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Abstract: In this paper, a new rheological model for the flow of phosphate-water suspensions
is proposed. The model’s ability to replicate the rheological characteristics of phosphate-water
suspensions under different shear rate conditions is evaluated using rheometric tests, and it is found
to be in good agreement with experimental data. A comprehensive methodology for obtaining
the model parameters is presented. The proposed model is then incorporated into the OpenFoam
numerical code. The results demonstrate that the model is capable of reproducing the rheological
behavior of phosphate suspensions at both low and high concentrations by comparing it with suitable
models for modeling the rheological behavior of phosphate suspensions. The proposed model can be
applied to simulate and monitor phosphate slurry flows in industrial applications.

Keywords: slurry flow; CFD; non-Newtonian; new model; OpenFOAM

1. Introduction

Numerical modeling of multiphase flows along with complex rheology has partic-
ularly drew considerable attention during the last two decades and the study of their
behavior has led to a large literature. Such complex phenomena are encountered in many
industrial and engineering applications, including evaporation and condensation [1], flood-
ing events [2,3], chemical and nuclear reactors [4], fluidized bed [5], combustion and fuel
atomization [6,7]. Recently, researchers have devoted a considerable amount of research
efforts into developing and implementing sophisticated mathematical techniques, relevant
in the whole range of multi-fluid and multiphase flow problems. Being the two main fami-
lies of solution methods, Level-Set (LS) and Volume-Of-Fluid (VOF) proposed respectively
by Sussman et al. [8] and Hirt et al. [9] are the two most commonly employed approaches
which have assisted in better understanding of the underlying physics governing the multi-
phase flows in different fields. Given the particularities of each model, VOF and LS have
been widely used to investigate a broad range of engineering problems such as Rayleigh–
Taylor Instability [10], dam failure phenomena [11–13], bubble rising/nucleation [14–16],
droplet impact on both dry and wet surfaces [17–20], metallurgical engineering [21], to
mention only a few. In this study, we use the VOF method to investigate water-slurry
modeling in a horizontal pipeline.

Viscoplastic or yield-stress fluids are materials which behave as solids as the shear rate
tends to zero, and as liquids beyond a certain critical shear stress level (τ0). In particular,
simple yield-stress fluids are materials that are both non-thixotropic and inelastic, and char-
acterized by a shear stress that depends only on the applied shear rate, and materials [22].
The most popular simple viscoplastic model was first proposed by Bingham [23] and is
defined by a yield stress value and a constant plastic viscosity representing the slope of the
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shear stress versus shear rate curve. The Bingham constitutive equation can be expressed
as follows:  γ̇ = 0 if |τ| ≤ τ0

τ =

(
µ +

τ0

|γ̇|

)
γ̇ if |τ| > τ0

(1)

where τ and γ̇ are the stress tensor and the shear rate tensor respectively. While the terms

τ0, and µ indicate the yield stress and the plastic viscosity scalar values. |τ| =
√

1
2 τ : τ

and |γ̇| =
√

1
2 γ̇ : γ̇ denote the second invariants of τ and γ̇, respectively. The strain rate

tensor γ̇ is defined as γ̇ = ∇u + (∇u)T , u being the velocity vector. The flow domain of a
yield stress fluid is divided into a yielded region (|τ| > τ0) and an unyielded (|τ| ≤ τ0)
region, separated by the yield surfaces where |τ| = τ0. Two well known generalizations of
the Bingham fluid model have been proposed by Herschel–Bulkley [24], and Casson [25],
formulated respectively as:

Herschel-Bulkley: τ =

(
K|γ̇|(n−1) +

τ0

|γ̇|

)
γ̇ if |τ| > τ0 (2)

Casson: τ =

(√
µ|γ̇|+

√
τ0

)2 γ̇

|γ̇| if |τ| > τ0 (3)

where K is the consistency and n is the power-law index. The flexibility of the Herschel–
Bulkley model to fitting various experimental data makes it very popular among other
yield stress models. Moreover, the Herschel–Bulkley model can be reduced to power-law
and Casson models when setting the yield stress to zero τ0= and the power-law index to
n = 1, respectively. According to [26], the power law, the Bingham plastic, the Casson
and the Herschel–Bulkley models remain the four widely used models for describing the
viscous properties of suspensions.

Various research works have studied slurry flows as a continuum non-Newtonian fluid
based on the equivalence assumption and have made use of either Bingham model or Her-
schel–Bulkley (H–B) model to represent the rheological properties [27,28]. Hamza et al. (2018) [29]
have investigated in their work the rheological behavior of the phosphate-water slurry in
an attempt to determine a model capable of describing its flow behavior. They came to
the conclusion that the Herschel–Bulkley model is a suitable model for representing the
rheological behavior of the phosphate slurry for low concentrations (less than 38.45 wt%).
For higher concentrations in the range of 34.24–46.03 wt%, the Bingham model was more
adequat. Finally, the Casson model was the best fitting model for calculating viscosity and
yield stress for the range of concentrations (46.03–57.27 wt%). In addition, based on the
experimental results, they conclude that the phosphate slurry rheological behavior tends to
be a dilatant behavior beyond a concentration of 38.45 wt%.

The aim of this work is to develop a model that could describe the rheological behavior
of the phosphate slurry over a wide range of concentrations. We will show that the model is
capable of reproducing the rheological behavior that phosphate suspensions may exhibit in
both low and high concentrations. This is achieved by comparing the output of the model
with those of the models suitable for modeling the rheological behavior of phosphate slurry.
A methodology for obtaining the model’s parameters is presented in details. Whilst the
term “multi-phase flows” covers the whole spectrum of gas–liquid, liquid–liquid, gas–solid,
liquid–solid, gas–liquid–solid and gas–liquid–liquid systems, our concern in this work is
to investigate the simultaneous co-current flow of a simple liquid and a non-Newtonian
suspension of solid particles. The new model presented in this paper should be of interest
to broad and diverse areas of application. Furthermore, the subject may be relevant both to
theoretical mathematicians and practising engineers with a wide range of backgrounds.
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2. Materials and Methods

The flow behavior of the materials encountered in many chemical and process en-
gineering applications is highly influenced by the characteristics of their components,
including their non-Newtonian properties, shape, size and concentration of the suspended
particulates, the applied shear rate and the geometry of the system. In general, the flow
behavior of such systems is so complex that theoretical treatments, which tend to apply
to highly idealized problems, have proved to be of little practical utility. Therefore, flow
investigations rely heavily on analyses of the behavior of such systems in practice based on
experimental work and well established assumptions.

2.1. The New Rheological Model

Over the years, to model the stress-deformation behavior, several empirical expres-
sions have been proposed as a result of straightforward curve-fitting exercises and different
yield criteria have been used. The majority of the available literature is empirical and still
need to be developed, partially due to the difficulty of obtaining accurate, reliable data on
yield stress materials over a wide range of shear rates.

In this paper, we seek to investigate the rheological behavior of the Phosphate slurry,
which is a mixture of insoluble particles and a continuous phase of water. The obtained
rheograms of this material show a non-Newtonian flow behavior exhibiting a yield stress
as the shear rate tends to zero. A two-branch model equation is presented to embrace
the non-linear flow of phosphate slurry over a very large range of shear rates. In one
dimensional steady shearing motion, it is written as:

τ =

{
a(γ̇ + γ̇0)

b if γ̇ < γ̇c
τc + γ̇η∞ if γ̇c ≤ γ̇

(4)

where the parameters a and b can be considered similar to the the consistency and the
power-law index of the Herschel–Bulkley model, respectively. On the other hand, the
parameter γ̇0 has a different interpretation than the model parameters of both Herschel–
Bulkley or Bingham model. In this model, γ̇0 can be regarded as a correction to the shear
rate rather than the shear stress and the yield stress is defined as τy = aγ̇b

0. The linear part
of the curve is described using the parameters η∞ and τc, which represent respectively the
consistency index [Pa·s], the yield stress [Pa]. The transition from one branch to the other
depends on the critical value of shear rate which is experimentally defined as γ̇c = 400 s−1

in the particular case of phosphate slurries considered in this work.
To determine the rheological coefficients of each model equation, we perform a curve

fitting based on the least square method. Curved relationships between variables are not
as straightforward to fit and interpret as linear relationships. Given M data pairs (γ̇m, τm)
where m ∈ {1, ..., M}, the parameters of Equation (4) need to be determined. We consider
the general case where the model can be formulated as τ = f (θ, γ̇) where θ is a vector
of p parameters. In what follows, the least squares approach is applied to determine the
parameters which to minimise the following expression:

min
θ

M

∑
m=1

[τm − f (θ, γ̇m)]
2 (5)

where the pairs (γ̇m, τm) are observed. Given the observed data pairs {(γ̇1, τ1), ..., (γ̇M, τM)},
we may define the error associated to the second branch of Equation (4), τ = τc + γ̇η∞, by:

E(η∞, τc) =
M

∑
m=1

(τm − (τc + γ̇mη∞))2 (6)



Fluids 2023, 8, 57 4 of 18

Our goal is to define the values of η∞ and τc that minimize the error function. Follow-
ing the least-squares method, we should find the values of (η∞, τc) such that:

∂E
∂η∞

= 0,
∂E
∂τc

= 0 (7)

It is to be noted that, in this case, we do not have to worry about boundary points: as
|η∞| and |τc| become large, the fit will clearly deteriorate. Thus we do not need to check on
the boundary. Differentiating E(η∞, τc) yields:

∂E
∂η∞

=
M

∑
m=1

2(τm − (τc + γ̇mη∞))(−γ̇m) (8)

∂E
∂τc

=
M

∑
m=1

2(τm − (τc + γ̇mη∞)) (9)

Setting ∂E/∂η∞ = ∂E/∂τc = 0 and dividing by 2 yields:

M

∑
m=1

(τm − (τc + γ̇mη∞))γ̇m = 0 (10)

M

∑
m=1

(τm − (τc + γ̇mη∞)) = 0 (11)

We may rewrite these equations as:(
M

∑
m=1

γ̇2
m

)
η∞ +

(
M

∑
m=1

γ̇m

)
τc =

M

∑
m=1

τmγ̇m (12)

(
M

∑
m=1

γ̇m

)
η∞ +

(
M

∑
m=1

1

)
τc =

M

∑
m=1

τm (13)

We have obtained that the values of η∞ and τc which minimize the error (defined in
Equation (6)) satisfy the following matrix equation:(

∑M
m=1 γ̇2

m ∑M
m=1 γ̇m

∑M
m=1 γ̇m ∑M

m=1 1

)(
η∞
τc

)
=

(
∑M

m=1 τmγ̇m

∑M
m=1 τm

)
(14)

We will show the matrix is invertible, which implies(
η∞
τc

)
=

(
∑M

m=1 γ̇2
m ∑M

m=1 γ̇m

∑M
m=1 γ̇m ∑M

m=1 1

)−1(
∑M

m=1 τmγ̇m

∑M
m=1 τm

)
(15)

We denote the matrix by A. The determinant of A is

detA =
M

∑
m=1

γ̇2
m.

M

∑
m=1

1−
M

∑
m=1

γ̇m.
M

∑
m=1

γ̇m (16)

As

γ̇m =
1
M

M

∑
m=1

γ̇m (17)
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we find that,

detA = M
M

∑
m=1

γ̇2
m − (Mγ̇m)

2

= M2

(
1
M

M

∑
m=1

γ̇2
m − γ̇m

2
) (18)

where the last equality is derived from simple algebra. Hence, while γ̇m are not all equal,
detA will be nonzero and A will be invertible. Therefore, we note that as long as γ̇m are
not all equal, the best-fit values of η∞ and τc are achieved by solving a system of linear
equations in the Equation (15). As for the first branch of Equation (4), it requires an initial
estimate for one of the three parameters. We can use the following procedure for the
estimation of these parameters. γ̇0 can be estimated first using the following equation:

γ̇0 =
γ̇minγ̇max − γ̇∗2

2γ̇∗ − γ̇min − γ̇max
(19)

where γ̇∗ is the shear rate corresponding to the geometric mean of the maximum and
minimum shear stresses:

τ∗ = (τminτmax)
1/2 (20)

Then, taking the logarithm of the first branch of Equation (4):

log(τ) = log(a) + b log(γ̇ + γ̇0) (21)

and using the same methodology described above, one can obtains the two remaining
parameters by change of variables then calculation.

The proposed model, which is based on the formulation described earlier, has been
implemented using the OpenFoam numerical code. This powerful open-source framework
offers a wide range of options for modeling the behavior of fluids, including a library
of viscosity models such as Bingham, Herschel–Bulkley, and Casson. These models are
defined in terms of strain rate and can be easily customized by the user to suit the specific
requirements of their application. Additionally, the transportProperties dictionary allows for
further flexibility in defining the rheological properties of the fluids being modeled. The
implementation of the proposed model using the OpenFoam framework thus enables a
more accurate and comprehensive simulation of multiphase flows and complex rheology
in various industrial and engineering applications.

2.2. Numerical Modelling

The new model is applied to multiphase flow to account for the true behavior of
phosphate slurry and its deformations that occur during this engineering instance. The
simplest way to solve a two-fluid flow is to track the interface between the two fluid phases
with a simple α indicator, often referred to in the literature as a concentration function. This
method is called VOF (Volume-Of-Fluid) method, other approaches include Level-Set, Front
Tracking, etc. twoLiquidMixingFoam [30,31] is a well-established solver for the simulation of
flows in which two incompressible fluids are present. A separate surface interface can be
defined based on the VOF method in OpenFOAM, which is a free and open-source parallel
processing software supported by a large user community [27,32]. The different phases
are represented in the domain by their phase fractions using the VOF [9,33]. This method
allows to reduce considerably the computational costs.

An algebraic VOF method is used in the twoLiquidMixingFoam solver, which is a
modified version of the VOF method of Hirt and Nichols (1981) [9] by adding a diffusion
term. The phosphate slurry consists of solid particles and water. In this paper, we consid-
ered the homogenenous regime of the slurry with constant density and viscosity across the
pipe. Therefore the two-phase system is the slurry phase and the water batch.
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2.2.1. Governing Equations

The sum of the volume fractions of all phases in a cell is equal to unity and is given by
the Equation (22) below

αs + αw = 1 (22)

where αs and αw denote the volume fraction of the slurry and water phases respectively.
Both phases are assumed to be incompressible. The continuity equation is given as follows

∇ ·~v = 0 (23)

where ~v represent the velocity. The momentum equation solved for both the phases during
the simulation is given by equation

ρ
∂~v
∂t

+ ρ~v(∇ ·~v) = −∇P +∇ · τ + ρ~g + ~Fcs (24)

where P and g are the pressure and acceleration due to gravity, respectively. τ represents
the shear stress tensor; for Newtonian fluids, it is a linear function of the shear rate given by

τ = µγ̇ = µ

[(
∇~v + (~v)T

)
− 2

3
∇ ·~vI

]
(25)

where µ is the dynamic viscosity of the Newtonian fluid. For non-Newtonian materi-
als, a different relation is available in which µap is the apparent viscosity of the non-
Newtonian fluid

τ = µapγ̇ (26)

Several rheological models have been developed in the literature to describe the
behaviour of these materials. In this work, the models used to describe the behaviour of
the phosphate slurry are Herschel-Bulkley (Equation (2)), Casson (Equation (3)) and the
proposed model (Equation (4)).

~Fcs represents the surface tension force which is modeled as a volumetric force by the
continuum surface force (CSF) model of Brackbill et al. [34]. For two-phase system, the
value of ~Fcs is expressed by Equation (27)

~Fcs = σ
ρk∇αs

0.5(ρw + ρs)
(27)

where σ represents the surface tension coefficient and k the interface curvature, which is
further expressed by Equations (28) and (29) respectively

k = ∇ · n̂ (28)

n̂ =
∇αs

|αs|
(29)

The interface between the two phases progresses thanks to the volume fraction Equation (30)

∂αs

∂t
+∇ · (~vαs) = ∇ · (Γt∇αs) (30)

Γt = DAB +
νt

Sct
(31)

where αs is the cell fraction of the slurry phase, Γt is the effective diffusivity, DAB represents
the coefficient of molecular diffusion, νt is the turbulent viscosity, and Sct denotes the
turbulent Schmidt number. The coefficient of diffusion DAB and the turbulent Schmidt
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number Sct were set to 1.0× 10−6 m2/s and 1.0, respectively. The phase fraction in a cell is
related to the RANS model by density as follows

ρ = αsρs + αwρw = αsρs + (1− αs)ρw (32)

where ρs represents the density of the slurry that corresponds to the αs phase fraction,
while ρw is the density that corresponds to the water phase with the αw phase fraction.
The calculated density ρ in the Equation (32) should not be considered as a real density
of the fluid but as a density of the phase mixture that occupies a cell in the finite volume
framework. The RANS model uses the density ρ in the conservation of momentum equation.
When αs is equal to 1, the represented phase is the slurry while the water phase αw is
defined as 0, and vice versa. Any value between 1 and 0 describes a mixture and can also
be interpreted as a percentage of the amount of this or that fluid present in a cell. The
Equation (30) can be interpreted as an advection–diffusion equation for the αs phase.

2.2.2. Turbulence Equations

However, we should mention that all the constants and wall function of the k−ωSST
model have been derived experimentally by measurements on Newtonian fluids [35].
Moreover, they are not adapted to non–Newtonian fluids. In the present work, we have
used k − ωSST model to simulate the flow of water pushing the slurry batch, thus the
turbulence is applied to the water batch.

The transport equations of the turbulent kinetic energy k and the specific dissipation
rate ω are

∂k
∂t

+
∂(kvi)

∂zi
=

1
ρ

∂

∂zj

[
Γk

∂k
∂zj

]
+ G̃k −Yk + Sk (33)

∂ω

∂t
+

∂(ωvi)

∂zi
=

1
ρ

∂

∂zj

[
Γkω

∂ω

∂zj

]
+ G̃ω + Yω + Dω + Sω (34)

where G̃k is the generation of turbulence kinetic energy due to the mean velocity gradients.
G̃ω denotes the generation of the specific dissipation rate. Γk and Γω are the effective
diffusivity of k and ω respectively. Yk and Yω represent the dissipation of k and ω due to
turbulence. Dω is the cross-diffusion term. Sk and Sω represent source terms set to be zero
in this study. All the above terms are calculated and specified in [36–39].

3. Results and Discussions
3.1. Rheological Evaluation of the New Model

In the present study, we used phosphate ore samples of different grades and con-
centrations of 51, 54, and 56 wt% in water. These samples were labeled S1 to S6 and
different primarily in their solids concentrations. The details on the rheological data and
samples characteristics can be found in [40]. The rheograms of phosphate slurries were
obtained, at room temperature, by applying a ramp of predefined shear rate decreasing
from 1000 s−1 to 112 s−1, and measuring the corresponding shear stress. The diameters of
the rotating bob and the cylindrical cup are respectively 38.713 mm and 44 mm. Prior to
each measurement, the suspensions were stirred carefully in a vessel to wipe out material
memory and obtain the same initial conditions for both samples and then rapidly filled
into the external cylinder. The effects of wall slip were not completely prevented using
this geometry, so any reproduction of the resulting rheograms should be carried out with
caution. The experimental data are shown in Figure 1.
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Figure 1. Comparison of experimental (red circles) and predicted (blue cross) values of shear stress
as a function of shear rate for six phosphate slurry test samples.

The accuracy of the New model is checked by fitting the phosphate slurry data.
Figure 1 shows a good agreement with the experimental data for six samples of the phos-
phate slurry.

3.2. Numerical Results

OpenFoam 9.0, the open source CFD framework was used to solve the flow equations,
turbulence models and transport equations. It is a very flexible CFD code where each
component can be personalized to meet the user’s needs. In single-phase flow calculations,
the SIMPLE algorithm is used to couple pressure with velocity, whereas the PIMPLE
algorithm is used in bi-phase simulations. In the single-phase simulations, the relaxation
factors used are 0.5 for U, k and ε and 0.3 for the pressure. While, in the two-phase flow
case, the relaxation factor for all variables is 1. GAMG is the linear solver used for pressure,
and the smooth solver was adopted for U, k, ε and α.

3.2.1. Model Implementation

The new model is implemented in the OpenFoam 9.0 source code. The test case
“lock-Exchange”, implemented in OpenFoam library, is used to test the new model. Since
performing numerical simulations of a yield stress material flow is not a straightforward
task, the regularization method was widely used in the last decades, see [41,42] and refer-
ences therein. The regularization approach includes methods which approximate viscosity
value by one regularized and smooth constitutive equation, which is well determined
regardless of the shear rate magnitude. The regularized equation treats the whole mate-
rial domain as a fluid of variable viscosity and locally assigns a large but finite value of
viscosity to the unyielded regions. Similary, In OpenFoam, the material is modelled for low
strain rates as a very viscous fluid with a high viscosity µ0 defined by the user. Beyond a
threshold in strain-rate corresponding to threshold stress, the viscosity is described by a
the constitutive equations. Thus the implementation is formulated as: µ = min(µ0, µ(γ̇)).



Fluids 2023, 8, 57 9 of 18

The physical characteristics of the two phases used water and sludge are represented in
Table 1. The multiphase solver used twoLiquidMixingFoam is described in Table 2.

Table 1. The two-phase system used.

Material Density Kinematic Viscosity Rheological Model
(kg/m3) (m2/s)

Water 990 1.00× 10−6 Newtonian

Sludge 1000 6.00× 10−6 Newtonian
non-constant Herschel–Bulkley, Casson and New Model

Table 2. Specification of the multiphase solver used.

Term Details

Name of solver twoLiquidMixingFoam

Type of solver Density-based, segregated solver

Time dependency Transient

Pressure-velocity coupling Pimple

nCorrectors 3

nNonOrthogonalCorrector 0

For the purpose of comparison, three rheological models already present in the Open-
FOAM library were employed—the Newtonian, Casson, and Herschel–Bulkley models.
The S1 pulp sample was used in this comparison, with the values defined in Table 3 being
assigned to the variables ‘a’ and ‘b’ respectively.

Table 3. Constant parameters of the new model.

Model Phosphate Slurry Samples

Parameters S1 S2 S3 S4 S5 S6

a [Pa·sb] 0.93 0.44 0.72 0.57 1.60 1.56
η∞ [mPa·s] 16.77 18.33 23.26 23.6 27.45 30.8

b [-] 0.49 0.59 0.60 0.57 0.56 0.59
τc [Pa] 10.20 7.51 15.38 11.03 31.16 37.39

γ̇0 [1/s] 12.54 6.22 2.42 22.78 18.46 15.26

An examination of Figures 2–5 reveals significant differences in the distribution of
sludge concentration within the column when using the proposed new model in compari-
son to other models such as the Newtonian, Casson, and Herschel–Bulkley models. While
the latter models tend to result in the mixing and formation of eddies between the water
and sludge, the new model maintains a clear physical interface between the two fluids.
This prevents mixing over time and instead results in a clear layering of the denser sludge
at the bottom of the pipe and the less dense water at the top. This behavior can be clearly
observed in the figures and highlights the potential advantages and unique properties of
the new model in the simulation of multiphase flows and complex rheology in various
industrial and engineering applications.
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t = 1 s

t = 10 s

t = 20 s

t = 30 s

t = 40 s

t = 50 s

t = 60 s

t = 70 s

t = 80 s

t = 90 s

t = 100 s

Figure 2. Slurry concentration distribution inside an inviscid walls column, Newtonian Model.
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t = 1 s

t = 10 s

t = 20 s

t = 30 s

t = 40 s

t = 50 s

t = 60 s

t = 70 s

t = 80 s

t = 90 s

t = 100 s

Figure 3. Slurry concentration distribution inside an inviscid walls column, Herschel-Bulkley Model.
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t = 1 s

t = 10 s

t = 20 s

t = 30 s

t = 40 s

t = 50 s

t = 60 s

t = 70 s

t = 80 s

t = 90 s

t = 100 s

Figure 4. Slurry concentration distribution inside an inviscid walls column, Casson Model.
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t = 1 s

t = 3 s

t = 5 s

t = 7 s

t = 10 s

t = 20 s

t = 30 s

t = 50 s

t = 70 s

t = 100 s

Figure 5. Slurry concentration distribution inside an inviscid walls column, New Model, a = 0.93 Pa·s,
b = 0.49.

3.2.2. Two-Phase Pipe Flow

We recall that the configuration of interest in our work consists of a water-slurry batch
flow, represented by Figure 6. A three-dimensional (3D) horizontal pipes are established to
investigate the New rheological model of the particulate slurry flow using OpenFOAM
simulations. Internal diameters D = 5.49 cm and D = 90 cm are used with corresponding
pipe lengths L = 3.3 m and L = 50 m > 60 D respectively. The lengths of the slurry batch
are respectively l = 0.54 m and l = 8.9 m. Table 4 represents physical characteristics of
the two-phase system water-slurry. According to results in [29], the Herschel–Bulkley
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model is suitable for concentrations lower than 38.45 wt%, where the phosphate suspension
rheological behavior is dilatant. The Casson model is used to model the rheological behavior
of the suspension and to calculate the viscosity and yield strength for the concentration
range (46.03 to 57.27 wt%). Therefore, the new model is compared to the Herschel–Bulkley
model for the concentration C = 38.45 wt% by mass, and to the Casson model in the range
of concentrations C = 46.03–57.27 wt%.

Figure 6. Flow configuration in the horizontal pipeline.

Table 4. Ranges of parametric values.

Parameters Ranges Unit

Pipe diameter 0.054–0.9 m
Pipe Length 3.3–50 m

Solid concentration by mass 38–56 wt%
Water density 1000 kg/m3

Water viscosity 10−3 Pa·s
Velocity 2–5 m/s

Water Reynolds Number >106 -

In order to validate our new model for phosphate slurry flow visualization, we
compared it to the well-established Newtonian model using high mesh resolution (2 million
cells), due to the limited experimental data available on this subject. The simulations were
performed in a pipe with a diameter of D = 0.9 m and a length of L = 50 m, with a
mean flow velocity of U = 5 m/s to achieve high turbulent flow. This was carried out
in order to replicate the conditions often found in industrial settings where phosphate
slurry is transported. Using the least squares method, we obtained consistency index of
1.56 and flow index of 0.01, which correspond to a concentration of 56 wt%. These results
demonstrate that our new model is a reliable and accurate representation of the rheology
of phosphate slurry flow and can be used in industrial settings to better predict and control
the flow of this fluid.

Figure 7 illustrates a detailed comparison of the distribution of slurry concentration
between the Newtonian and new models, along a horizontal pipe. The Newtonian model
is used as a reference solution for validation, as it is a well-established model and there is
currently no other reference solution available in literature to validate the new model.

Upon examination of the figure, it is clear that the new model provides significantly
improved results in comparison to the Newtonian model. One of the most notable differ-
ences is the absence of mixing at the interface between water and slurry in the case of the
new model. This indicates that the new model is able to capture the behavior of the slurry
more accurately and can be used to make more accurate predictions about the behavior of
the slurry in industrial settings.

Additionally, the new model has the ability to predict the slurry concentration dis-
tribution at different sections of the pipe, which can be used to optimize the design and
operation of industrial systems that transport phosphate slurry. The new model can also be
used to improve the control of the flow of the slurry in real-world applications.

In conclusion, the new model for phosphate slurry flow visualization has been val-
idated and compared to the Newtonian model with high accuracy. The results of the
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simulation demonstrate that this new model can be used to better predict and control the
flow of phosphate slurry in industrial settings.

t = 0 s

t = 2 s

t = 4 s

t = 6 s

t = 7 s

Figure 7. Slurry concentration distribution along the pipe for D = 0.9 m, U = 5 m/s, C = 56 wt%,
a = 1.56 Pa·s, b = 0.01, Newtonian model (left) and the New model (right).

The Figures 8 and 9 provide a comprehensive comparison of the distribution of slurry
concentration along a horizontal pipe between the Herschel–Bulkley model, the Casson
model, and the new model. The new model uses parameters a and b that are specific to
the concentration of the slurry. For a concentration of 38.45 wt%, the values of a and b are
respectively 0.4 Pa·s and 0.2, and for C = 56 wt%, the values are a = 1.56 Pa·s and b = 0.6.
Upon examination of the figures, it can be seen that the new model is able to maintain the
slurry batch compact until it exits the pipe, regardless of the concentration of the slurry.
In contrast, the Herschel–Bulkley and Casson models exhibit mixing at the water-slurry
interface and sedimentation of the slurry batch towards the bottom of the pipe. This
suggests that the new model captures the rheological behavior of the phosphate suspension
more accurately than the other models, especially for both low and high concentrations.
In summary, the new model for phosphate slurry flow visualization has been compared
to the Herschel–Bulkley model and Casson model and it has been found that it is able to
reproduce well the rheological behavior of phosphate suspensions for both low and high
concentrations. The new model can be used to improve predictions and control of the flow
of phosphate slurry in industrial settings.

t = 0 s

t = 0.2 s

t = 0.4 s

t = 0.6 s

t = 0.8 s

t = 1 s

Figure 8. Slurry concentration distribution across the pipe for D = 54.9 mm, U = 2 m/s,
C = 38.45 wt%, a = 0.4 Pa·s, b = 0.2, Herschel–Bulkley model (left) and the New model (right).
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t = 0 s

t = 0.2 s

t = 0.4 s

t = 0.6 s

t = 0.8 s

t = 1 s

Figure 9. Slurry concentration distribution across the pipe for D = 54.9 mm, U = 2 m/s, C = 56 wt%,
a = 1.56 Pa·s, b = 0.01, Casson model (left) and the New model (right).

4. Conclusions

A new rheological constitutive relation for modeling the phosphate slurry flows was
presented in this study. This model is based on five constant parameters, which were
determined through rheological measurements. The validity of the model was assessed by
comparing its outputs with data derived from stress test measurements. It was found that
there was a good fit between the model and the measurements in the stress versus strain
rate curves.

Furthermore, it was shown that the new model gives good numerical results when
implemented in the OpenFoam software, version 9.0, and tested with an existing tutorial
case model. The model was also validated numerically by comparing its concentration
distribution results with those of the Newtonian model for high mesh resolution. It was
found that the new model provides improved results compared to the Newtonian model.
Additionally, the new model was compared to the Herschel–Bulkley model for a low
concentration of C = 38.45 wt% and to the Casson model for C = 56 wt%. It was found
that the new model was able to simulate the rheological behavior of phosphate slurry flows
accurately for both low and high concentrations.

The main advantages of this new model are that it can produce improved fits of the
rheological data compared to other existing models, and that it provides a description of
the rheological behavior of the phosphate suspension for a wide range of concentrations.
This makes it a valuable tool for understanding and predicting the behavior of phosphate
slurry flows in industrial settings and for optimizing the design and operation of systems
that transport phosphate slurry.
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