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Abstract: Turbulence in fluids is an ubiquitous phenomenon, characterized by spontaneous transition
of a smooth, laminar flow to rapidly changing, chaotic dynamics. In 1883, Reynolds experimentally
demonstrated that, in an initially laminar flow of water, turbulent motions emerge without any
measurable external disturbance. To this day, turbulence remains a major unresolved phenomenon
in fluid mechanics; in particular, there is a lack of a mathematical model where turbulent dynamics
emerge naturally from a laminar flow. Recently, we proposed a new theory of turbulence in gases,
according to which turbulent motions are created in an inertial gas flow by the mean field effect of the
intermolecular potential. In the current work, we investigate the effect of viscosity in our turbulence
model by numerically simulating the air flow at normal conditions in a straight pipe for different
values of the Reynolds number. We find that the transition between laminar and turbulent flow in
our model occurs, without any deliberate perturbations, as the Reynolds number increases from
2000 to 4000. As the simulated flow becomes turbulent, the decay rate of the time averaged Fourier
spectrum of the kinetic energy in our model approaches Kolmogorov’s inverse five-thirds law. Both
results are consistent with experiments and observations.

Keywords: turbulence; intermolecular potential; Reynolds number

1. Introduction

Historically, the phenomenon of turbulence in fluids was noted by Leonardo da Vinci.
However, its first scientifically documented account was due to Boussinesq [1], while the
word “turbulence” itself was suggested by Thomson, Lord Kelvin [2]. In his famous experi-
ment, Reynolds [3] demonstrated that a laminar flow of water spontaneously developed
turbulent motions without any measurable external disturbances and that the onset of
turbulence was reliably associated with a sufficiently high value of the Reynolds number.
Later, Kolmogorov [4–6] found that the time-averaged Fourier spectrum of the kinetic
energy of turbulent air flow decayed as the inverse five-thirds power of its wavenumber.

Despite overwhelming research efforts spanning multiple decades [7–23], the phe-
nomenon of turbulence in gases and liquids remains unexplained, namely, an adequate
fluid-mechanical model does not exist, for either a liquid or a gas, where, at appropriate
values of the Reynolds number, turbulent flow naturally emerges from laminar initial and
boundary conditions in the absence of artificial external disturbances. As examples, one
can refer to relatively recent works [24–27], where turbulent-like motions in a numerically
simulated flow had to be created artificially by deliberate perturbations. In reality, turbu-
lence emerges spontaneously by itself, even if all reasonable measures are taken to preserve
the laminarity of the flow (e.g., the experiment of Reynolds [3])—moreover, it was precisely
the spontaneity of the onset of turbulence that attracted world-wide scientific interest to
this intriguing phenomenon.

A different approach to model turbulence is based on the concept of “eddy viscosity”,
first proposed by Boussinesq [1]. This approach has been actively explored in numerical
turbulence modeling, with methods such as Reynolds-Averaged Navier–Stokes equations
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(RANS) or large eddy simulation (LES) gaining popularity (refer, e.g., to Wilcox [28]
or Ferziger and Perić [29] for a detailed exposition). However, evidence has emerged
lately [30,31] that this concept fails to describe a freely developing turbulence.

In our recent works [32–35], we proposed a theory of turbulence in a gas, where
turbulent motions in an initially laminar, inertial (that is, constant pressure) flow were
created via the average effect of gas molecules interacting by means of their intermolecular
potential φ(r). In our theory, this average effect is expressed via the mean field potential φ̄
(which, of course, depends on φ(r)), whose gradient enters the equation for the transport
of momentum. According to our theory, in the absence of the pressure gradient, the effect
of φ̄ becomes the key driving force of turbulent dynamics. This novel effect is absent
from the conventional Euler and Navier–Stokes equations of fluid mechanics because;
in the Boltzmann–Grad limit [36], it is tacitly assumed that the effect of φ̄ is negligible.
However, we found that, in our model of inertial gas flow, φ̄ produces turbulent flow
with Kolmogorov decay of the Fourier spectra of the kinetic energy. Evidently, its effect is
non-negligible and quantifiable.

Remarkably, Tsugé [37] attempted to explain the creation of turbulence via long-range
correlations between molecules, but Tsugé’s result was restricted to an incompressible flow.
On the other hand, from what we discovered thus far, it appears that density fluctuations
are instrumental in the creation of turbulent dynamics. In our past work [38], we also
considered long-range interactions as a possible reason for the manifestation of turbulence.
However, we later found that even the hard sphere potential creates turbulence in our
model, which means that a typical intermolecular potential is also capable of the same effect.

Thus far, our model of turbulent gas flow did not include viscous effects. In the current
work, we equip the momentum transport equation of our model with the standard viscous
term, which counteracts the effect of the mean field potential (i.e., φ̄ creates turbulent
motions, while the viscosity dissipates them). We numerically simulate the air flow at
normal conditions within a straight pipe at different values of the Reynolds number
and find that the transition between the laminar and turbulent flow in our model occurs
within the same range of values of the Reynolds number as observed in practice [39,40].
Additionally, we find that, for turbulent values of the Reynolds number, the rate of decay
of the time-averaged Fourier spectrum of the kinetic energy of the flow approaches the
famous Kolmogorov decay rate of the inverse five-thirds power of the wavenumber.

The work is organized as follows. In Section 2, we present the inviscid model of
inertial flow with the mean field potential and demonstrate that, at a low Mach number,
the effect of the mean field potential in nondimensional variables is of the same order as the
rest of the terms. In Section 3, we add viscosity into the momentum equation in a standard
fashion. In Section 4, we present the results of a numerical simulation of the air flow at
normal conditions in a straight pipe and show that the laminar-to-turbulent transition
occurs as the Reynolds number increases from 2000 to 4000. Section 5 summarizes the
results of this work.

2. Our Model of Inertial Turbulent Gas Flow

In the context of our theory [32–34], the turbulent flow of a gas with density ρ and
velocity u, at a constant pressure p0 (inertial flow) and in the absence of viscous effects, is
described by the following mass and momentum transport equations

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)
∂t

+∇ · (ρu2) +∇φ̄ = 0. (2)

Above, observe that Equation (2) for the transport of momentum possesses a novel
term ∇φ̄, which replaces the pressure gradient in the conventional Euler or Navier–Stokes
equations. This term quantifies the average (or “mean field”) effect of the motion of
molecules of mass m, interacting via a potential φ(r). Therefore, in our preceding works we
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referred to φ̄ as the mean field potential. For a general short-range intermolecular potential
φ(r), in our work [34] we computed φ̄ via

φ̄ =
2πp0ρ

3m

∫ ∞

0

(
1− e−φ(r)/θ

) ∂

∂r
(
r3Y(r)

)
dr, (3)

where θ = p0/ρ is the kinetic temperature, and Y(r) is the pair cavity distribution func-
tion [41]. Under the assumption that the gas is sufficiently dilute (i.e., Y ≈ 1) and that the
intermolecular potential φ(r) can be approximated via the hard sphere potential with the
effective range σ,

φHS(r) =
{

0 , r ≥ σ,
∞, r < σ,

(4)

the general formula in Equation (3) simplifies to

φ̄HS =
4p0ρ

ρHS
, (5)

where ρHS = 6 m/πσ3 is the density of the equivalent hard sphere of mass m and diame-
ter σ. Substituting φ̄HS from Equation (5) into Equation (2) yields

∂(ρu)
∂t

+∇ · (ρu2) +
4p0

ρHS
∇ρ = 0. (6)

This novel effect is absent from the conventional Euler and Navier–Stokes equations
of fluid mechanics because, in the Boltzmann–Grad hydrodynamic limit (see Grad [36],
pp. 352–353), it is assumed that σ2/m∼constant as m and σ are taken to zero, and therefore
ρHS → ∞. However, it can be shown that, in the nondimensional variables, the effect
of the mean field potential in the inertial flow is comparable to the rest of the terms at
sufficiently low Mach numbers. Indeed, let us rescale the variables in Equations (1) and (6)
in a standard fashion by introducing the reference values of spatial scale L, flow speed U,
and density ρ0:

t̃ =
U
L

t, x̃ =
x
L

, ρ̃ =
ρ

ρ0
, ũ =

u
U

. (7)

In addition, we denote the packing fraction η and the Mach number Ma via

η =
ρ0

ρHS
, Ma = U

√
ρ0

γp0
, (8)

where γ is the adiabatic exponent of the gas. In the nondimensional variables, Equation (1)
for density remains the same, while Equation (6) for momentum becomes

∂(ρ̃ũ)
∂t̃

+ ∇̃ · (ρ̃ũ2) + α∇̃ρ̃ = 0, α =
4η

γMa2 . (9)

For air, γ = 1.4, and ρHS = 1850 kg/m3 (see Equation (64) in our work [33] for details).
Under normal conditions (sea level, 20 ◦C), we have ρ0 = 1.204 kg/m3, and p0 = 101.3 kPa.
As a result, the packing fraction η ≈ 6.5 · 10−4. Additionally, taking U = 30 m/s, as in
the numerical simulations below, we obtain Ma ≈ 8.74 · 10−2. Combining the estimates,
we arrive at α ≈ 0.24, for the settings of our numerical simulations below. Moreover,
reducing the speed of the flow to 15 m/s leads to α ≈ 1. This confirms that the mean
field effect of the intermolecular potential at normal conditions and relatively low Mach
numbers is not negligible and certainly does not vanish as presumed in the Boltzmann–
Grad limit. Additionally, we found via numerical simulations in [32–34] that the system
of Equations (1) and (6) produces distinctly turbulent flow with Kolmogorov decay of the
Fourier spectra of the kinetic energy with the mean field potential present and develops
purely laminar flow with no signs of turbulence when the mean field potential is removed
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(compare Figures 2 and 3 in our work [34]). Evidently, the effect of mean field potential is
non-negligible and quantifiable.

3. A Model of Inertial Turbulent Gas Flow with Viscosity

Due to the absence of viscosity, numerical solutions of Equations (1) and (6) always
develop turbulent dynamics from an initially laminar flow [32–34]. In the current work, we
add the standard viscous term with the dynamic viscosity µ into Equation (6):

∂(ρu)
∂t

+∇ · (ρu2) +
4p0

ρHS
∇ρ = ∇ · (µ∇u). (10)

According to kinetic theory of gases [42,43], µ is proportional to the square root of
the temperature. In a gas, the product of temperature and density is proportional to the
pressure, which, in turn, is constant in an inertial gas flow. Therefore, in our setting,

µ = µ0

√
ρ0

ρ
, (11)

where µ0 is the reference value of viscosity. In the nondimensional variables,
Equation (10) becomes

∂(ρ̃ũ)
∂t̃

+ ∇̃ · (ρ̃ũ2) + α∇̃ρ̃ =
1

Re
∇̃ ·

(
ρ̃−1/2∇̃ũ

)
, (12)

where the Reynolds number Re is given via

Re =
ρ0UL

µ0
. (13)

It is clear that, in this model, turbulent flow cannot emerge if the coefficients of the
forcing and dissipative terms are balanced, that is, Re = α−1 ≈ 4.1 in our setting. However,
for Re� α−1, the manifestation of turbulent flow depends on the geometry of the domain.
In particular, it is known from observations and practical engineering knowledge [39]
that the transition between laminar and turbulent gas flow in straight pipes occurs within
the range of values of the Reynolds number between 2000 and 4000, with the parameters
L and U in Equation (13) being the width of the pipe and the maximum speed of the
flow, respectively.

We have to note that, in general, the presence of viscosity in a flow induces pressure
variations due to viscous friction; yet, above we introduced viscosity into Equation (10) for
the transport of momentum rather formally, without accounting for such an effect. Thus,
the system of Equations (1) and (10) should not be viewed as a practical method for accurate
prediction of a real-world gas flow. Instead, it should be treated as a “proof-of-concept”
model, whose purpose is to investigate how the relation between the mean field potential
forcing and viscous dissipation alone results in the manifestation of turbulence in a gas
flow, and at which values of the Reynolds number such a transition occurs.

To confirm that our model is suitable for the above stated purpose, first observe that,
in an established laminar solution of the conventional Navier–Stokes system, expressed in
the nondimensional variables, the term with the pressure gradient, induced by the viscous
friction, must be comparable to the viscous term itself (that is, ∼Re−1). In the numerical
simulations below, we find that a laminar flow still develops for Re = 1000, which is also
the smallest value of the Reynolds number used. This, in turn, means that, for α ≈ 0.24
in Equation (12), the effect of the induced pressure gradient would be ∼240 times smaller
than that of the mean field potential term and could, therefore, be disregarded.
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4. Numerical Simulations

To investigate whether or not our model predicts the transition to a turbulent flow
within a realistic range of values of the Reynolds number, here we present numerical
simulations of an inertial air flow at normal conditions in a straight pipe. As in our
recent works, we use the appropriately modified rhoCentralFoam solver [44], which uses
the central discretization scheme of Kurganov and Tadmor [45], with the flux limiter
of van Leer [46]. The rhoCentralFoam solver is a standard component of the OpenFOAM
suite [47].

Here, we simulate the inertial air flow in a straight pipe of a square cross-section, using
Equations (1) and (10), with p0 = 101.3 kPa, and ρHS = 1850 kg/m3. The size of the pipe is
36× 5.2× 5.2 cm3. The domain is uniformly discretized in all directions with the step of
0.8 mm, which comprises 450× 65× 65 = 1,901,250 finite volume cells in total. The pipe is
open-ended at the outlet side and has a wall at the inlet side, with the circular inlet of 1 cm
in diameter located in the middle of this wall. The longitudinal section of the domain is
shown in Figure 1.

0 10 20 30

-2

-1

0

1

2

c
m

cm

Figure 1. Longitudinal section of the computational domain. The domain dimensions are
36× 5.2× 5.2 cm3. The inlet is on the left, and the outlet is on the right. The pipe walls are shown via
thick black lines, so that both the inlet and outlet are visible. The boundary of the Fourier spectrum
measurement region is shown in red. This region is a box of 24 cm in length and 3.6× 3.6 cm2

in cross-section.

The boundary conditions are as follows. The density is set to ρ = 1.204 kg/m3 at
the outlet and has zero normal derivative at the inlet and the walls. The velocity has zero
normal derivative at the outlet, no-slip condition at the walls, and a radially symmetric
parabolic profile at the inlet, with a maximum of 30 m/s in the middle of the inlet, directed
along the axis of the pipe. The diameter of the inlet, and the speed of the entering flow,
correspond to the experiment by Buchhave and Velte [48]. Initially, the gas inside the pipe
is at rest, with zero velocity and uniform density set to 1.204 kg/m3.

We conducted numerical simulations of Equations (1) and (10) for the values of the
Reynolds number Re = 1000, 2000, 3000, and 4000, by setting the reference viscosity µ0
to 1.872 · 10−3, 9.36 · 10−4, 6.24 · 10−4, and 4.68 · 10−4 kg/m s, respectively. We integrated
Equations (1) and (10) forward in time using the explicit (forward Euler) scheme for the
advection and mean field potential forcing terms, and the implicit (backward Euler) scheme
for the viscous term. The forward time stepping of the scheme was adaptive, with the time
step set to 20% of the maximal allowed by the Courant number.

Here, observe that the goal of the simulation is not the local accuracy of the solution
but rather the accurate capture of the statistical regime of the dynamics (and, in particular,
the transition to nonlinear chaos). This means that the numerical integration scheme should
be chosen to avoid the introduction of artificial damping into the advection part of the
system. Due to this reason, the simple forward Euler method appears to be better for such a
specific purpose than more advanced numerical integration schemes, such as the 4th order
Runge–Kutta method, since the latter tend to introduce artificial damping into numerical
solutions as a result of their superior stability properties [49].

Results

We found that the flow fully developed by the elapsed time t = 0.07 s in all simulations.
In Figure 2, we show four snapshots of the speed of the flow, taken in the longitudinal



Fluids 2023, 8, 101 6 of 9

symmetry plane of the pipe at t = 0.15 s, which illustrates the transition between the laminar
and turbulent flow. For Re = 1000, the flow is laminar, as evidenced by the smoothness of
the level curves, and symmetric relative to the axis of the pipe. For Re = 2000, the symmetry
of the flow is broken, and small intermittent fluctuations appear in the otherwise laminar
flow. These fluctuations become larger and more numerous for Re = 3000; for Re = 4000,
the flow is fully turbulent. Clearly, the range of values of the Reynolds number, at which
the turbulent transition occurs in our model, agrees with observations [39]. The breaking
of the flow symmetry during the transition to turbulence is likely associated with the onset
of chaos in the dynamics, and, in numerical simulations, happens due to exponentially
growing machine round-off errors. The hypothesis that turbulence is a manifestation of
nonlinear chaos has also been discussed in the literature (see Letellier [40] and references
therein).

0 10 20 30

-2

-1

0

1

2

(a) Re=1000

0 10 20 30

-2

-1

0

1

2

(b) Re=2000

0 10 20 30

-2

-1

0

1

2

(c) Re=3000

0 10 20 30

-2

-1

0

1

2

(d) Re=4000

5 10 15 20 25 30

Figure 2. Speed of the flow (m/s), expressed in the form of level curves, and captured in the
longitudinal symmetry plane of the pipe at the elapsed time t = 0.15 s for (a) Re = 1000, (b) Re = 2000,
(c) Re = 3000, and (d) Re = 4000.

In addition to the snapshots of the speed of the flow, we computed the time averages
of its kinetic energy spectrum. The computation was done within the central core of the
pipe of 3.6× 3.6 cm2 in cross-section, extending between 0 and 24 cm of the length of
the pipe (shown in red in Figure 1) and thus largely containing the jet stream. The time
averaging was carried out in the interval between 0.1 and 0.2 s of the elapsed time. For the
detailed description of the energy spectrum computation, see our recent works [32–34].

In Figure 3, we show time averages of the computed Fourier spectra of the streamwise
component of the kinetic energy for the same simulated flows, which are displayed as
functions of their Fourier wavenumber kx in the longitudinal direction of the pipe on a
logarithmic scale. In addition, we show the kinetic energy spectrum for the simulation
with µ0 = 1.825 · 10−5 kg/m s (Re∼105), which corresponds to the viscosity of air at normal
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conditions. For the reference, we show two power slope lines, given via E0k−8/3
x and

E0k−5/3
x , which share the same empirically chosen scaling constant E0 = 20 m2/s2.

10
0 10

1
10

2

10
-4

10
-3

10
-2

10
-1

10
0

k
x

|E
x
|,

 m
2
/s

2

Kinetic energy spectrum

Re=1000

Re=2000

Re=3000

Re=4000

Simulated air

20 k
x

-8/3
 (lower), 20 k

x

-5/3
 (upper)

Figure 3. The Fourier spectra of the kinetic energy, averaged between 0.1 and 0.2 s of the elapsed
time, for Re = 1000, 2000, 3000, and 4000, as well as air (µ0 = 1.825 · 10−5 kg/m s). The power decay
slopes E0k−5/3

x and E0k−8/3
x , with E0 = 20 m2/s2, are added for reference.

At the large scale Fourier wavenumbers, the structures of the kinetic energy spectra
of all computed flows are similar, while the major differences are observed at moderate
and small scales. For Re = 1000, 2000, and 3000, the kinetic energy spectrum at small scales
generally appears to match the k−8/3-decay slope, with the following variations. In the
Re = 2000 regime, the spectrum decays along the k−8/3-slope rather monotonously, whereas
in the Re = 1000 regime (which is fully laminar) the spectrum also exhibits oscillations
around this slope. As we hypothesized in [34], the latter could be a manifestation of the
quasi-periodic dynamics at the unstable Fourier wavenumbers, with the periodicity of
orbits destroyed by chaos as Re increases to 2000. In the regime with Re = 3000, an unusual
growth of the energy spectrum is observed at small scales. Remarkably, the rate of decay of
the kinetic energy spectrum for the turbulent regime Re = 4000, as well as that of the air,
approaches Kolmogorov’s k−5/3-slope.

5. Summary

In the current work, we formally introduce viscosity into our model of turbulence
via an intermolecular potential [32–34], to investigate the transition between laminar and
turbulent air flows with varying Reynolds number. We numerically simulate the air flow at
normal conditions in a straight pipe at different values of the Reynolds number and find
that the transition into turbulent flow occurs when the Reynolds number increases from
2000 to 4000. This appears to be consistent with observations, experiments, and practical
knowledge. Additionally, we find that, in our model, the corresponding rate of decay of the
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time-averaged Fourier transform of the streamwise kinetic energy at small scales changes
from the k−8/3-slope towards the k−5/3-slope (Kolmogorov’s law), as the flow transitions
from laminar to turbulent.

The results of our work seem to be encouraging. For the first time in history, we
created a model of compressible gas flow in the form of fluid mechanics equations, where,
first, turbulent dynamics emerge from an initially laminar flow at appropriate values of the
Reynolds number naturally and without the help of artificial disturbances, and, second,
the rate of decay of the Fourier spectrum of the kinetic energy of turbulent flow in our
model matches that observed in nature.

At the same time, our model has its limitations as it describes the inertial gas flow; in
a realistic flow, the pressure generally fluctuates, even if slightly. However, other models
of fluid mechanics have their own limitations, for example, both the incompressible and
compressible Euler equations are incompatible with the process of convection (the density
is constant in the former and increases when the air warms up in the latter [34]). Yet,
such models are widely used because they describe specific features of the flow that are
needed for relevant practical applications. Similarly, our model may find its own use,
perhaps as a “stepping stone”, improving our general understanding of the fluid mechanics
of turbulence.

Funding: This research was funded by the Simons Foundation grant number #636144.
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