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Abstract: The problem of non-unique solutions at fictitious frequencies that can appear in the
boundary element method for external acoustic phenomena described by the Helmholtz equation
is studied. We propose a method to fully desingularise in an analytical way the otherwise hyper-
singular Burton–Miller framework, where the original boundary element method and its normal
derivative are combined. The method considerably simplifies the use of higher-order elements, for
example, quadratic curved surface elements. The concept is validated using the example of scattering
on a rigid sphere and a rigid cube, and its robustness and effectiveness for external sound-wave
problems are confirmed.
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1. Introduction

Understanding acoustic phenomena [1] is of great importance for transitional research
and practical applications, ranging from musical instruments [2,3], traffic, or airplane noise
prediction [4,5], to sensing and monitoring for structural health [6]. In fluids, acoustic
phenomena manifest themselves as the temporal–spatial distribution and evolution of
pressure or density waves.

One of the most common acoustic phenomena is sound waves [7] travelling in a
fluid at rest, where viscous effects are negligible. Furthermore, assume that the sound
wave introduces small perturbations to the fluid density, pressure, and velocity, such that
higher-order effects can be ignored. The continuity and momentum equations for linearised
acoustic phenomena in a fluid can then be obtained. Meanwhile, under the linearised
assumption, the disturbed or fluctuated fluid movement associated with the sound wave is
irrotational [8], we can introduce a velocity potential, and the continuity and momentum
equations are combined and simplified to become a linear wave equation [9]. The wave
equation describing linear acoustics is ∇2φ′ = 1/c2∂2φ′/∂t2, with ∇2 the Laplacian opera-
tor, c the speed of sound, t the time, and φ′ the velocity potential. It is usually convenient
and intuitive to analyse periodic wave phenomena in the frequency domain, and we have
powerful tools based on the Fourier transform to convert wave problems between the time
and frequency domains. In the frequency domain, with φ′(x, t) = φ(x) exp(−iωt), ω being
the angular frequency and i =

√
−1 the imaginary unit, the wave equation turns into the

scalar Helmholtz equation,

∇2φ + k2φ = 0, (1)

where k = ω/c is the wave number. The pressure, p, can be obtained from the velocity
potential as p = iωρ0φ in the frequency domain, in which ρ0 is the reference fluid density.
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To study sound propagation and scattering in a fluid, we need to solve the Helmholtz
equation in Equation (1). Except for a few special cases, such as a spherical or a cylindrical
scatterer, it is not feasible to obtain an analytical solution of the Helmholtz equation.
Thus, we have to revert to solving the Helmholtz equation numerically and the boundary
element method is an effective way to do so [10–14]. The Helmholtz equation (1) is
elliptic in nature. Based on Gauss’ theorem and Green’s identities, the boundary element
method uses this ellipticity to obtain a relationship between the velocity potential and
its normal derivative on the surface of any object or scatterer. Thus, the dimension of
the problem can be reduced effectively from a fully three-dimensional (3D) problem to
a two-dimensional (2D) surface problem. In addition, the boundary element method is
especially advantageous for open space (external) problems, as the Sommerfeld radiation
condition [15] at infinity is automatically satisfied and only the surfaces of the objects, S,
need to be considered in the meshing. The boundary element method is thus especially
suited to solve external problems.

However, a main drawback of external problems when using the boundary element
method with large ka values (with a a typical dimension of the problem) is that for certain
values of ka, the so-called fictitious wave numbers (or frequencies), the internal resonance
solution of the object can appear in the outer solution and, thereby, will produce non-
unique (spurious) results. Although it has been shown that it is possible to eliminate
certain fictitious frequencies using a modified Green’s function [16], unfortunately, not all
fictitious modes can be eliminated in this manner. We have to revert to one of the two most
commonly used methods, namely the CHIEF method of Schenck [17] or the method of
Burton and Miller [18]. The CHIEF method adds interior points in the internal domain in
order to force the internal solution to be zero. The CHIEF method is not entirely rigorous
since it is not clearly defined how many and where the internal points should be. In
addition, it leads to more equations than variables and a least-square minimisation scheme
has to be employed, which can be quite time consuming. The Burton–Miller method, on the
other hand, takes the normal derivative of the boundary element equation and adds it to
the original boundary element equation. The basic idea is that these two equations always
have different fictitious frequencies and it can be shown that, in theory, the combination of
these two equations should no longer possess any spurious solutions [19]. The problem
with this method is that the integrands now become hypersingular and have to be treated
with extreme care [20].

In this paper, the scientific motivation and novelty are to fully desingularise the Burton–
Miller formulation, which originally has integrals exhibiting hypersingular integrands.
The thus-developed desingularised framework simplifies the numerical implementation
considerably since only standard numerical integration schemes are needed. This can
greatly increase the opportunity and significantly reduce the threshold to use a technically
difficult surface method, the Burton–Miller boundary element method, to solve external
acoustic problems robustly, in particular, if one would like to use higher-order surface
elements to improve the computational efficiency and accuracy. We demonstrate our
method in Section 2 and then validate it in Section 3 using the examples of a rigid sphere
and a rigid cube, followed by the conclusion in Section 4.

2. The Burton–Miller Framework
2.1. Overview

In this section, we briefly outline the theory of the following sections. We start with
the classical boundary integral equation for the Helmholtz equation in Equation (2). The
singular integrals can be rewritten as non-singular integrals by subtracting a function
satisfying the Laplace equation and using the corresponding Laplace boundary integral
method, as demonstrated in Equation (4) in Section 2.2.

In the Burton–Miller framework, we need the normal derivative of the standard
Helmholtz boundary integral equation, as in Equation (5). This equation contains hypersin-
gular integrals and must be treated very carefully. It is, however, possible to desingularise
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it by realising that subtracting the hypersingular kernels of the Helmholtz and Laplace
equations results in a weakly singular integrand (see Equation (11)) and using this result in
the non-singular Equation (14). This is described in Section 2.3.

Finally, the Burton–Miller idea is to combine the standard boundary integral equation
with the normal derivative variant by multiplying by a complex-valued constant βi, as
shown in Equation (15). It turns out that we also need to solve an additional boundary
integral Equation (16) for a Laplace equation to close the system of equations.

2.2. The Standard Boundary Integral Equation

Given that the Helmholtz equation is elliptic, if the potential and its normal derivative
on the surface of the object are given as illustrated in Figure 1, we can obtain all the proper-
ties of the acoustic and flow phenomena in the entire fluid domain. However, we normally
only know the potential or the normal derivative of the potential (or a linear combination of
them) on the surface of the object. To obtain the missing part (see Figure 1 for an example),
we can solve the boundary integral equation corresponding to the Helmholtz equation

c(x0) φ(x0) +
∫

S
φ(x)

∂Gk
∂n

dS(x) =
∫

S

∂φ(x)
∂n

Gk dS(x), (2)

in which S(x) is the surface of the object under consideration, x0 is the observation point
(located on the surface S), c(x0) is the solid angle at x0, x is the integration point, and
Gk ≡ Gk(x0, x) = exp(ikr)/r is the Green’s function for the Helmholtz equation, with
r = |x− x0|. The symbol ∂/∂n = n · ∇ represents the normal derivative, where n is the
unit normal direction at x pointing out of the domain (thus, into the object).

Figure 1. Sketch of the 3D object bounded by the closed surface S and surrounded by an infinite
external domain. The position vectors x and x0 are also indicated, together with the normal vectors n
and n0, which are pointing out of the external domain.

Suppose we construct a function in the domain of interest as
ψ(x) = φ(x0) + (∂φ/∂n)0 n0 · (x− x0). Here, φ(x0) is the velocity potential and (∂φ/∂n)0
is the normal derivative of that potential at x0, which are both constants at a given x0, and
n0 ≡ n(x0) is the unit normal vector at x0 on S pointing out of the domain. Clearly, ψ(x)
is a linear function of x that satisfies the Laplace equation as ∇2ψ(x) = 0. The Laplace
equation can be taken as a special case of the Helmholtz equation when k = 0, and we can
write a similar boundary integral equation for ψ similar to Equation (2) as
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[c(x0)− 4π] φ(x0) +
∫

S

[
φ(x0) +

(
∂φ

∂n

)
0
n · (x− x0)

]
∂G0

∂n
dS(x)

=
∫

S

(
∂φ

∂n

)
0
(n0 · n) G0 dS(x), (3)

in which G0 ≡ G0(x0, x) = 1/r is the fundamental solution of the Laplace equation, the
normal derivative ∂ψ/∂n = (∂φ/∂n)0 (n0 · n) on the surface S has been used, and the term
with −4π is the contribution from the surface at infinity [21–23]. Noting that (n0 · n) = 1
in the limit of x→ x0 and subtracting Equation (3) from Equation (2), we obtain [24]:

4π φ(x0) +
∫

S

[
φ(x)

∂Gk
∂n
− φ(x0)

∂G0

∂n

]
dS(x)

=
∫

S

(
∂φ

∂n

)
0
n0 · (x− x0)

∂G0

∂n
dS(x) +

∫
S

[
∂φ(x)

∂n
Gk −

(
∂φ

∂n

)
0
(n0 · n)G0

]
dS(x). (4)

The integrands in Equation (4) are now fully regularised.

2.3. The Normal Derivative of the Boundary Integral Equation

We can also perform the normal derivative [∂(·)/∂n]0 ≡ ∂(·)/∂n0 ≡ n0 · ∇x0(·)
operator on Equation (2), which leads to

c(x0)

(
∂φ

∂n

)
0
+
∫

S
φ(x)

∂2Gk
∂n∂n0

dS(x) =
∫

S

∂φ(x)
∂n

∂Gk
∂n0

dS(x). (5)

The integral on the left is now hypersingular and must be treated with the utmost care
when solved directly. In addition, it is worth noting that to obtain the above equation, we
have implicitly used [∂c(x0)/∂n]0 = 0. This is because

c(x0) +
∫

S

∂G0

∂n
dS(x) = 4π. (6)

Performing the [∂(·)/∂n]0 operator on the above Equation (6), we have[
∂c(x0)

∂n

]
0
+
∫

S

∂2G0

∂n∂n0
dS(x) = 0. (7)

Since it has been shown [25,26] that∫
S

∂2G0

∂n∂n0
dS(x) = 0, (8)

we conclude that [∂c(x0)/∂n]0 = 0.
Either Equation (2) or Equation (5) can be used to solve the Helmholtz equation in

Equation (1). As we mentioned before, for external problems, both of them suffer from
spurious solutions at fictitious frequencies.

Although the traditional Burton–Miller boundary element method based on
Equations (2) and (5) eliminates the spurious solutions for external problems, there remain
challenges in its numerical implementation due to the singularities as x→ x0 when using
linear or high-order surface elements, in particular, the hypersingularity. In addition, if
we would like to use higher-order surface elements to represent the object, the calculation
of the solid angle c(x0) is tedious. As such, it would be desirable to have a Burton–Miller
boundary element method for the Helmholtz equation in which all the singularities and
solid angles are fully removed analytically, as demonstrated below.

To handle the main challenge of the integrand on the left-hand side of Equation (5),
which is hypersingular as x→ x0, let us define a function ψ1 that satisfies the Laplace equa-
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tion instead of the Helmholtz equation and is applied to the same domain and boundaries.
Following the same procedure used to obtain Equation (5), we have

c(x0)

(
∂ψ1

∂n

)
0
+
∫

S
ψ1(x)

∂2G0

∂n∂n0
dS(x) =

∫
S

∂ψ1(x)
∂n

∂G0

∂n0
dS(x). (9)

Assuming now that ψ1 = φ on the surface S (and only on this surface), subtract
Equation (9) from Equation (5), to obtain

c(x0)

(
∂φ

∂n

)
0
− c(x0)

(
∂ψ1

∂n

)
0
+
∫

S
φ(x)

[
∂2Gk

∂n∂n0
− ∂2G0

∂n∂n0

]
dS(x)

=
∫

S

∂φ(x)
∂n

∂Gk
∂n0

dS(x)−
∫

S

∂ψ1(x)
∂n

∂G0

∂n0
dS(x). (10)

The integrands in Equation (10) are all weakly singular [27] since (see Appendix A)

lim
x→x0

(
∂2Gk

∂n∂n0
− ∂2G0

∂n∂n0

)
=

k2

2|x− x0|
. (11)

To analytically remove the remaining singularities and the terms associated with the
solid angle at x0 in Equation (10), we set up the following three functions that all satisfy the
Laplace equation:

ψ2(x) =
k2

2
φ(x0) n0 · (x− x0) (linear),

ψ3(x) =
(

∂φ

∂n

)
0

(constant), (12)

ψ4(x) = −
(

∂ψ1

∂n

)
0

(constant).

Note that ψ2(x) is a linear function and ψ3(x) and ψ4(x) are constants in the domain,
as φ(x0), (∂φ/∂n)0, and (∂ψ1/∂n)0 are constants for a given x0. Following the same
procedure used to obtain Equation (3), we can write the boundary integral equations for
ψ2(x), ψ3(x), ψ4(x), respectively, as

∫
S

k2

2
φ(x0) n0 · (x− x0)

∂G0

∂n
dS(x) =

∫
S

k2

2
φ(x0) (n0 · n)G0 dS(x),

[c(x0)− 4π]

(
∂φ

∂n

)
0
+
∫

S

(
∂φ

∂n

)
0

∂G0

∂n
dS(x) = 0, (13)

[4π − c(x0)]

(
∂ψ1

∂n

)
0
−
∫

S

(
∂ψ1

∂n

)
0

∂G0

∂n
dS(x) = 0,

in which, ∂ψ2(x)/∂n = k2φ(x0)(n0 · n)/2, ∂ψ3(x)/∂n = 0, and ∂ψ4(x)/∂n = 0 have been
used. Subtracting Equation (13) from Equation (10), we obtain

∫
S

{
φ(x)

[
∂2Gk

∂n∂n0
− ∂2G0

∂n∂n0

]
− k2

2
φ(x0)(n0 · n)G0

}
dS(x)

=
∫

S

[
∂φ(x)

∂n
∂Gk
∂n0

+

(
∂φ

∂n

)
0

∂G0

∂n

]
dS(x)−

∫
S

[
∂ψ1(x)

∂n
∂G0

∂n0
+

(
∂ψ1

∂n

)
0

∂G0

∂n

]
dS(x) (14)

−
∫

S

k2

2
φ(x0) n0 · (x− x0)

∂G0

∂n
dS(x)− 4π

(
∂φ

∂n

)
0
+ 4π

(
∂ψ1

∂n

)
0
.

The integrands in Equation (14) are now all regular and this equation is fully desingu-
larised. Note that two plus signs appear in this equation since differentiation of r = |x− x0|
with respect to x0 will produce a minus sign compared to x, that is,∇x0(r) = −∇x(r). Here,
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it is worth noting that we defined ∂(·)/∂n = ∇x(·) · n(x) and [∂(·)/∂n]0 = ∇x0(·) · n(x0).
For the acoustic flow velocity potential, ∂φ/∂n = ∇xφ · n(x) and (∂φ/∂n)0 = ∇x0 φ · n(x0)
refer to the normal velocity at x and x0 on the boundary, respectively. They are just
the normal velocity at different locations by definition such that no minus sign differ-
ence will appear here. However, G0 = 1/r = 1/|x − x0| is the kernel that reflects
how some physical property at x will affect that at x0 or vice versa. Thus, its deriva-
tive will depend on the location (x or x0) we choose as the observation point and the
location we choose as the computation point. In this case, there will be a minus sign
difference between ∂G0/∂n and ∂G0/∂n0 with respect to x and x0, respectively, since
r = |x− x0| =

√
(x− x0)2 + (y− y0)2 + (z− z0)2 and ∇x0(r) = −∇x(r) = −(x− x0)/r.

2.4. The Non-Singular Burton–Miller Formulation

To recover the uniqueness of the solution of the boundary integral method for the
Helmholtz equation in the external domain, Burton and Miller proposed to combine
Equations (2) and (5) as {Equation (2) + iβ Equation (5)} since the fictitious frequencies in
Equations (2) and (5) are always different from each other. To balance Equations (2) and (5)
in dimension (dimensional homogeneous in length), the parameter β should be related to a
characterised length of the problem under consideration. The obvious choices are the size
of the scattering object or the inverse of the wave number k.

Following the Burton–Miller concept and combining the non-singular boundary in-
tegral equations in Equations (4) and (14), we obtain the non-singular Burton–Miller
boundary integral method for the Helmholtz equation as

4πφ(x0) +
∫

S

[
φ(x)

∂Gk
∂n
− φ(x0)

∂G0

∂n

]
dS(x)

+ iβ
∫

S

{
φ(x)

[
∂2Gk

∂n∂n0
− ∂2G0

∂n∂n0

]
− k2

2
φ(x0)(n0 · n)G0

}
dS(x)

=
∫

S

[
∂φ(x)

∂n
Gk −

(
∂φ

∂n

)
0
(n0 · n)G0

]
dS(x)

+
∫

S

(
∂φ

∂n

)
0

n0 · (x− x0)
∂G0

∂n
dS(x)

+ iβ
∫

S

[
∂φ(x)

∂n
∂Gk
∂n0

+

(
∂φ

∂n

)
0

∂G0

∂n

]
dS(x) (15)

− iβ
∫

S

[
∂ψ1(x)

∂n
∂G0

∂n0
+

(
∂ψ1

∂n

)
0

∂G0

∂n

]
dS(x)

− iβ
∫

S

k2

2
φ(x0) n0 · (x− x0)

∂G0

∂n
dS(x)

− iβ4π

(
∂φ

∂n

)
0
+ iβ4π

(
∂ψ1

∂n

)
0
,

which should be solved simultaneously with the desingularised version of Equation (9):

4πφ(x0) +
∫

S
[φ(x)− φ(x0)]

∂G0

∂n
dS(x)

=
∫

S

[
∂ψ1(x)

∂n
−
(

∂ψ1

∂n

)
0
(n0 · n)

]
G0 dS(x) +

∫
S

(
∂ψ1

∂n

)
0

n0 · (x− x0)
∂G0

∂n
dS(x). (16)

Equation (16) is the non-singular boundary integral formulation similar to Equation (4)
to link ∂ψ1/∂n and ψ1 = φ on the surface S.

Equations (15) and (16) are the non-singular versions of the Burton–Miller boundary
integrals (which turn into the boundary element method once discretised) to solve the
Helmholtz equation for external problems in which all the integrands are regular and all the
solid angles are removed analytically. In the numerical procedure, only standard numerical
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integration schemes, such as Gauss quadrature, are needed to calculate all integrals, which
significantly simplifies the numerical implementation.

3. Results
3.1. Scattering from a Rigid Sphere

We test our framework of the non-singular Burton–Miller boundary element method
given in Equations (15) and (16) via the classical example of the scattered sound wave
by a rigid sphere under an incoming plane wave, as illustrated in Figure 2a. The radius
of the rigid sphere is a, and its centre coincides with the origin of the coordinate system.
The incoming plane wave moves along the positive z direction with wave number k and
amplitude φ0, whose potential profile can be written as φinc = φ0 exp (ikz). On the surface
of the rigid sphere, the boundary condition is that the normal flow velocity is zero, which
leads to ∂φinc/∂n + ∂φsc/∂n = 0, where φsc is the potential of the scattered wave.

(a) (b)

(c) (d)

Figure 2. Scattering on a rigid sphere with radius a used as a test case. (a) The incoming plane wave
moves upwards and the observation point is behind the sphere at a distance of 1.5 a from the centre
of the sphere. (b) The results of the real part of the potential φsc with the non-singular Burton–Miller
formulation (in red) as a function of ka. The results of the non-singular standard boundary element
method are also indicated (in black); 5762 nodes with 2880 quadratic triangular elements were used.
(c,d): as (b) but for the imaginary part of φsc and the absolute value of φsc, respectively.

The scattered sound-wave potential, φsc, is calculated by both the non-singular stan-
dard boundary element method, as in Equation (4), and the non-singular Burton–Miller
boundary element method, as in Equations (15) and (16), with β = 1/k when ka spans from
1 to 40 with a step of 0.001. The rigid sphere surface is represented by 5762 nodes connected
by 2880 higher-order quadratic triangular elements for all ka values.
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We choose the scattered velocity potential at point (0, 0, 1.5a) to serve as the test
location to compare the results obtained by those two methods. The procedure to obtain
the potential at that location is to solve the scattered potential on the surface of the sphere
and obtain the potential in the domain through post-processing [28]. In Figure 2b–d, we
show the real part, the imaginary part, and the absolute value of the velocity potential of
the scattered wave at the location (0, 0, 1.5a). It is clear that the results obtained by the
non-singular standard boundary element method given in Equation (4) are not reliable for
high ka values. Non-unique or spurious solutions at fictitious frequencies appear more
and more as the value of ka increases, as shown by the spiky black curves in Figure 2b–d.
On the contrary, with the non-singular Burton–Miller boundary element method given
in Equations (15) and (16), no spurious solutions appear as ka is scanned with a tiny step
of 0.001 from ka = 1 up to a high value of 40, as shown by the red curves in Figure 2b–d.
Clearly, the non-physical solutions at the classical internal resonance frequencies show
up in the curve for the non-singular standard boundary element method, for example,
at ka = 9.356 and ka = 10.417, corresponding to the theoretical values of ka = 9.3558 and
ka = 10.41712, respectively (see also Table 1 in Ref. [16]).

We also compare the results obtained from the non-singular standard boundary el-
ement method of Equation (4) and the non-singular Burton–Miller boundary element
method in Equations (15) and (16) with the analytical solution [29] for larger ka ranging
from 22 to 40. As shown in Figure 3, the results from the non-singular standard boundary
element method are heavily polluted by the spurious solutions, whereas those from the
non-singular Burton–Miller boundary element method are in good agreement with the
analytical solution for large ka, using a moderate number of surface nodes and higher-order
quadratic surface elements.

(a) (b)

Figure 3. As in Figure 2, the spherical test case for ka = 22 to 40. (a) Scaled results of the scattered
potential with the non-singular standard boundary element method (in black), the desingularised
Burton–Miller framework (red line), and the analytical solution (in green). (b) Error between the
analytical result and the non-singular standard boundary element method (black line) and the
desingularised Burton–Miller framework (red line).

3.2. Scattering from a Rigid Cube

After having performed the verification of a rigid sphere in the previous section, we
present a second example of scattering on a rigid cube. As shown in Figure 4a, the cube is
aligned with the x-, y-, and z-axes and its centre is situated at (0, 0, 0). The sides of the cube
have a length of 2a each and the corners of the cube are rounded in order to facilitate the
use of quadratic elements. An incoming wave with wavenumber k travels in the positive
z-direction and hits the cube. As in the sphere example, we have placed an observation
point at (x, y, z) = (0, 0, 1.5a), thus at a distance of 0.5a behind the cube. In Figure 4b, the
normalised real part of the scattered potential φrmsc is plotted as a function of ka, where
ka ranges from 1 to 40. The graph was generated by increasing ka in steps of 0.001. As
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in the previous example, the scattered sound-wave potential, φsc, is obtained with the
non-singular standard boundary element method from Equation (4) and the non-singular
Burton–Miller boundary element method from Equations (15) and (16), with β = i/k. The
cube surface has 11,642 nodes connected by 5820 high-order quadratic triangular elements.
As shown in Figure 4b, the red line (Equations (15) and (16)) and the black line (Equation (4))
overlap for up to around ka = 10. For larger values of ka, spurious solutions occur, which are
manifested as sharp peaks. A similar trend can be seen in Figure 3c, where the imaginary
part of φsc is plotted as a function of ka. It is interesting to note that the peaks that are clearly
visible in Figure 4b are not always seen in Figure 4c, and vice versa. Therefore, the absolute
value of φsc is also plotted as a function of ka in Figure 4d. The error in the solution for the
non-singular standard boundary element method appears to increase with increasing ka,
whereas it remains only a few percent for lower ka. However, it can quickly become several
times larger, as indicated by the height of the black spikes in Figure 4d.

(a) (b)

(c) (d)

Figure 4. Scattering on a rigid cube with sides of length 2a used as a test case. (a) The incoming plane
wave moves upwards and the observation point is behind the cube at a distance of 1.5a from the centre
of the cube. (b) The results of the real part of the potential φsc, with the non-singular Burton–Miller
formulation (in red) as a function of ka. The results of the non-singular standard boundary element
method are also indicated (in black). More and more spurious ‘spikes’ appear when ka becomes larger
and larger. The number of nodes used is 11,642 with 5820 quadratic triangular elements. (c,d): as
(b) but for the imaginary part of φsc and the absolute value of φsc, respectively. As in Figure 2, the
desingularized Burton–Miller results (red curves) are perfectly regular for all values of ka.

The observed fictitious frequencies in Figure 4 correspond very closely to the theoreti-
cal room-mode formula [29]:

froom =
c
2

√
p2

L2 +
q2

W2 +
r2

H2 (17)

where froom is the frequency where resonance appears in a room with length L, width W,
and height H, and p, q, and r are integers 0,1,2 . . . . . . Since in our case of a cube, L = 2a,
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W = 2a, and H = 2a and the relationship between froom and k is froom = kc/(2π), we predict
that the non-physical solutions might happen at

ka =
π

2

√
p2 + q2 + r2. (18)

For example, the observed numerical non-physical solution peak at ka = 5.878 corre-
sponds to p = 3, q = 2, and r = 1, with ka = 5.87738, and the numerical non-physical solution
peak at ka = 9.683 corresponds to p = 5, q = 3, and r = 2, with ka = 9.68304. It appears
that, even with a very small interval of 0.001 for ka, we still missed many of the fictitious
frequencies. This confirms the findings of [16,28], where it was found that for moderate
ka values, the non-singular boundary element method is already quite good at avoiding
non-physical solutions at fictitious frequencies.

The validation examples demonstrated here have shown the robustness and effective-
ness of our non-singular Burton–Miller boundary element framework to solve acoustic
scattering.

4. Conclusions

In this article, it is shown that it is possible to write the Burton–Miller integral equations
in a totally non-singular form. Thus, all elements of the structure can be integrated by
standard Gaussian quadrature integration formulas, thereby considerably simplifying the
numerical implementation. This ensures that higher-order quadratic meshes can be used
with ease to achieve better computational efficiency and accuracy. A further advantage
is that solid angles are no longer present in the final integral equations. Such advantages
can significantly reduce the threshold to use a technically difficult surface method, the
Burton–Miller boundary element method, to solve external acoustic problems robustly
and effectively. A slight drawback is that a 2N × 2N system must now be solved instead
of an N × N system. On the other hand, the use of quadratic elements does allow us to
considerably reduce the number of nodes N to achieve the same accuracy compared to flat or
linear elements [28]. The concept was tested with two examples, scattering on a rigid sphere
and scattering on a rigid cube. The results from the conventional (desingularised) boundary
element method and the desingularised Burton–Miller framework were compared for these
two examples.

In this paper, we addressed the fictitious frequency issue for sound-wave phenomena
described by a scalar Helmholtz equation. However, such issues also appear in vector wave
problems, for example, electromagnetic scattering, which in essence, can be considered as
three coupled scalar Helmholtz equations—one for each Cartesian component of the electric
field [30–35] and possibly even for elastic waves [36]. Our framework demonstrated in this
paper can also eliminate the non-unique or non-physical solutions at fictitious frequencies
in vector wave problems. Furthermore, using Fourier transforms, we can easily extend the
method to pulsed phenomena [37]. As such, our framework can be applied to effectively
and robustly solve wave phenomena in multi-disciplinary physics.
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Appendix A. Singular Behaviour of the Green’s Functions

The Green’s function for the Laplace equation is G0 = 1/r and is thus singular when
x→ x0. The normal derivative is ∂G0/∂n = −n · (x− x0)/r3 and appears to be order 1/r2

but is actually order 1/r for smooth surfaces since then, the normal vector n is perpendicular
to (x− x0) when x→ x0. The second derivative ∂2G0/∂n∂n0 becomes:

∂2G0

∂n∂n0
= (n0 · n)

1
r3 − n · (x− x0) n0 · (x− x0)

3
r5 (A1)

which is hyper-singular with order 1/r3. For the Green’s function of the Helmholtz equation
Gk = exp(ikr)/r, we similarly obtain

∂2Gk
∂n∂n0

= (n0 · n)
(1− ikr)

r3 eikr − n · (x− x0) n0 · (x− x0)
(3− 3ikr− k2r2)

r5 eikr (A2)

Now, using a Taylor expansion for small r as eikr ≈ 1 + ikr − k2r2/2 will give (1−
ikr)eikr ≈ 1 + k2r2/2 and (3− 3ikr − k2r2)eikr ≈ 3 + k2r2/2. Using this and subtracting
Equation (A1) from Equation (A2) results in

lim
x→x0

(
∂2Gk

∂n∂n0
− ∂2G0

∂n∂n0

)
=

k2

2|x− x0|
=

k2

2r
. (A3)

which is thus of order 1/r and is the proof of Equation (A3).
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