the dimensionless coarse grid collision frequency ω̃c

1 and ω̃c
2 that

just meets the requirements/avoids of the respective category 1 or 2, respectively.
Amongst all tests, cv with BGK collision expectedly showed the weakest stability. It

turned out that the onset of instability is linked to the occurence of spurious transverse
velocity oscillations that occur probably through the interactions of non-hydrodynamic
modes with the grid transition interface. By including a filtering operation during the
fine-to-coarse communication in the cv algorithm, the accuracy and stability range of cv
BGK were enhanced, reaching corresponding values of its cm counterpart, where this
filtering is granted per se by the interpolations necessary during coupling steps. However,
further work is needed regarding the relation between the onset of instability, the occurence
of spurious oscillations and how they can be partially suppressed by a restriction of fine
populations when transferring them to the coarse grid.
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With advanced collision operators, i.e., all except BGK, weaknesses of the cv grid
transition scheme regarding stability and accuracy ranges could be overcome without the
use of an explicit filtering step, extending both ranges towards the immediate vicinity of
the cm scheme, both methods, however, with a moderate distance to the cc algorithm. A
hint on the latter’s superior stability range was given by inserting the numerically obtained
flow field into the analytical solution for the square duct flow and solving for the viscosity
in order to quantify the relative amount of total viscosity of the system, averaged over
the whole domain ν̄total/ν. The cc algorithm exhibits an increased amount of numerical
dissipation, possibly linked to the implicit filtering of the complete distribution function
during coalescence, instead of only the non-equilibrium part as is done in the cv filtering
step and trilinear interpolation of the cm scheme. A deeper look into this phenomenon will
be left open for future work.

The highest increase in stability was found independently of the specific grid layout,
by use of the HRR collision operator. Even with a hybridization factor of σ = 0.98,
i.e., two percent of stress tensor reconstruction through central finite differences, an
increase in stability range beyond the scope of our terminal ω̃c

2 > 1.99999 value, meaning
no negative distribution functions were detected with this collision operator in our
study up to a bulk Reynolds number of Reh,b = 3.470× 105. This leads to the final
conclusion that, although peculiar features of the different grid transition schemes
can influence the stability to a certain extent, the effect of the collision model is far
more crucial. Similar conclusions regarding the impact of the collision model have
been drawn by Astoul et al. [41]. The possibility of adjusting the amount of stabilizing
numerical hyper-viscosity injection by the hybridization in the HRR model, was shown
by evaluating ν̄total/ν as described above, for three distinct σ values. The influence
of various hybridization parameter values on the stability range of the different grid
transition schemes will be examined in the future.

This paper represents the first part of an investigation to better understand the rela-
tionships between different grid refinement algorithms in the lattice Boltzmann context
and their peculiar properties. In a forthcoming study, this will be extended to turbulent
flows and grid transitions of varying orientation relative to the flow. Moreover, an analy-
sis regarding the properties of the various refinement schemes in aeroacoustic scenarios
is planned.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics
LBM Lattice Boltzmann method
BGK Bhatnagar–Gross–Krook
MRT Multiple relaxation time
REG Regularized model
NEU von Neumann analysis
RR Recursive regularized
HRR Hybrid-recursive regularized
HRRψ Hybrid-recursive regularized model with cubic correction terms
LBE Lattice Boltzmann equation
SRT Single relaxation time
RMS Root mean square
cv Cell-vertex
cc Cell-centered
cm Combined
sl Single level

Appendix A. Multiple Relaxation Time Collision Model

Transformation matrix M

(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)1
(−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1)ξ̃2

(1 −2−2−2−2−2−2 1 1 1 1 1 1 1 1 1 1 1 1)ξ̃4

(0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0)ξ̃
(0 −2 2 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0)ξ̃3

(0 0 0 1 −1 0 0 1 −1−1 1 0 0 0 0 1 −1 1 −1)ξ̃
(0 0 0 −2 2 0 0 1 −1−1 1 0 0 0 0 1 −1 1 −1)ξ̃3

(0 0 0 0 0 1 −1 0 0 0 0 1 −1−1 1 1 −1−1 1)ξ̃
(0 0 0 0 0 −2 2 0 0 0 0 1 −1−1 1 1 −1−1 1)ξ̃3

(0 2 2 −1−1−1−1 1 1 1 1 1 1 1 1 −2−2−2−2)ξ̃2

(0 −2−2 1 1 1 1 1 1 1 1 1 1 1 1 −2−2−2−2)ξ̃4

(0 0 0 1 1 −1−1 1 1 1 1 −1−1−1−1 0 0 0 0)ξ̃2

(0 0 0 −1−1 1 1 1 1 1 1 −1−1−1−1 0 0 0 0)ξ̃4

(0 0 0 0 0 0 0 1 1 −1−1 0 0 0 0 0 0 0 0)ξ̃2

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1−1)ξ̃2

(0 0 0 0 0 0 0 0 0 0 0 1 1 −1−1 0 0 0 0)ξ̃2

(0 0 0 0 0 0 0 1 −1 1 −1−1 1 −1 1 0 0 0 0)ξ̃3

(0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1)ξ̃3

(0 0 0 0 0 0 0 0 0 0 0 1 −1−1 1 −1 1 1 −1)ξ̃3



(A1)

Equilibrium moments for the MRT collision model
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0 = ρ m(0)

1 = ρu2

m(0)
3 = ρux m(0)

5 = ρuy
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7 = ρuz m(0)

9 = ρ
(

2u2
x − u2
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z

)
m(0)

11 = ρ
(

u2
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z

)
m(0)

13 = ρuxuy

m(0)
14 = ρuyuz m(0)

15 = ρuxuz

m(0)
2 = m(0)

4 = m(0)
6 = m(0)

8 = m(0)
10 = m(0)

12 = m(0)
16 = m(0)

17 = m(0)
18 = 0 (A2)
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Appendix B. Cubic Mach Correction For D3Q19 Lattice

To correct theO
(

Ma3
)

error in the stress tensor, resulting from insufficient quadrature
order of the D3Q19 lattice, Feng et al. [46] proposed cubic Mach correction terms of the
following form:

ψi =
wi

2c4
s

[
H(2)

i,xx
(
∂xΨxxx + ∂yΨxxy + ∂zΨxxz

)
+H(2)

i,yy
(
∂xΨxyy + ∂yΨyyy + ∂zΨyyz

)
+H(2)

i,zz
(
∂xΨxzz + ∂yΨyzz + ∂zΨzzz

)
+2H(2)

i,xy
(
∂xΨxxy + ∂yΨxyy + ∂zΨxyz

)
+2H(2)

i,xz
(
∂xΨxxz + ∂yΨxyz + ∂zΨxzz

)
+2H(2)

i,yz
(
∂xΨxyz + ∂yΨyyz + ∂zΨyzz

)]
,

(A3)

with deviation terms in the athermal model employed here, given as:

Ψααα = ρu3
α

Ψααβ =
1
2

ρuβu2
γ

Ψαβγ = ρuαuβuγ. (A4)

Spatial derivatives are approximated using second-order centered finite differences [41]:

∂αΨαβγ ≈
Ψαβγ(x + eα∆x)−Ψαβγ(x− eα∆x)

2∆x
. (A5)

Appendix C. Gradient-Based Velocity Interpolation Coefficients

In addition to the eight known base point velocities uBi , i = 0 . . . 7, further constraints
are needed in order to solve for the 33 unknown interpolation coefficients in Equation (59).
For this purpose, we average strain-rates on each cell face and utilize these averaged values
in second-order centered finite difference approximations of strain-rate gradients in the
cell center. For example, given a cell nomenclature as depicted in Figure A1, x-direction
gradients of strain-rates are discretized as:

Figure A1. Base point nomenclature for compact gradient-based velocity interpolation.

∂xS̄αβ|(0,0,0) ≈
S̄αβ

(
−∆x

2 ,0,0
)
− S̄αβ

(
+∆x

2 ,0,0
)

∆x
, (A6)
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where S̄αβ are cell-face-averaged strain rates, evaluated using local strain rates Sαβ,Bi
from second-order non-equilibrium moments computed at base points defining respective
face corners:

S̄αβ

(
−∆x

2
,0,0
)
=

1
4
(
Sαβ,B0 + Sαβ,B3 + Sαβ,B4 + Sαβ,B7

)
(A7)

S̄αβ

(
+

∆x
2

,0,0
)
=

1
4
(
Sαβ,B1 + Sαβ,B2 + Sαβ,B5 + Sαβ,B6

)
. (A8)

With this, a sufficient number of contraints is established and the compact gradient-
based interpolation coefficients can be determined by solving the corresponding matrix-
vector equation. The coefficients can be summarized as follows.
Zeroth-order x-direction coefficient:

ax,000=
1
8
(
ux,B0+ux,B1+ux,B2+ux,B3+ux,B4+ux,B5+ux,B6+ux,B7

)
+

1
16
(
uy,B0−uy,B1+uy,B2−uy,B3+uy,B4−uy,B5+uy,B6−uy,B7

)
+

1
16
(
uz,B0−uz,B1−uz,B2+uz,B3−uz,B4+uz,B5+uz,B6−uz,B7

)
+

∆x
32
(
Sxx,B0−Sxx,B1−Sxx,B2+Sxx,B3+Sxx,B4−Sxx,B5−Sxx,B6+Sxx,B7

)
+

∆x
16
(
Sxy,B0+Sxy,B1−Sxy,B2−Sxy,B3+Sxy,B4+Sxy,B5−Sxy,B6−Sxy,B7

)
+

∆x
16
(
Sxz,B0+Sxz,B1+Sxz,B2+Sxz,B3−Sxz,B4−Sxz,B5−Sxz,B6−Sxz,B7

)
(A9)

First-order x-direction coefficient:

ax,100=−
1

4∆x
(
ux,B0−ux,B1−ux,B2+ux,B3+ux,B4−ux,B5−ux,B6+ux,B7

)
ax,010=−

1
4∆x

(
ux,B0+ux,B1−ux,B2−ux,B3+ux,B4+ux,B5−ux,B6−ux,B7

)
ax,001=−

1
4∆x

(
ux,B0+ux,B1+ux,B2+ux,B3−ux,B4−ux,B5−ux,B6−ux,B7

)
(A10)

Second-order x-direction coefficient:

ax,200=−
1

8∆x
(
Sxx,B0−Sxx,B1−Sxx,B2+Sxx,B3+Sxx,B4−Sxx,B5−Sxx,B6+Sxx,B7

)
ax,020=−

1
4∆x2

(
uy,B0−uy,B1+uy,B2−uy,B3+uy,B4−uy,B5+uy,B6−uy,B7

)
− 1

4∆x
(
Sxy,B0+Sxy,B1−Sxy,B2−Sxy,B3+Sxy,B4+Sxy,B5−Sxy,B6−Sxy,B7

)
ax,002=−

1
4∆x2

(
uz,B0−uz,B1−uz,B2+uz,B3−uz,B4+uz,B5+uz,B6−uz,B7

)
− 1

4∆x
(
Sxz,B0+Sxz,B1+Sxz,B2+Sxz,B3−Sxz,B4−Sxz,B5−Sxz,B6−Sxz,B7

)
ax,110=

1
2∆x2

(
ux,B0−ux,B1+ux,B2−ux,B3+ux,B4−ux,B5+ux,B6−ux,B7

)
ax,101=

1
2∆x2

(
ux,B0−ux,B1−ux,B2+ux,B3−ux,B4+ux,B5+ux,B6−ux,B7

)
ax,011=

1
2∆x2

(
ux,B0+ux,B1−ux,B2−ux,B3−ux,B4−ux,B5+ux,B6+ux,B7

)
(A11)

Third-order x-direction coefficient:

ax,111=−
1

∆x3

(
ux,B0−ux,B1+ux,B2−ux,B3−ux,B4+ux,B5−ux,B6+ux,B7

)
(A12)
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Zeroth-order y-direction coefficient:

ay,000 =
1
8

(
uy,B0+uy,B1+uy,B2+uy,B3+uy,B4+uy,B5+uy,B6+uy,B7

)
+

1
16
(
ux,B0−ux,B1+ux,B2−ux,B3+ux,B4−ux,B5+ux,B6−ux,B7

)
+

1
16
(
uz,B0+uz,B1−uz,B2−uz,B3−uz,B4−uz,B5+uz,B6+uz,B7

)
+

∆x
32

(
Syy,B0+Syy,B1−Syy,B2−Syy,B3+Syy,B4+Syy,B5−Syy,B6−Syy,B7

)
+

∆x
16

(
Sxy,B0−Sxy,B1−Sxy,B2+Sxy,B3+Sxy,B4−Sxy,B5−Sxy,B6+Sxy,B7

)
+

∆x
16

(
Syz,B0+Syz,B1+Syz,B2+Syz,B3−Syz,B4−Syz,B5−Syz,B6−Syz,B7

)
(A13)

First-order y-direction coefficient:

ay,100 =−
1

4∆x

(
uy,B0−uy,B1−uy,B2+uy,B3+uy,B4−uy,B5−uy,B6+uy,B7

)
ay,010 =−

1
4∆x

(
uy,B0+uy,B1−uy,B2−uy,B3+uy,B4+uy,B5−uy,B6−uy,B7

)
ay,001 =−

1
4∆x

(
uy,B0+uy,B1+uy,B2+uy,B3−uy,B4−uy,B5−uy,B6−uy,B7

)
(A14)

Second-order y-direction coefficient:

ay,200 =−
1

4∆x2

(
ux,B0−ux,B1+ux,B2−ux,B3+ux,B4−ux,B5+ux,B6−ux,B7

)
− 1

4∆x

(
Sxy,B0−Sxy,B1−Sxy,B2+Sxy,B3+Sxy,B4−Sxy,B5−Sxy,B6+Sxy,B7

)
ay,020 =−

1
8∆x

(
Syy,B0+Syy,B1−Syy,B2−Syy,B3+Syy,B4+Syy,B5−Syy,B6−Syy,B7

)
ay,002 =−

1
4∆x2

(
uz,B0+uz,B1−uz,B2−uz,B3−uz,B4−uz,B5+uz,B6+uz,B7

)
− 1

4∆x

(
Syz,B0+Syz,B1+Syz,B2+Syz,B3−Syz,B4−Syz,B5−Syz,B6−Syz,B7

)
ay,110 =

1
2∆x2

(
uy,B0−uy,B1+uy,B2−uy,B3+uy,B4−uy,B5+uy,B6−uy,B7

)
ay,101 =

1
2∆x2

(
uy,B0−uy,B1−uy,B2+uy,B3−uy,B4+uy,B5+uy,B6−uy,B7

)
ay,011 =

1
2∆x2

(
uy,B0+uy,B1−uy,B2−uy,B3−uy,B4−uy,B5+uy,B6+uy,B7

)
(A15)

Third-order y-direction coefficient:

ay,111 =−
1

∆x3

(
uy,B0−uy,B1+uy,B2−uy,B3−uy,B4+uy,B5−uy,B6+uy,B7

)
(A16)

Zeroth-order z-direction coefficient:

az,000 =
1
8
(
uz,B0+uz,B1+uz,B2+uz,B3+uz,B4+uz,B5+uz,B6+uz,B7

)
+

1
16
(
ux,B0−ux,B1−ux,B2+ux,B3−ux,B4+ux,B5+ux,B6−ux,B7

)
+

1
16

(
uy,B0+uy,B1−uy,B2−uy,B3−uy,B4−uy,B5+uy,B6+uy,B7

)
+

∆x
32
(
Szz,B0+Szz,B1+Szz,B2+Szz,B3−Szz,B4−Szz,B5−Szz,B6−Szz,B7

)
+

∆x
16
(
Sxz,B0−Sxz,B1−Sxz,B2+Sxz,B3+Sxz,B4−Sxz,B5−Sxz,B6+Sxz,B7

)
+

∆x
16

(
Syz,B0+Syz,B1−Syz,B2−Syz,B3+Syz,B4+Syz,B5−Syz,B6−Syz,B7

)
(A17)
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First-order y-direction coefficient:

az,100 =−
1

4∆x
(
uz,B0−uz,B1−uz,B2+uz,B3+uz,B4−uz,B5−uz,B6+uz,B7

)
az,010 =−

1
4∆x

(
uz,B0+uz,B1−uz,B2−uz,B3+uz,B4+uz,B5−uz,B6−uz,B7

)
az,001 =−

1
4∆x

(
uz,B0+uz,B1+uz,B2+uz,B3−uz,B4−uz,B5−uz,B6−uz,B7

)
(A18)

Second-order z-direction coefficient:

az,200 =−
1

4∆x2

(
ux,B0−ux,B1−ux,B2+ux,B3−ux,B4+ux,B5+ux,B6−ux,B7

)
− 1

4∆x
(
Sxz,B0−Sxz,B1−Sxz,B2+Sxz,B3+Sxz,B4−Sxz,B5−Sxz,B6+Sxz,B7

)
az,020 =−

1
4∆x2

(
uy,B0+uy,B1−uy,B2−uy,B3−uy,B4−uy,B5+uy,B6+uy,B7

)
− 1

4∆x

(
Syz,B0+Syz,B1−Syz,B2−Syz,B3+Syz,B4+Syz,B5−Syz,B6−Syz,B7

)
az,002 =−

1
8∆x

(
Szz,B0+Szz,B1+Szz,B2+Szz,B3−Szz,B4−Szz,B5−Szz,B6−Szz,B7

)
az,110 =

1
2∆x2

(
uz,B0−uz,B1+uz,B2−uz,B3+uz,B4−uz,B5+uz,B6−uz,B7

)
az,101 =

1
2∆x2

(
uz,B0−uz,B1−uz,B2+uz,B3−uz,B4+uz,B5+uz,B6−uz,B7

)
az,011 =

1
2∆x2

(
uz,B0+uz,B1−uz,B2−uz,B3−uz,B4−uz,B5+uz,B6+uz,B7

)
(A19)

Third-order z-direction coefficient:

az,111 =−
1

∆x3

(
uz,B0−uz,B1+uz,B2−uz,B3−uz,B4+uz,B5−uz,B6+uz,B7

)
(A20)

Appendix D. Normalized Square Duct Velocity Profiles
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(c) MRT, regularized approach
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(d) MRT, relaxation factors from linear analysis
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Figure A2. Normalized square duct velocity profiles for various tested models with ω̃c = 1.94990
(Reh,b = 67.53).
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