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Abstract: This paper is devoted to numerical modeling of a supersonic flow around a blunt body by
a viscous gas with an admixture of relatively large high-inertia particles that, after reflection from the
surface, may go beyond the shock layer and change the flow structure dramatically. To calculate the
gas-dynamic interaction of moving particles with the shock layer, it is important to take into account
the large difference in scales of the flow around the particles and around the body. To make the
computations effective, we use a meshless method to solve non-stationary Navier–Stokes equations.
The algorithm is based on the approximation of partial derivatives by the least squares method on
a set of nodes distributed in the calculation area. Each moving particle is surrounded by a cloud
of calculation nodes belonging to its domain and moving with it in space. The algorithm has been
tested on the problem of the motion of a single particle and a pair of particles in a supersonic flow
around a sphere.

Keywords: heterogenous supersonic flow; gas-dynamic particle—shock layer interaction;
numerical simulation

1. Introduction

A dispersed admixture in a supersonic flow may have a multifactorial effect on a
streamlined body: direct impacts with the surface, contributing to energy transfer from
particles to the body surface and erosive destruction [1], the reverse effect of particles on
the gas flow [2,3] and convective heat flux enhancement [4,5], and radiative heat transfer
between particles and the body surface [6]. A detailed review of publications on dusty
flows around bodies is given in [7,8].

One of the important problems connected with supersonic heterogeneous flows is
the gas dynamical interaction of high-inertia particles and a shock layer. By high-inertia
particle, we mean relatively large particles that, having reflected from the body surface, can
overcome the shock layer and go beyond the bow shock. As experiments have shown [9–11],
when moving towards a supersonic oncoming flow, such particles can significantly rear-
range the flow pattern, change the form and position of the bow shock, and contribute to a
multiple increase in the convective heat flux to the body surface. In our previous work, we
studied this process numerically. A detailed description of the resulting wave and vortex
patterns is given in the papers [12–14].

It should be noted that the process of gas-dynamic interaction of particles with a shock
layer is extremely difficult for numerical simulation. This is due to the mobility of particles
and a significant difference in scales—the linear dimensions of the streamlined body and
even relatively large particles differ by several orders of magnitude. In [12–14], we used
the finite volume method on adaptive Cartesian grids. It allowed us to perform numerical
simulation in both the axisymmetric and planar two-dimensional formulations. However,
the use of Cartesian grids and the need for a detailed resolution of the boundary layer
make it difficult to carry out three-dimensional calculations due to the very large number
of computational cells.
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There are several effective numerical approaches for solving gas dynamic problems
with moving objects. Chimera-type overlapping grid technology [15,16], which uses finite
volume or finite difference methods, is based on combining several high-resolution grids
related to each of the moving objects and adapted them to their geometry into a single
computational grid. The implementations of this approach on structured and unstructured
grids are known [17,18]. Another approach involves the use of sliding grids [19–21]. It is
based on the interpolation of gas flow parameters obtained by calculation on one grid in
order to transfer them to another grid, moving relative to the first one, in overlapping areas.
This approach has been applied for modeling rotating turbine blades, helicopter propellers,
and solving other problems with known trajectories of moving objects [22,23]. In [14], we
used sliding grids to calculate the single particle interaction with the shock layer. A serious
problem with the considered approaches is the complexity of modeling the interaction
between the objects. We face such situations when reproducing collisions between particles
or their reflections from the surface.

Therefore, when constructing a three-dimensional computational model, a signifi-
cantly different approach was chosen, which is based on a meshless method for solving
a system of gas dynamics equations [24]. Unlike the finite volume method, which di-
vides the entire calculation area into closed cells, the meshless method uses a finite set of
points—calculation nodes. Nodes can be distributed in space in an anisotropic manner,
which significantly saves computational resources [24]. Two methods for approximating
derivatives have become widespread: based on radial basis functions [25–27] and the least
squares method [28–30]. The latest one is used in this article. This method, despite its
relative simplicity, showed a satisfactory agreement between the calculation results and
the reference data when solving model problems of supersonic viscous and inviscid flows
around a body.

In Section 2, we give a detailed description of the meshless algorithm. To calculate
the gas-dynamic interaction of particles with the shock layer, it is important to take into
account the large difference in scales of flow around the particles and around the body. For
this purpose, we propose the following approach: Along with the stationary main set of
nodes, each moving particle is surrounded by its own local cloud of points belonging to
its domain. Clouds of computing nodes moving in space together with particles interact
with each other, forming a single connected cloud of nodes. When calculating the fluxes, the
nodes’ belonging to different domains and their relative velocities are taken into account. The
algorithm verification is carried out. The results of calculating the motion of a particle in a gas
at rest and the free flow around a stationary particle at the same relative velocity turned out to
be identical. In Section 3. we present the results of the numerical simulation of the motion of a
single particle and a pair of particles in a supersonic flow around a sphere.

2. Materials and Methods

Governing equations
The model of the viscous heat-conducting gas flow in three-dimensional space includes

a system of non-stationary Navier–Stokes equations in combination with the equation of
state for ideal gas:

∂q
∂t

+
∂F(q)

∂x
+

∂G(q)
∂y

+
∂H(q)

∂z
=

∂Fv(q)
∂x

+
∂Gv(q)

∂y
+

∂Hv(q)
∂z

(1)

p = ρRT (2)

q =


ρ

ρu
ρv
ρw
ρe

, F =


ρu

ρu2 + p
ρuv
ρuw
ρuH

, G =


ρv

ρuv
ρv2 + p

ρvw
ρvH

, H =


ρw

ρuw
ρvw

ρw2 + p
ρwH

 (3)
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Fv =


0

τxx
τxy
τxz

τxxu + τxyv + τxzw− qx

, Gv =


0

τyx
τyy
τyz

τyxu + τyyv + τyzw− qy



Hv =


0

τzx
τzy
τzz

τzxu + τzyv + τzzw− qz


(4)

H = e +
p
ρ

, e =
p

ρ(γ− 1)
+

1
2

(
u2 + v2 + w2

)
(5)

where t is the time, ρ is the density, p is the pressure, T is the temperature, u, v, and w are
the components of the gas velocity vector along the coordinate axes x, y, and z, R, γ is the
heat capacity ratio H is the total gas F, G, and H are the inviscid flux Fv, Gv, and Hv are the
viscous flux vectors along the coordinate axes.

Components of the viscous stress tensor are:

τxx = 2
3 µ
(

2 ∂u
∂x −

∂v
∂y −

∂w
∂z

)
, τyy = 2

3 µ
(

2 ∂v
∂y −

∂u
∂x −

∂w
∂z

)
, τzz =

2
3 µ
(

2 ∂w
∂z −

∂u
∂x −

∂v
∂y

)
τxy = τyx = µ

(
∂u
∂y + ∂v

∂x

)
, τxz = τzx = µ

(
∂u
∂z + ∂w

∂x

)
, τyz = τzy = µ

(
∂v
∂z +

∂w
∂y

) (6)

The heat flux density is determined by a vector with components:

qx = −λ
∂T
∂x

, qy = −λ
∂T
∂y

, qz = −λ
∂T
∂z

(7)

The value of dynamic viscosity is calculated using the well-known Sutherland formula:

µ = µ∗
(

T
T∗

) 3
2 T∗ + C

T + C
(8)

µ∗ = 0.0000178 H·c
M2 , T∗ = 273.15 K, C∗ = 110.4 K for air.

The thermal conductivity coefficient is proportional to the dynamic viscosity:

λ =
Cpµ

Pr
(9)

where Cp is the specific heat capacity of the gas at constant pressure and Pr is the Prandtl
number.

At the entrance to the computational domain, the Dirichlet boundary conditions are
set, which determine the incoming supersonic flow with a fixed temperature T∞, pressure,
and velocity. At the output—the Neumann conditions ∂q

∂n = 0 are set, where n is the outer
normal to the boundary.

The body surface is considered isothermal with a known temperature Tw. No-slip and
impermeability conditions v = 0 are set here, as well as the condition ∂p

∂n = 0.
Meshless Method
To represent the field of gas-dynamic quantities in the computational domain, a finite

set of discrete points with a fixed location in space is formed. Near the body surface, the
points cluster in the normal direction in order to resolve the flow in the boundary layer in
detail (see Figure 1).
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Figure 1. Location of computing nodes: on the body surface (a), in the section of the computational
domain (b).

The least square method serves as the basis for approximating a scalar function
ϕ = ϕ(x, y, z) while having the values in a discrete set of points. For each computational
node i and the cloud of neighboring nodes surrounding it j ∈ Ci (see Figure 2), approximate
equalities are written:

ϕj = ϕi + ∆xij
∂ϕ

∂x

∣∣∣∣
i
+ ∆yij

∂ϕ

∂y

∣∣∣∣
i
+ ∆zij

∂ϕ

∂z

∣∣∣∣
i
+ O

(
h2
)

(10)

∆xij = xj − xi, ∆yij = yj − yi, ∆zij = zj − zi, ∆ϕij = ϕj − ϕi (11)
Fluids 2023, 8, x FOR PEER REVIEW 5 of 18 
 

 

Figure 2. Clouds of computing points surrounding nodes i and j. 

According to the least square method, the optimal approximation of the partial de-

rivatives 
ix




, 

i
y




, 

iz




 is achieved by minimizing the functional 

2

min

i

ij ij ij ij ij
i ij C i

x y z
x y z

  
 



   
 −  −  −  → 
    

 , (12) 

where the weight coefficients ij
 
are inversely proportional to the distance ijd  between 

a node and its neighbors: 

1
ij

ijd
 = , 

2 2 2
ij ij ij ijd x y z=  +  +  . (13) 

The values of the linear combination coefficients can be obtained by solving a system 

of linear equations: 

i

ij ij
i j C

x


 


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ij ij
i j C

y


 




= 
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i
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z
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
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1

2

2
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i i i
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i i i
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ij ik ik ik ik ik ik ik ik ij ij
k C k C k C

ij ij ij

ik ik ik ik ik ik ik ik
k C k C k C

x x y x z

x

x y y y z y

z

x z y z z

  

 

    

 

  

−
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According to the least square method, the optimal approximation of the partial deriva-
tives ∂ϕ

∂x

∣∣∣
i
, ∂ϕ

∂y

∣∣∣
i
, ∂ϕ

∂z

∣∣∣
i

is achieved by minimizing the functional

∑
j∈Ci

ωij

(
∆ϕij − ∆xij

∂ϕ

∂x

∣∣∣∣
i
− ∆yij

∂ϕ

∂y

∣∣∣∣
i
− ∆zij

∂ϕ

∂z

∣∣∣∣
i

)2
→ min (12)

where the weight coefficients ωij are inversely proportional to the distance dij between a
node and its neighbors:

ωij =
1

dij
, dij =

√
∆x2

ij + ∆y2
ij + ∆z2

ij (13)

The values of the linear combination coefficients can be obtained by solving a system
of linear equations:

∂ϕ

∂x

∣∣∣∣
i
= ∑

j∈Ci

αij∆ϕij,
∂ϕ

∂y

∣∣∣∣
i
= ∑

j∈Ci

βij∆ϕij,
∂ϕ

∂z

∣∣∣∣
i
= ∑

j∈Ci

γij∆ϕij (14)

αij
βij
γij

 =


∑

k∈Ci

ωik∆x2
ik ∑

k∈Ci

ωik∆xik∆yik ∑
k∈Ci

ωik∆xik∆zik

∑
k∈Ci

ωik∆xik∆yik ∑
k∈Ci

ωik∆y2
ik ∑

k∈Ci

ωik∆yik∆zik

∑
k∈Ci

ωik∆xik∆zik ∑
k∈Ci

ωik∆yik∆zik ∑
k∈Ci

ωik∆z2
ik


−1ωij∆xij

ωij∆yij
ωij∆zij

 (15)

In the numerical solution of the system of gas dynamics equations, the components of
the velocity vector, pressure, temperature, gas density, and complex functions containing
them, as well as components of viscous and convective fluxes, act as function ϕ. The system
of Navier–Stokes equations in a semi-discrete form takes the form:

∂qi
∂t + 2 ∑

j∈Ci

[
αij
(
Fij − Fi

)
+ βij

(
Gij −Gi

)
+ γij

(
Hij −Hi

)]
= 2 ∑

j∈Ci

[
αij

(
Fv

ij − Fv
i

)
+ βij

(
Gv

ij −Gv
i

)
+ γij

(
Hv

ij −Hv
i

)] (16)

Fi = F(qi), Gi = G(qi), Hi = H(qi) (17)

Fv
i = Fv(qi), Gv

i = Gv(qi), Hv
i = Hv(qi) (18)

The calculation of the convective flux vectors Fij, Gij, Hij in the middle of the ij
segment connecting the nodes i and j, according to the AUSMPW+ scheme [31], requires
two passes over the set of points. At the first stage, the vectors of conservative variables
q− = q

(
Ψ−ij

)
, q+ = q

(
Ψ+

ij

)
are reconstructed by applying the MUSCL scheme with the

van Albada 2 limiter to the vector of primary variables Ψ [32]:

Ψ = (ρ, u, v, w, p)T (19)

ψ+
ij = ψi +

si
4

[
(1− ksi)∆−ij + (1 + ksi)

(
ψj − ψi

)]
, ∆−ij = 2∆rij•∇ψi −

(
ψj − ψi

)
(20)

ψ−ij = ψj −
sj

4

[(
1− ksj

)
∆+

ij +
(
1 + ksj

)(
ψj − ψi

)]
, ∆+

ij = 2∆rij•∇ψj −
(
ψj − ψi

)
(21)

si = max

0,
2∆−ij

(
ψj − ψi

)
+ ε

∆−2
ij +

(
ψj − ψi

)2
+ ε

, sj = max

0,
2∆+

ij
(
ψj − ψi

)
+ ε

∆+2
ij +

(
ψj − ψi

)2
+ ε

 (22)
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rij =

xj − xi
yj − yi
zj − zi

, ∇ψn =


∂ψ
∂x

∣∣∣
n

∂ψ
∂y

∣∣∣
n

∂ψ
∂z

∣∣∣
n

 =


∑

m∈Cn

αmn(ψm − ψn)

∑
m∈Cn

βmn(ψm − ψn)

∑
m∈Cn

γmn(ψm − ψn)

 (23)

where the coefficient k determines the approximation order of the reconstruction scheme,
at k = 1

3 the third order is realized, and at k = 0 or k = ±1 the second order takes place. In
this work, we use k = 1

3 , ε = 10−13.
For each pair of nodes, i and j, the minimum pressure value

pmin = min
k∈{i,j},m∈Ck

(
min

(
p−km, p+km

))
and the coefficient fp = min

k∈{i,j},m∈Ck

(
min

(
p+km
p−km

, p−km
p+km

))
at

all interfaces between the nodes i and j and their immediate neighbors are calculated. Here
p− and p+ are the pressure values for q− and q+, respectively.

At the second stage, using the values pmin and fp, and the state vectors q+ and q− for
a pair of nodes i and j, the calculation of the convective fluxes vectors is performed. To
generalize the presented method, we introduce the vectors η and N, depending on the flux
vector direction:

N =
(
0 ηx ηy ηz 0

)T , η =


(
1 0 0

)T
∂ля Fij(

0 1 0
)T

∂ля Gij(
0 0 1

)T
∂ля Hij

(24)

Then the normal projection of the velocity is ϑ = v · η. The procedure for calculating
the convective flux vector Fij along the x axis is described in detail below. In this case,
ϑ = u. Algorithms for calculating vectors Gij, Hij are similar to the one given below, taking
into account the vector η and velocity projections (ϑ = v и ϑ = w).

Depending on the direction of the vector, rij, qL, and qR are selected:

qL =

{
q+

q−
,
,
xi ≤ xj
xi > xj

, qR =

{
q−

q+
,
,
xi ≤ xj
xi > xj

(25)

The enthalpy, speed of sound, and Mach numbers are calculated:

Hnormal =
1
2

(
HL −

|vτL|2

2
+ HR −

|vτR|2

2

)
, cs =

√
2

γ− 1
γ + 1

Hnormal (26)

c1/2 =


c2

s
max(|ϑL |,cs)

, ϑL + ϑR ≥ 0
c2

s
max(|ϑR |,cs)

, ϑL + ϑR < 0
, ML =

ϑL
c1/2

, MR =
ϑR
c1/2

(27)

where H = e+ p
ρ is the total enthalpy and vτ = v− ϑη is the tangential velocity component.

Coefficients are calculated as follows:

M+
L =

{
(ML+1)2

4 , |ML| ≤ 1
ML+|ML |

2 , |ML| > 1
, M−R =

{
− (MR−1)2

4 , |MR| ≤ 1
MR−|MR |

2 , |MR| > 1
(28)

m1/2 = M+
L + M−R (29)

P+
L

∣∣
α= 3

16
=

{
1
4 (ML + 1)2(2−ML) + αML

(
M2

L − 1
)2, |ML| ≤ 1

1
2 (1 + sign(ML)), |ML| > 1

(30)

P−R
∣∣
α= 3

16
=

{
1
4 (MR − 1)2(2 + MR)− αMR

(
M2

R − 1
)2, |MR| ≤ 1

1
2 (1− sign(MR)), |MR| > 1

(31)

ps = P+
L pL + P−R pR (32)
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fL =

{
0, ps = 0(

pL
ps
− 1
)

min
(

1, pmin
min(pL ,pR)

)2
, ps 6= 0

(33)

fR =

{
0, ps = 0(

pR
ps
− 1
)

min
(

1, pmin
min(pL ,pR)

)2
, ps 6= 0

(34)

ω = 1− f 3
p (35)

M+
L =

{
M+

L + M−R · [(1−ω)(1 + fR)− fL], m1/2 ≥ 0
M+

L ·ω · (1 + fL), m1/2 < 0
(36)

M−R =

{
M−R ·ω · (1 + fR), m1/2 ≥ 0

M−R + M+
L · [(1−ω)(1 + fL)− fR], m1/2 < 0

(37)

The expression for calculating the convective flux Fij has the form

Fij = M+
L · c1/2 ·ΦL + M−R · c1/2 ·ΦR + ps ·N, Φ =

(
ρ ρu ρv ρw ρH

)T (38)

Partial spatial derivatives of temperature and velocity components are required to
calculate the elements of the viscous stress tensor and the heat flux vector:

∂u
∂x

∣∣∣∣
i
= ∑

j∈Ci

αij
(
uj − ui

)
,

∂u
∂y

∣∣∣∣
i
= ∑

j∈Ci

βij
(
uj − ui

)
, . . . ,

∂T
∂z

∣∣∣∣
i
= ∑

j∈Ci

γij
(
Tj − Ti

)
(39)

τxx|i =
2
3

µi

(
2

∂u
∂x

∣∣∣∣
i
− ∂v

∂y

∣∣∣∣
i
− ∂w

∂z

∣∣∣∣
i

)
, τxy

∣∣
i = µi

(
∂u
∂y

∣∣∣∣
i
+

∂v
∂x

∣∣∣∣
i

)
, . . . , qz|i = −λi

∂T
∂z

∣∣∣∣
i

(40)

The obtained values are directly used to calculate the viscous flux vectors Fv
i = Fv(qi),

Gv
i = Gv(qi), Hv

i = Hv(qi) in the node i according to the above expressions.
The reconstruction of the gradient vectors of physical variables u, v, w, T is required

to calculate the viscous fluxes Fv
ij, Gv

ij, Hv
ij in the middle of the ij segment, connecting the

nodes i and j. It is performed according to [28]:

∇ϕ|ij = ∇ϕ|ij −
(
∇ϕ|ij•

rij∣∣rij
∣∣ − ϕj − ϕi∣∣rij

∣∣
)

rij∣∣rij
∣∣ , ∇ϕ|ij =

∇ϕ|i + ∇ϕ|j
2

(41)

Let us give some expressions:

∂u
∂y

∣∣∣
ij
= ∂u

∂y

∣∣∣
ij
−
(

∂u
∂x

∣∣∣
ij

(
xj − xi

)
+ ∂u

∂y

∣∣∣
ij

(
yj − yi

)
+ ∂u

∂z

∣∣∣
ij

(
zj − zi

)
− uj−ui

|rij|

)
yj−yi

|rij| ,

∂u
∂x

∣∣∣
ij
= 1

2

(
∂u
∂x

∣∣∣
i
+ ∂u

∂x

∣∣∣
j

)
, ∂u

∂y

∣∣∣
ij
= 1

2

(
∂u
∂y

∣∣∣
i
+ ∂u

∂y

∣∣∣
j

)
, ∂u

∂z

∣∣∣
ij
= 1

2

(
∂u
∂z

∣∣∣
i
+ ∂u

∂z

∣∣∣
j

)
,

∂v
∂x

∣∣∣
ij
= ∂v

∂x

∣∣∣
ij
−
(

∂v
∂x

∣∣∣
ij

(
xj − xi

)
+ ∂v

∂y

∣∣∣
ij

(
yj − yi

)
+ ∂v

∂z

∣∣∣
ij

(
zj − zi

)
− vj−vi

|rij|

)
xj−xi

|rij| ,

∂v
∂x

∣∣∣
ij
= 1

2

(
∂v
∂x

∣∣∣
i
+ ∂v

∂x

∣∣∣
j

)
, ∂v

∂y

∣∣∣
ij
= 1

2

(
∂v
∂y

∣∣∣
i
+ ∂v

∂y

∣∣∣
j

)
, ∂v

∂z

∣∣∣
ij
= 1

2

(
∂v
∂z

∣∣∣
i
+ ∂v

∂z

∣∣∣
j

)
(42)

Due to minor changes, the viscosity is determined by averaging the values in nodes [28]:

µij =
µi + µj

2
(43)

then

τxy
∣∣
ij = µij

(
∂u
∂y

∣∣∣∣
ij
+

∂v
∂x

∣∣∣∣
ij

)
(44)

The remaining components of the viscous stress tensor are calculated in a similar way.
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Numerical integration with respect to time is performed by the third-order explicit
Runge–Kutta method [32]:

∂qi
∂t

+ R(qi) = Rv(qi) (45)

R(qi) = 2 ∑
j∈Ci

[
αij
(
Fij − Fi

)
+ βij

(
Gij −Gi

)
+ γij

(
Hij −Hi

)]
(46)

Rv(qi) = 2 ∑
j∈Ci

[
αij

(
Fv

ij − Fv
i

)
+ βij

(
Gv

ij −Gv
i

)
+ γij

(
Hv

ij −Hv
i

)]
(47)

q(1)
i = qn

i − ∆tR
(
qn

i
)
, q(2)

i = 3
4 qn

i +
1
4 q(1)

i −
1
4 ∆tR

(
q(1)

i

)
,

qn+1
i = 1

3 qn
i +

2
3 q(2)

i −
2
3 ∆tR

(
q(2)

i

) (48)

The time step for explicit integration is determined according to the Courant criterion:

∆t = min

 CFL
max

i
|λi|

,
VNN

max
i

∣∣λv
i

∣∣
 (49)

λi = ∑
j∈Ci

(
αijûij + βijv̂ij + γijŵij + ĉij

√
α2

ij + β2
ij + γ2

ij

)
(50)

λv
i = max

(
4
3

,
γ

3
2

Pr

)
∑

j∈Ci

2µij

(
α2

ij + β2
ij + γ2

ij

)
ρi + ρj

(51)

µij = µ

(Ti + Tj

2

)
(52)

CFL = 0.5, VNN = 0.4 (53)

by Roe-averaging vectors of physical variables for q+ and q−

ρ̂ =
√

ρ−ρ+, Ĥ =
H−
√

ρ−+H+
√

ρ+√
ρ−+
√

ρ+
, ĉ =

√{
Ĥ − û2+v̂2+ŵ2

2

}
(γ− 1),

û =
u−
√

ρ−+u+
√

ρ+√
ρ−+
√

ρ+
, v̂ =

v−
√

ρ−+v+
√

ρ+√
ρ−+
√

ρ+
, ŵ =

w−
√

ρ−+w+
√

ρ+√
ρ−+
√

ρ+

(54)

The implementation of the Neumann boundary conditions is also based on the ap-
proximation of the derivative ∂ϕ

∂n by the least squares method [28]:

∂ϕ

∂n

∣∣∣∣
i
= n · ∇ϕ = nx ∑

j∈C̃i

αij
(

ϕj − ϕi
)
+ ny ∑

j∈C̃i

βij
(

ϕj − ϕi
)
+ nz ∑

j∈C̃i

γij
(

ϕj − ϕi
)

(55)

ηij = αijnx + βijny + γijnz (56)

∂ϕ

∂n

∣∣∣∣
i
= ∑

j∈C̃i

ηij
(

ϕj − ϕi
)
= ∑

j∈C̃i

ηij ϕj − ϕi ∑
j∈C̃i

ηij (57)

ϕi =

∑
j∈C̃i

ηij ϕj −
∂ϕ
∂n

∣∣∣
i

∑
j∈C̃i

ηij
(58)

where nx, ny, nz are the components of the outward normal vector n at node i on the surface
boundary and C̃i is the set of its neighboring nodes that do not belong to the boundary (see
Figure 3).
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The calculation of the components of the gas state vector at node i at the isothermal
wall with temperature Tw is carried out according to the expressions:

Ti = Tw, pi =

∑
j∈C̃i

ηij pj

∑
j∈C̃i

ηij
, ρi =

pi
R Ti

, ui = vi = wi = 0, ei =
pi

ρi(γ− 1)
(59)

Modeling the motion of particles in a gas flow
The developed computational model makes it possible to study the supersonic flow of

a viscous gas in the presence of one or several relatively large moving particles. The flow
around each object (the body and the particles) is calculated by solving the system of gas
dynamics equations in its own coordinate system on a selected set of calculation nodes
belonging to its domain. A body in a supersonic flow is considered immovable along with
its coordinate system, the domain, and the cloud of nodes, which are further referred to as
the “main”. On the inlet boundary of the main computational domain, the parameters of
the oncoming flow are set (n—the normal vector to the boundary):

ρ = ρ∞, T = T∞, v = v∞,
∂ρ

∂n
= 0,

∂p
∂n

= 0 (60)

The Neumann boundary conditions are set at the exit from the main calculation area:

∂ρ

∂n
= 0,

∂v
∂n

= 0,
∂p
∂n

= 0 (61)

The aerodynamic drag force, fD, which determines the change in particle velocity,
is calculated from the action of the viscous friction force and the gas pressure at the
computational nodes on its surface:

drp

dt
= vp, mp

dvp

dt
= fD, fD = ∑

i∈Sp

(
−pini + µi

∂vτ

∂n

∣∣∣∣
i

)
Si (62)

where mp is the particle mass, vp is the particle velocity vector, and rp is the particle position
vector in the central coordinate system. The boundary nodes lying on the particle surface
Sp correspond to the surface elements with area Si, and the outer normal vector ni, vτ is
the tangential component of the gas velocity near the surface.

In the computational domain, a stationary set of computing nodes belonging to the
main domain, adapted to the boundaries of the domain and the geometry of the object, is
formed. Each particle is surrounded by a cloud of computational nodes that belong to its
domain and move with it in space. The solution of the gas dynamics equations at the nodes
connected with the particle is carried out in the local moving coordinate system, whereas
at the nodes of the main domain—it is in the central fixed coordinate system. As the
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particle moves in space, some of the computational nodes are temporarily excluded from
the calculation, and the outer boundary nodes of the particle domain become neighbors
with the nodes of the main domain or the domain of another particle (see Figure 4).
When numerically integrating the equations using a meshless method, the calculation of
viscous and convective fluxes between nodes belonging to different domains requires the
transformation of the conservative variables’ vectors, q, as well as their gradients, ∇q, into
the local coordinate system of the node for which the calculation is performed.
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An approach based on the use of a single cloud of computational nodes makes it
possible to simulate the gas-dynamic interaction of a particle with the body as well as the
interaction between the particles.

The software implementation of the described algorithms is made in the C++ program-
ming language in combination with the OpenCL parallel computing technology, which
allows the use of heterogeneous parallel computing devices, including graphics processors
from different manufacturers.

A series of computational experiments have been carried out to test the operation of
the presented method for simulating gas flow around moving objects. In one of the series
of tests, the flow around a sphere was calculated in the following modes:

• the sphere is at rest Mp = 0, the Mach number of the oncoming flow M∞ = 2;
• the sphere moves against the oncoming flow (M∞ = 1), the sphere velocity corre-

sponds to Mach number Mp = 1
• the gas is stationary M∞ = 0, the sphere moves with the velocity corresponding to

Mach number Mp = 2
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Reynolds number is Re = ρUL
µ = 105, where L = D is the sphere diameter, and U is

the gas velocity relative to the sphere. The shadow patterns of the gas flow (see Figure 5)
as well as the pressure on the surface (see Figure 6) are identical in all three cases, which
testifies the correctness of the computational model.
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3. Results and Discussion

A computational experiment was carried out to simulate the motion of a large spherical
particle with a diameter dp = 2 · 10−4 m of silicon dioxide and a density ρp = 2170 kg

m3 along
the symmetry axis of a sphere with a diameter D = 0.075 m toward the oncoming flow. The
Mach and Reynolds numbers of the oncoming flow are M∞ = 6 and Re| L=D = 1.09 · 106.
The initial velocity of the particle starting from the sphere surface is 100 m

s . Figure 7 shows
the shadow patterns of the flow at successive times t0 = 0 s, t1 = 1 · 10−4 s, t2 = 1.3 · 10−4 s,
t3 = 1.46 · 10−4 s, t4 = 2.9 · 10−4 s, t5 = 3.77 · 10−4 s, and in Figure 8, the distributions of the
pressure and convective heat flux along the surface are presented that correspond to those
time moments. The angular coordinate here is counted from the critical point. The value of
the heat flux is normalized by the value of the heat flux at the critical point, calculated with
the well-known Fay–Riddell formula [33].
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Figure 7. (a). Shadow pictures of the flow in the process of particle movement along the symmetry
axis. (b). Shadow pictures of the flow in the process of particle movement along the symmetry axis
(continued).

When the particle passes through the head shock wave, the stationary shock-wave
structure is destroyed, resulting in the formation of a cone-shaped perturbation region, the
top of which is moving along with the particle. In the zone of contact between the cone-
shaped and bow shock waves, a λ-configuration of three waves arises with the formation of
an impact jet directed towards the surface, which causes a significant increase in pressure
and in the heat flux in the local area affected by the jet (see Figure 8). As the particle
moves away from the surface, the wave configuration evolves, and the zone of their contact,
together with the region of the intense gas impact on the surface, shifts to the periphery.
A detailed analysis of the observed phenomena and mechanisms of their occurrence is
given in [12], where a similar problem is solved by the finite volume method on adaptive
Cartesian grids.
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Figure 9 shows the shadow patterns of the flow when two identical particles are
sequentially launched at an angle to the symmetry axis. In the considered configuration,
the second particle finds itself under the influence of the wake of the first particle, loses the
velocity component faster, and, as a result, moves away from the sphere to a noticeably
smaller distance before turning around and moving to the periphery.
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Figure 9. Shadow pictures of the flow under the influence of a pair of particles.

Figure 10 shows graphs of the pressure and the convective heat flux along the surface at
the time instants corresponding to the flow patterns in Figure 9. There is an approximately
two times increase in the pressure and an almost four times increase in the heat flux in a
local area near the critical point. Significant perturbations of the gas parameters near the
surface, leading to the appearance of regions of multiple enhancement of the convective
heat flux, accompany the particles during their movement.
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Figure 10. Pressure (a) and convective heat flux (b) oscillations on the sphere surface, induced by the
gas-dynamic interaction of a pair of particles with a shock layer.

4. Conclusions

A meshless algorithm has been proposed for modeling the gas-dynamic interaction of
moving particles with the shock layer. The algorithm allows for overcoming the problems
connected with the large difference in scales of the flow around the particles and around the
body. The algorithm is based on the approximation of partial derivatives by the least squares
method on a set of nodes distributed in the calculation area. Along with the stationary
main set of nodes, each moving particle is surrounded by its own cloud of points belonging
to its domain. Clouds of computational nodes moving in space together with particles
interact with each other, forming a single connected cloud of nodes. When calculating the
fluxes, the nodes’ belonging to different domains and their relative velocities are taken
into account. Numerical experiments have been carried out to simulate the motion of a
single particle and a pair of particles in a supersonic flow around a sphere. The developed
algorithm opens up wide opportunities for the detailed study of the collective effects of a
coarsely dispersed admixture on the flow and heat transfer in the shock layer for a blunt
body in a supersonic flow.
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