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Abstract: For weakly nonlinear waves in one space dimension, the nonlinear Schrödinger Equation
is widely accepted as a canonical model for the evolution of wave groups described by modulation
instability and its soliton and breather solutions. When there is forcing such as that due to wind
blowing over the water surface, this can be supplemented with a linear growth term representing
linear instability leading to the forced nonlinear Schrödinger Equation. For water waves in two
horizontal space dimensions, this is replaced by a forced Benney–Roskes system. This is a two-
dimensional nonlinear Schrödinger Equation with a nonlocal nonlinear term. In deep water, this
becomes a local nonlinear term, and it reduces to a two-dimensional nonlinear Schrödinger Equation.
In this paper, we numerically explore the evolution of wave groups in the forced Benney–Roskes
system using four cases of initial conditions. In the one-dimensional unforced nonlinear Schrödinger
equa tion, the first case would lead to a Peregrine breather and the second case to a line soliton;
the third case is a long-wave perturbation, and the fourth case is designed to stimulate modulation
instability. In deep water and for finite depth, when there is modulation instability in the one-
dimensional nonlinear Schdrödinger Equation, the two-dimensional simulations show a similar
pattern. However, in shallow water where there is no one-dimensional modulation instability, the
extra horizontal dimension is significant in producing wave growth through modulation instability.

Keywords: nonlinear Schrodinger equation; wind wave; modulation instability; wave growth

1. Introduction

The generation and evolution of wind waves is a fundamental problem of both scien-
tific and operational interest. Oceanic wind waves affect the weather and climate through
transfer processes across the ocean–atmosphere interface, generate large forces on marine
structures, ships and submersibles and can lead to extreme events such as storm surges and
rogue waves. Despite much theoretical research, observations and numerical simulations,
the theoretical mechanism for wind wave formation and evolution remains controversial,
with aspects which are poorly understood. This was clearly evident at the IUTAM Sympo-
sium on Wind Waves held in London in September 2017, see Grimshaw et al. [1], where a
wide range of contrasting views were presented with a very lively discussion. In particular,
there are only tentative theories about how wind affects the dynamics of wave groups.
The issue is how, in the presence of wind, do water waves form into characteristic wave
groups, and what are their essential properties, depending on the local atmospheric and
oceanic conditions.

Historically, several mechanisms have been invoked to describe the generation and
evolution of wind waves. The most well-known is a classical shear flow instability mecha-
nism developed by John Miles in 1957, Miles [2], subsequently adapted for routine use in
operational wave forecasting models, Janssen [3], Cavaleri et al. [4]. The theory is based on
linear sinusoidal waves with a real-valued wavenumber and a complex-valued frequency
so that waves may have a temporal exponential growth rate. There is significant transfer
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of energy from the wind to the waves at the critical level where the wave phase speed
matches the wind speed. Independently, also in 1957, Owen Phillips developed a theory
for water wave generation due to the flow of a turbulent wind over the sea surface, based
on a spatial resonance between a fluctuating pressure field in the air boundary layer and
water waves, leading to a linear growth in the water wave amplitude. It is widely believed
that the Phillips mechanism applies in the initial stages of wave growth and that the Miles
mechanism describes the later stage of wave evolution, see Miles [2], Phillips [5,6]. Another
quite different mechanism is a steady-state theory, developed initially by Harold Jeffreys
in 1925 Jeffreys [7] for separated flow over large amplitude waves and later adapted for
nonseparated flow over low-amplitude waves by Julian Hunt, Stephen Belcher and col-
leagues, Belcher and Hunt [8]. Asymmetry in the free surface profile is induced by an eddy
viscosity closure scheme. In the air flow, it allows for an energy flux to the waves.

Most of the literature on wind waves has been based on the development and analysis
of the statistical spectrum using the well-known Hasselmann Equation which describes
the evolution of the wave action under the influence of nonlinearity due to resonant
quartet interactions, a wind forcing source term and dissipation, mainly due to wave
breaking, Grimshaw et al. [1], Janssen [3], Wu et al. [9]. There are many associated analytical
and numerical studies of the fully nonlinear Euler Equations for water waves, see for
instance the articles by Sajjadi et al. [10], Sullivan et al. [11], Wang et al. [12], Hao et al. [13]
in the proceedings of the IUTAM 2017 Symposium on Wind Waves, Grimshaw et al. [1].
This theory has not been found completely satisfactory and especially fails to take account
of wave transience and the tendency of waves to develop into wave groups, see Zakharov
et al. [14,15], Zakharov [16] amongst many similar criticisms.

In the absence of wind forcing, it is well-known that the nonlinear Schrödinger Equa-
tion (NLS) describes one-dimensional wave groups in the weakly nonlinear asymptotic
limit, see the seminal works by Benney and Newell [17], Zakharov [18] and many sub-
sequent works by these authors and many others. In this model, wave groups are often
initiated by modulation instability and then represented by the soliton and breather solu-
tions of the NLS model, see Grimshaw [19], Osborne [20] for instance. We have proposed
that the effect of wind forcing can be captured by the addition of a linear growth term
to the NLS Equation leading to a forced nonlinear Schrödinger Equation (fNLS). Our re-
examination of modulation instability and the generation under wind forcing of localised
structures, that is, wave packets and breathers, indicate that the effect of wind forcing is to
favour the formation of line solitons aligned with the wind direction over the formation of
breathers, Maleewong and Grimshaw [21,22].

Our interest here is in the growth of wave groups, which in the presence of wind can
be described by a forced NLS (fNLS) Equation, that is the NLS Equation with an additional
linear term with a forcing parameter ∆, see for instance Leblanc [23], Touboul et al. [24],
Kharif et al. [25], Onorato and Proment [26], Montalvo et al. [27], Brunetti et al. [28], Slun-
yaev et al. [29]. That is the issue we have been addressing recently, see Maleewong and
Grimshaw [21,22], Grimshaw [30,31,32]. Our analysis is based on linear shear flow insta-
bility theory but incorporates from the outset that the waves will develop a wave group
structure with both temporal and spatial dependence. When the generation of an unstable
wave group is considered, the group velocity is real-valued, so both the wave frequency and
the wavenumber are complex-valued, see Grimshaw et al. [1], Grimshaw [31]. However,
that issue is not explored here in any further detail.

Dissipation is excluded in this work, but formally dissipation could be included lead-
ing to a smaller and even negative forcing parameter ∆, see Kharif et al. [25], Segur et al. [33].
The evolution of nonlinear wave groups to breaking under wind forcing has been stud-
ied using fully nonlinear numerical models, and in laboratory experiments, see for in-
stance Galchenko et al. [34] and the articles in the IUTAM symposium [1]. The evolution
of envelop waves over finite depth is described by Rajan et al. [35]. When the depth is
nonuniform, the coefficients in model NLS Equation are variable, and there is a linear
growth/decay term. The linear stability analysis of envelop waves due to such bottom
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effects was studied by Benilov et al. [36], Benilov and Howlin [37] and later by Rajan and
Henderson [38].

Most studies of wind wave groups have been for one horizontal space dimension, x,
although we note that a nonuniform extension of the NLS to two dimensions with some
analytical solutions was described by Helal and Seadawy [39]. This is certainly the case
for the fNLS model. However, Benney and Roskes, introduced a two-dimensional, x, y,
extension of the NLS model Benney and Roskes [40] and used it to study two-dimensional
modulation instability. A similar study was described by Peregrine [41]. The Benney–
Roskes system reduces to a two-dimensional NLS Equation in deep water and in finite depth
is a nonlocal nonlinear modification of the two-dimensional NLS Equation. Analogous
studies of two-dimensional modulation instability have been performed using the full
two-dimensional Euler Equations, see Janssen [3], Osborne [20], Mei [42] for instance.
Grimshaw [32] used a forced modification of the Benney–Roskes system, incorporating a
linear forcing term similar to the extension of the NLS Equation to the forced NLS Equation,
to study the effect of wind forcing on two-dimensional modulation instability.

In this paper, we expand that study and use this forced Benney–Roskes system to
study the evolution of wave groups under wind forcing. Our strategy is to use the same
four initial conditions used by Maleewong and Grimshaw [21,22], each modified with a
y-dependent envelope to stimulate modulations in the y direction as well as the expected
modulations in the x direction. The four initial conditions, see Section 3, are in the absence
of wind forcing and y-dependent effects: (1) a Peregrine breather, (2) a line soliton, (3) a
long wave perturbation and (4) a periodic perturbation. The Benney–Roskes system is
presented in Section 2, and the initial conditions are specified in Section 3. The numerical
results are presented in Section 4, and we conclude with a summary and discussion in
Section 5.

2. Formulation

A wave packet travelling in the x-direction and modulated in x, y directions is repre-
sented by the asymptotic expression

ζ = εA(X, Y, T) exp (iθ) + c.c. + · · · , (1)

where θ = kx−ω(k)t , X = ε(x− cgt) , Y = εy , T = ε2t , (2)

ω2(k) =
g
h

qσ , cg = ωk =
ω

2k
{1 + q

σ
(1− σ2)} , q = kh , σ = tanh q . (3)

Here ζ(x, y, t) is the surface elevation, and ε � 1 is a small parameter measuring
the wave amplitude. The first term in (3) is the dispersion relation; the second term is
the group velocity, and the third term is the nondimensional water depth; ω is the wave
frequency, cg is the group velocity, k is the wavenumber, and h is the water depth

An asymptotic expansion in which the linear dispersive effects are scaled to balance the
leading order nonlinear effects leads to the Benney–Roskes system Benney and Roskes [40].
Here, we include the leading order effect of wind forcing by analogy with the one-
dimensional forced nonlinear Schrödinger Equation, see Grimshaw [31,32],
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iAT + δAXX + δ1 AYY + µ|A|2 A + QA = i∆A , (4)

αQXX + QYY + β(|A|2)YY = 0 , (5)

where δ =
ωkk

2
= −

c2
g

2ω + gh
2ω sech2q(1− qσ)

, (6)

δ1 =
cg

2k
, α = 1−

c2
g

gh
, (7)

µ = − k2ω

4σ4 (9σ4 − 10σ2 + 9) +
ω3

2σ3(gh− c2
g)
(2σ(3− σ2) + 3q(1− σ2)2) , (8)

(gh− c2
g)β = −2ω3

σ2 (1 +
cg

2c
(1− σ2))2 . (9)

This system is a two-dimensional nonlocal forced NLS Equation where Q is an induced
mean flow term.

Although the Benney–Roskes system (4) and (5) formally does not contain the scaling
parameter ε, it should only be invoked when the amplitude is small and dispersive length
scales are long. In particular, the physical amplitude 2ε|A| of the wave above the base level
should be much smaller than the depth h.

The parameter ∆ in (4) represents the wind forcing, and ∆−1 is the linear time scale
for wind-induced instability. The relationship between ∆ and the wind shear profile is de-
scribed in the aforementioned references, see for instance Maleewong and Grimshaw [22].
When forcing occurs, it can be shown that

d
dT

∫ ∞

−∞

∫ ∞

−∞
|A|2dXdY = 2∆

∫ ∞

−∞

∫ ∞

−∞
|A|2dXdY . (10)

The energy of a localised wave packet grows exponentially in time with the growth
rate 2∆. This is valid when A decays sufficiently fast at infinity in both the X and Y
directions. There is an analogous expression when the domain is periodic in either or
both directions.

The Benney–Roskes system (4) and (5) reduces to a one-dimensional forced nonlinear
Schrödinger Equation when we seek solutions which depend only on T and the slanted
co-ordinate χ = X + tan θY at an angle θ to the X-axis, yielding

iAT + δ̂Aχχ + µ̂|A|2 A = i∆A , (11)

where δ̂ = δ + (tan θ)2δ1,

µ̂ = µ− (tan θ)2β

α + (tan θ)2 .

In the absence of wind forcing, ∆ = 0 s−1, Equation (11) is modulation unstable when
δ̂µ̂ > 0. The full Benney–Roskes system (4) and (5) is likewise modulation unstable as
shown by Grimshaw [32], Benney and Roskes [40]. This can be deduced from (11) by noting
that modulation of a plane periodic wave of amplitude M by long wave perturbation with
X, Y wavenumbers K, L replaces AXX , AYY with −K2 A,−L2 A, respectively, and similarly
for Q. Hence, modulation instability for the Benney–Roskes system (4) and (5) occurs
when (11) is modulation unstable, and the outcome is described below in (20) and the
following text.

In the deep-water limit, q = kh → ∞ , σ → 1, α → 1 , β → 0 , and then Q → 0 so
that the system (4) and (5) reduces to the forced two-dimensional nonlinear Schrödinger
Equation (2DfNLS) as follows,

iAT + δAXX + δ1 AYY + µ|A|2 A = i∆A , (12)
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where now ω2 = gk , cg =
ω

2k
, (13)

δ = − ω

8k2 , δ1 =
ω

4k2 , µ = −2ωk2 . (14)

The energy law (10) continues to hold in this limit.

3. Initial Conditions

We use the same four cases of initial conditions studied by us in Maleewong and
Grimshaw [21,22] for the one-dimensional case but modified here by an explicit Y-dependence.
In each case, we first test the code and numerical stability by simulations with initial
conditions that have no explicit Y-dependence. Then, in our main focus here, we add the
Y-dependence to the initial condition as a Y-envelope or a Y-modulation.

3.1. Case 1: Peregrine Breather

When ∆ = 0 s−1, the Peregrine breather in one dimension along the X axis is given,
see Peregrine [41], Chabchoub and Grimshaw [43], where here we add a Y-envelope,

A(X, Y, T) = M ENV(Y)
[
−1 +

4(1 + 2iµM2T)
1 + 2M2µδ−1X2 + 4µ2M4T2

]
exp (iµM2T) , (15)

ENV(Y) = sech(ΓY) . (16)

The imposed Y-scale is Γ−1 m chosen so that ENV(Y) fits inside the Y- boundary
conditions and is comparable to the intrinsic X-scale. The initial condition is then (15) at
T = −T0. It requires µδ > 0, that is q = kh > 1.363; otherwise in shallow water, when
µδ < 0, q = kh < 1.363, it is singular with poles when −2M2µδ−1X2 = 1 + 4µ2M4T2.
Importantly, we note that the Peregrine breather can also be found as a solution of the
slantwise NLS Equation (11) (when ∆ = 0 s−1) and so can be expected to appear with its
own Y dependence with the slanted coordinate χ replacing X.

3.2. Case 2: Line Soliton

The line soliton with a Y-envelope (16) is given by

A(X, Y, T) = M ENV(Y) sech(Θ) exp (iΦ) , Θ = κ(X−VT) , Φ = K̂X− Ω̂T , (17)

where 2δκ2 = µM2 , V = 2δK̂ , Ω̂ = δK̂2 − µ

2
κ2 .

The initial condition is then (17) at T = 0. This solution requires that δµ > 0 which is
the case in deep water, q = kh > 1.363. Like the Peregrine breather, the line soliton can also
be found as a solution of the slantwise NLS Equation (11) (when ∆ = 0 s−1) and so can be
expected to appear with its own Y dependence with the slanted coordinate χ replacing X.

3.3. Case 3: Long Wave Perturbation

The initial condition is a slowly varying long wave perturbation, again with a Y-
envelope (16).

A(X, Y, 0) = M ENV(Y) sech(γX) . (18)

3.4. Case 4: Periodic Perturbation

The initial condition is a long-wave periodic perturbation with wavenumbers K, L in
the X, Y-directions, respectively.

A(X, Y, 0) = M(1 + α cos (KX) cos (LY)) , (19)
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where 0 < α� 1. Note that

2 cos (KX) cos (LY) = cos (KX + LY) + cos (KX− LY) ,

and at the linear level, α � 1 describes two-dimensional modulations along KX ± LY,
respectively. In the linear limit, the combination will produce a standing wave.

Modulation instability in the Benney–Roskes system (4) and (5) was analysed by
Benney and Roskes [40] when ∆ = 0 s−1 and extended to ∆ > 0 s−1 by Grimshaw [32],
or it can be deduced directly from the slant-wise forced NLS Equation (11). The outcome is
that modulation instability occurs when

κ(κF− 2νM2) < 0 , (20)

κ = δK2 + δ1L2, ν = µ +
βL2

αK2 + L2 , F = exp (−2∆T) .

When ∆ = 0 s−1, F = 1 and also L = 0, there is modulation instability, as in the
one-dimensional NLS Equation when δµ > 0, |K| <

√
2µ/δ|M|. When ∆ = 0 but L 6= 0,

modulation instability occurs in a band in the K− L plane bounded by the straight lines
κ = 0 and the κ = 2νM2 resembling hyperbolas. In deep water and finite depth when
q > 1.363, the band emanates from the K axis where |K| <

√
2µ/δ|M|, the one-dimensional

modulation instability region. However, in shallow water q < 1.363, the K-axis is excluded,
and instead the band emanates from the L-axis where |L| <

√
2µ/δ1|M|, see Benney and

Roskes [40], Peregrine [41]. As q decreases, the instability band narrows and is essentially
unrealisable for q < 0.5. When wind forcing is present, ∆ > 0 s−1, F decreases from 1→ 0
as T increases from 0 to ∞, and eventually modulation instability requires only that ν > 0.

Two examples of modulation instability bands are shown here. First, for a 5 s carrier
wave on the finite depth h = 9.879 m when q = 1.7 > 1.363 and µ < 0, modulation
instability bands in the K − L plane for the initial wave amplitudes M = 0.5 m and 1.0
m are shown in Figure 1 (left) and (right), respectively; all the parameters are calculated
from (6)–(9). The bands increase as M increases; more details can be found in Section 4.
Second, for the same 5 s carrier wave but over the shallow water depth h = 6.215 m
for q = 1.2 < 1.363 and µ > 0. The modulation instability bands for the initial wave
amplitudes M = 0.5 m and 1.0 m are shown in Figure 2 (left) and (right), respectively.
Now, the bands emanate from the L-axis instead of the K-axis as in the finite depth case.
The solid lines are the boundaries of modulation instability bands. Some numerical results
related to these instability bands will be shown in the next section.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.15

-0.1

-0.05

0

0.05

0.1
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0
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Figure 1. Modulation instability bands in the K− L plane from (20) for a finite depth case, q = 1.7,
∆ = 0 s−1 for a 5 s carrier wave; M = 0.5 m (left) and M = 1.0 m (right). Solid lines are the
boundaries of modulation instability regions. Light yellow areas correspond to κ(κ − 2νM2) < 0.
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Figure 2. Modulation instability bands on the K− L plane from (20) for a shallow water case q = 1.2,
∆ = 0 s−1 for a 5 s carrier wave; M = 0.5 m (left) and M = 1.0 m (right). Solid lines are the
boundaries of modulation instability regions. Light yellow areas correspond to κ(κ − 2νM2) < 0.

4. Numerical Results

Modulation instability in the one-dimensional NLS X setting occurs when δµ > 0 with
wavenumber K such that |δK| < |2δµ|1/2M, see (20) and the following discussion. For M
of order 0.5 m, K can be quite small, requiring a large domain to resolve the instability,
if present. Hence, for numerical reasons, we rescale (4) and (5) as follows

iBT − Bξξ + Bηη ∓ |B|2B + QB = i∆B , (21)

α̂Qξξ + Qηη + β̂(|B|2)ηη = 0 , (22)

where B = |µ|1/2 A , ξ = |δ|−1/2X , η = |δ1|−1/2Y , (23)

and α̂ = α
|δ1|
|δ| , β̂ =

β

|µ| . (24)

Here, ∓ refers to µ < 0 (q = kh > 1.363) and µ > 0 (q = kh < 1.363), respectively.
Note that the units for t remain as “ε−1s” which we refer to as “s”, as mostly we put ε = 1.
A second order Fourier split step method is applied to solve these systems (21)–(24). More
details are described in Appendix A.

There is a corresponding change to the initial conditions. The Peregrine breather
(15) becomes,

B(ξ, η, T) = MB ENV(|δ1|1/2η)

[
−1 +

4(1∓ 2iM2
BT)

1± 2M2
Bξ2 + 4M4

BT2

]
exp (∓iM2

BT) , (25)

where MB = |µ|1/2M . (26)

Note that there is no explicit dependence on the X-dispersion parameter δ in (25), but
it will reappear in the transform from η to X. Likewise, the dependence on µ is through the
transformed amplitude MB. Similarl, y the line soliton (17) becomes

B(ξ, η, T) = MB ENV(|δ1|1/2η) sech(Θ) exp (iΦ) , (27)

where Θ = κ(|δ|1/2ξ −VT) , Φ = K̂|δ|1/2ξ − Ω̂T ,

and 2δκ2 = ∓M2
B , V = 2δK̂ , Ω̂ = δK̂2 − µ

2
κ2 .



Fluids 2023, 8, 52 8 of 32

We recall that here µ < 0, δ < 0 for both (25) and (27) and note that in (27) κ|δ|1/2 =
2−1/2MB so that the ξ-scale depends only on the scaled amplitude MB. The long wave
initial condition (18) becomes

B(ξ, η, 0) = MB ENV(|δ1|1/2η) sech(γ|δ|1/2ξ) , (28)

and the periodic initial condition (19) becomes

B(ξ, η, 0) = MB(1 + α cos (K|δ|1/2ξ) cos (L|δ1|1/2η)) . (29)

In (29), the modulation wavenumbers in the transformed space are K|δ|1/2, L|δ|1/2 in ξ, η
directions, respectively.

4.1. Deep-Water Limit

In the deep-water limit, q = kh→ ∞, Q→ 0, and the Benney–Roskes system (4) and
(5) reduces to the forced two-dimensional nonlinear Schrödinger Equation (12). From (21),
the rescaled form is

iBT − Bξξ + Bηη − |B|2B = i∆B . (30)

We will present the results using the dimensional amplitude A(X, Y, T). For a 5 s wave,
ω = 2π/5 s−1. From the linear dispersion relation k = ω2/g = 0.161 m−1 setting
g = 9.81 m s−2. Then, from (14) we conclude that δ = −6.062 m2 s−1, δ1 = 12.124 m2 s−1

and µ = −0.065 m−2.

4.1.1. Case 1: Peregrine Breather

The simulations were performed in the rescaled Equation (30) with the initial condi-
tion (25) at T = −T0 < 0. When ∆ = 0 s−1 and Γ = 0 m−1, the Peregrine breather in one
dimension along the ξ axis is given by (25). The initial condition is at T = −T0 = −50 s with
MB = 0.1, 0.5 (M = 0.392, 1.959 m). The simulations for MB = 0.1 were over the time period
−50 < T < 175 s with time step dt = 0.05 s. The simulations for MB = 0.5 were over the
time period−50 < T < 25 s, a shorter time since small waves propagated to the boundaries
as time increased. The computational domain is [ξ, η] = [−300π, 300π]× [−300π, 300π]
with the number of Fourier modes 211 for each spatial direction. Since this case has an exact
solution in the form of a one-dimensional Peregrine breather, the accuracy of numerical
solutions can be checked by measuring the root mean square error. It is found that it lies
within the order of 10−7 at each time step. Then, we will apply this resolution setting to
simulate the other cases.

We solve numerically (30) for B but plot the solution for A. Surface plots of |A| when
∆ = 0 s−1 and Γ = 0 m−1 for MB = 0.1, 0.5 are shown in Figures 3 and 4, respectively.
Initially a Peregrine breather forms as T → 0 s. Then for T > 0 s, the wave amplitude
decreases and disperses along the ξ direction due to modulation instability on the back-
ground, as expected. In these cases, no Y dependence is discernible. In Figure 3, at T = 0,
the background amplitude is 0.39 m, and the peak amplitude is 1.17 m, which is three
times that of the initial background. The time scale for the evolution of these modulation
instability oscillations is of order (MB)

−2. The oscillations are just discernible for MB = 0.1
and become overwhelming for MB = 0.5, where at T = 25 s secondary peaks are emerging.

Cases with Y dependent effects in (15) through the envelope ENV(Y) are examined
with Γ = 0.1 m−1. The results for MB = 0.1 and 0.5 are shown by contour plots in
Figures 5 and 6. For the smaller value of wave amplitude MB = 0.1, modulation instability
now occurs clearly in both the X and Y directions. Transverse modulation instability
through ENV(Y) is demonstrated as two sideband waves appear symmetrically on each
side of the initial wave. These grow at the expense of the main wave and become domi-
nant when the initial wave has decayed. These effects appear more in the Y than in the
X direction.
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Figure 3. Deep-water limit: Case 1, surface plot of |A| from 2DfNLS (12) when MB = 0.1, ∆ = 0 s−1

and Γ = 0 m−1.

Figure 4. Deep-water limit: Case 1, ∆ = 0 s−1 and Γ = 0 m−1, surface plot of |A| from 2DfNLS (12)
when MB = 0.5.

For the larger value of wave amplitude MB = 0.5, the wave has split into smaller
amplitude waves along the X direction as for the case Γ = 0 m−1 and then disperses in
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both directions, more so in the Y than in the X direction. The energy (10) is preserved
constantly when ∆ = 0 s−1 indicating the accuracy of the numerical scheme.
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Figure 5. Deep-water limit: Case 1, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| from 2DfNLS (12)
when MB = 0.1.
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Figure 6. Deep-water limit: Case 1, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| from 2DfNLS (12)
when MB = 0.5.

When wind forcing is added, we consider three values of ∆, 0.01, 0.05, 1.0 s−1. The
initial condition is again a Peregrine breather (25) with two values for the amplitude,
MB = 0.1, 0.5 and with Γ = 0.1 m−1 as considered above. We show contour plots when
∆ = 0.05 s−1 and Γ = 0.1 m−1 as representative cases. Contour plots when MB = 0.5 are
shown in Figure 7. As time increases, large waves develop, first narrow in the X direction
and then dispersing in both directions. Large variation appears in the Y direction. A series
of Peregrine breathers develop along the X direction. A case with a larger initial amplitude
provides larger wave growth and more chaotic behaviour.

Modulation instability occurs on a time scale of order of (MB)
−2 clearly seen in this

2DfNLS model. The predicted energy growth rate exp(2∆) and the results from the 2DfNLS
are shown in Figure 8 (left). Note that for the Peregrine breather (15), the energy E scales
as M2 M−1 = M, modulo slowly varying functions of T, and so the amplitude grows as
exp (2∆T), twice the linear value. Plots of the maximum of |A| are shown in Figure 8 (right).
The maximum wave amplitude decays monotonically due to dispersion when ∆ = 0 s−1,
but it grows exponentially when ∆ > 0 s−1 from the forcing effect.

4.1.2. Case 2: Line Soliton

The initial condition is (27) with envelop support Γ = 0.1 m−1. We solve for B in
the rescaled form (21) and consider two cases with MB = 0.5, 1.0, (M = 1.959, 3.919 m)
similar to the previous case. Here, we show the result for MB = 1.0 as representative
since it has similar features to a case with smaller initial amplitude, but this case with a
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larger MB shows more effects. We set κ2 = −(MB)
2/2δ = 0.082 and V = 0.4 m s−1, then

K̂ = V/2δ = −0.033 and Ω̂ = δK̂2 − µκ2/2 = −0.004.

Figure 7. Deep-water limit: Case 1, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plot of |A| from
2DfNLS (12) when MB = 0.5.
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Figure 8. Deep-water limit: Case 1, plots of E from (10) and the maximum of |A| for MB = 0.5 for
various values of ∆.

This case with MB = 1.0 is shown in Figure 9. Without forcing, ∆ = 0 s−1, the envelop
soliton disperses over a long time due to the Y-dependent envelop. The centre of the
envelop wave moves in the X direction with a constant speed V.
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Figure 9. Deep-water limit: Case 2, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| from 2DfNLS (12)
when MB = 1.0.

A representative case with forcing is shown in Figure 10 with ∆ = 0.05 s−1. The wave
amplitude grows in time with the generation of large amplitude breathers and solitons
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initially moving in the X direction. These become chaotically distributed throughout the
domain at longer times.

The variation of energy over time is shown in Figure 11 (left). The growth rate of
the wave amplitude again agrees with the predicted growth rate for this type of initial
condition. The maximum of the wave amplitude |A| over time is shown in Figure 11 (right).
For small forcing coefficient, ∆ = 0.01 s−1, the initial wave amplitude decreases due to
dispersion, but with sufficiently large forcing, ∆ > 0.05 s−1, the maximum amplitude wave
in the domain is excited. The maximum amplitude grows in time but not monotonically
due to the generation of breathers and solitons.
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Figure 10. Deep-water limit: Case 2, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plot of |A| from
2DfNLS (12) when MB = 1.0.
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Figure 11. Deep-water limit: Case 2, plots of E from (10) and the maximum of |A| for MB = 1.0 for
various values of ∆.

4.1.3. Case 3: Long Wave Perturbation

The initial condition is (28) at T = 0 s with equal envelope support γ = Γ = 0.1 m−1

in the X, Y directions. We consider two cases with MB = 0.5, 1.0, (M = 1.959, 3.919 m) and
show the results only for MB = 1.0 since it shows the effects more clearly at earlier times.

In the absence of forcing, ∆ = 0 s−1, contour plots of |A| when MB = 1.0 are shown
in Figure 12. The initial amplitude generates two large breathers along the X direction
that can be seen at T = 25 s. This then disperses smoothly in both directions with a larger
dispersion in the Y direction as seen at T = 150 s.

When there is forcing, ∆ > 0 s−1, contour plots of |A|when MB = 1.0 and ∆ = 0.05 s−1

are shown in Figure 13. At early times T = 25 s, many wave peaks develop around the
centre of the initial amplitude, and modulation is dominant in the Y direction. Forcing
enhances these waves and their interactions which become chaotic at later times, T = 50 s.
with the larger variation again in the Y direction, and many wave peaks appear along the
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Y direction. This greater variation in the Y direction than in the X direction is consistent
with the linear modulation stability analysis, see for instance Grimshaw [32].

Plots of the maximum amplitude shown in Figure 14 (right) reveal different growing
amplitudes, a new feature with this type of initial condition. The initial wave has only a
small growth at early times, 0 < T < 6 s for all 0 ≤ ∆ ≤ 0.1 s−1. This is due to modulation
instability for this type of initial condition. When ∆ > 0.05 s−1, forcing affects wave
growth which becomes increasingly oscillatory, indicating the dominance of forcing over
modulation instability in terms of wave growth.
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Figure 12. Deep-water limit: Case 3, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| from
2DfNLS (12) when MB = 1.0.

Figure 13. Deep-water limit: Case 3, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plot of |A| from
2DfNLS (12) when MB = 1.0.
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Figure 14. Deep-water limit: Case 3, plots of E from (10) and the maximum of |A| for MB = 1.0 for
various values of ∆.
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The predicted growth rate exp(2∆) of E still gives a good prediction as can be seen in
Figure 14 (left). When we consider the relationship between max(|A|) and E, the growth
rate is exponentially increasing, while max|A| does not but differs depending on the
magnitude of ∆. There is a threshold of ∆ such that the modulation of the wave amplitude
will increase or decrease after the modulation stage, around 0 < T < 6 s in our simulations.
An explicit expression for this behaviour remains challenging. A physical interpretation of
the modulation of these small amplitude waves could be as a source of rogue waves since
rogue waves can arise due to modulation instability, and we note that in Figure 14 (right),
the maximum of |A| is greater than many times from that of the previous stage.

4.1.4. Case 4: Periodic Perturbation

Modulation instability of a periodic plane wave is described in Section 3, case 4, see
(20) and the following text. Modulation instability occurs in a band in the K − L plane,
similar to that shown for finite depth in Figure 1. We set α = 0.1 in (29) for all cases
of simulations in this case 4, including cases of finite depth and the shallow water case
described below. Using the flow parameters for deep water described above for a 5 s carrier
wave, the instability band in the K− L plane emerges from the K-axis for |K| < 0.147 m.
For MB = 0.1, M = 0.392 m, the instability is barely discernible but can be seen when
MB = 0.5, M = 1.959 m.

For this deep water case, in the absence of forcing, ∆ = 0 s−1, we simulate two cases
of L, L = 0.001 m−1 and L = 0.5 m−1. The first case is to investigate the modulation
instability band |K| < 0.147 m when L = 0, so we set MB = 0.1, M = 0.392 m, K = 0.5 m−1

and L = 0.001 m−1. After running for 0 < T < 400 s, the modulation of a periodic
plane waves is stable with a constant maximum amplitude. Next, we describe an unstable
case with a smaller |K|. The contour plots of |A| when MB = 0.1, K = 0.03 m−1 and
L = 0.001 m−1 are shown in Figure 15. After running the simulations for 0 < T < 400 s,
the modulation of the periodic plane waves is unstable with increasing and steepening of
the wave amplitude. Some waves appear at the troughs of the periodic plane wave. These
results show modulation instability when |K| is decreased in the unstable band as expected.
Contour plots of |A| when MB = 0.5, M = 1.959 m, K = 0.5 m−1 and L = 0.001 m−1 are
shown in Figure 16. After running for 0 < T < 150 s, the modulation of the periodic plane
wave is unstable with the maximum amplitude increasing as time increases. High frequency
waves develop chaotically over the entire domain. These simulations for MB = 0.1 and
0.5 when L = 0.001 m−1 agree with the theoretical result of a modulation instability band
|K| < 0.147 m in deep water. A larger initial M results in more modulation instability in
this case of ∆ = 0 s−1.

Figure 15. Deep-water limit: Case 4, ∆ = 0 s−1 and α = 0.1, contour plot of |A| from 2DfNLS (12)
when MB = 0.1, K = 0.03 m−1 and L = 0.001 m−1.
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Figure 16. Deep-water limit: Case 4, ∆ = 0 s−1 and α = 0.1, contour plot of |A| from 2DfNLS (12)
when MB = 0.5, K = 0.5 m−1 and L = 0.001 m−1.

Then, to investigate two-dimensional effects, we set K = 0.5 m−1 and L = 0.5 m−1

for initial MB = 0.1, M = 0.392 m and simulate for 0 < T < 200 s. The modulation of a
periodic plane wave when L = 0.5 m−1 is stable, and we can now see modulation effects
in both spatial directions with the maximum amplitude maintained, see the maximum
amplitude in Figure 17 (right) when ∆ = 0. In this case, when MB is small, the instability
region is also small. The periodic plane wave is expected to be modulation unstable for large
L and M. Contour plots when MB increases to MB = 0.5, M = 1.959 m for K = 0.03 m−1

and L = 0.03 m−1 are shown in Figure 18; modulation instability occurs with increasing
amplitude over 0 < T < 50 s.

To study forcing, we put the forcing ∆ = 0.01, 0.05, 0.1 s−1 and the initial MB = 0.1,
M = 0.392 m for K = 0.5 m−1 and L = 0.5 m−1 where this previous unforced case
shows modulation instability with the maximum amplitude maintained. When forcing is
included, the maximum amplitude increases over time, see Figure 17 (right). The energy
also increases and agrees with the theoretical growth rate, see Figure 17 (left).
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Figure 17. Deep-water limit: Case 4, plots of E from (10) and the maximum of |A| for MB = 0.1,
K = 0.5 m−1 and L = 0.5 m−1 for various values of ∆.

4.2. Finite Depth

When q = kh > 1.363 and is finite, there is modulation instability in the X(ξ) direction,
as µ < 0, δ < 0, with X, Y, wavenumbers K, L as in (20), see Grimshaw [32], Benney
and Roskes [40]. In our simulations, we set q = 1.7 and again consider a 5 s carrier wave,
so that σ = tanh q = 0.935, ω = 2π/P = 2π/5 = 1.257 s −1. Then, the wavenumber
k = ω2/gσ = 0.172 m−1 and the water depth h = q/k = 9.879 m. The wave phase
speed c = ω/k = 7.302 m s−1 and from (3), cg = 4.481 m s−1. Then from (6)–(9),
the coefficients are δ = −1.078 m2s−1, δ1 = 13.019 m2s−1, µ = −0.023 m−2, α = 0.793, and
β = −0.059 m−2 s−1. We will solve for B in (21) where α̂ = 9.576 and β̂ = −2.603.
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Compared to the deep water case in Section 4.1, |δ| has decreased from 6.062 m2 s−1 to
1.078 m−2 s−1, |δ1| has increased marginally from 12.124 m2 s−1 to 13.019 m2 s−1, and |µ|
has decreased from 0.065 m−2 to 0.023 m−2. The nonlocal nonlinear term Q is expected
to have the same sign as −β|A|2 that is positive and the opposite sign to µ|A|2. The
implication is that compared to the deep water case, nonlinear effects are reduced and take
longer to be seen, while the modulation scale in the X direction is decreased, with little
change to that in the Y direction.

Figure 18. Deep-water limit: Case 4, ∆ = 0 s−1 and α = 0.1, contour plot of |A| from 2DfNLS (12)
when MB = 0.5, K = 0.03 m−1 and L = 0.03 m−1.

4.2.1. Case 1: Peregrine Breather

The simulations were performed in the rescaled Equation (21) and plotted using A
in X, Y coordinates. The initial condition is (25) at T = −T0 = −50 s with Γ = 0.1 m−1,
and MB = 0.1, 0.5 (M = 0.662, 3.312 m). The computational domain is [ξ, η] = [−300π, 300π]
×[−300π, 300π] with the number of Fourier modes 211 for each spatial direction.

In the absence of forcing, ∆ = 0 s−1, contour plots at various times for the case
MB = 0.1 are shown in Figure 19. The results are similar to the deep water case for the same
value of MB = 0.1 which is small as shown in Figure 5. Modulation instability occurs as the
wave amplitude decreases and then disperses in both directions as time increases. Large
dispersion occurs in the Y direction that can be seen at T = 175 s. The case of MB = 0.5 is
shown in Figure 20. This case shows a different pattern. Modulation instability occurs that
can be seen at T = 25 s. The wave amplitude does not decay smoothly but with modulation
and a high frequency of oscillations from many small waves. This feature of an unforced
case can be seen clearly in terms of the maximum of amplitude against time in Figure 21.
The value of the initial amplitude MB directly affects the modulation instability at long
times. Note that there are some differences from the deep water case in Figure 8 when
MB = 0.5 and ∆ = 0 s−1.

When forcing is added, we set ∆ = 0.01, 0.05, 1.0 s−1. A representative case when
MB = 0.1 and ∆ = 0.05 s−1 is shown in Figure 22. The simulations were performed over
a short time period (−50 < T < 50 s) since the initial wave grows rapidly due to the
forcing effect. It can be seen at T = 0 s that the Peregrine breather with a forcing effect will
develop large waves near the centre area at T = 20 s, and small waves disperse mainly in
the Y direction.

While the forcing interacts with the modulation of the Peregrine breather, the energy
conservation from (10) remains preserved. The energy plots of numerical simulations for
various values of ∆ are shown in Figure 23 which grows as exp(2∆T). Although the energy
follows the theoretical prediction, the numerical solutions, especially when ∆ = 0.1 s−1

and T > 0 s, may not have physical meaning since many large waves have developed
chaotically throughout the domain. The maximum of the wave amplitudes is greater than
the water depth of 9.879 m which is not realistic for these small amplitude models.
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Figure 19. Finite depth: Case 1, q = 1.7, ∆ = 0.0 s−1 and Γ = 0.1 m−1, contour plots of |A| when
MB = 0.1.

Figure 20. Finite depth: Case 1, q = 1.7, ∆ = 0.0 s−1 and Γ = 0.1 m−1, contour plots of |A| when
MB = 0.5.
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Figure 21. Finite depth: Case 1, plots of the maximum of |A| for MB = 0.1 (left) and MB = 0.5 (right)
for various values of ∆.

4.2.2. Case 2: Line Soliton

The initial condition is (27) with envelop support Γ = 0.1 m−1. We solve for B in
the rescaled Equation (21) and consider two cases of MB = 0.5, 1.0, (M = 3.312, 6.624 m)
and will show only the case of MB = 1.0. All flow parameters are calculated by the same
formulae with V = 0.4 m s−1 as done in the deep water case.
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Figure 22. Finite depth: Case 1, q = 1.7, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plots of |A| when
MB = 0.1.
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Figure 23. Finite depth: Case 1, plots of E from (10) for MB = 0.1 (left) and MB = 0.5 (right) for
various values of ∆.

The results when MB = 1.0 without forcing are shown in Figure 24. The initial envelop
soliton is moving in the X direction with dispersion similar to the deep water case, but here
there is more dispersion effects in the X direction along Y = 0.
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Figure 24. Finite depth: Case 2, q = 1.7, ∆ = 0.0 s−1 and Γ = 0.1 m−1, contour plots of |A| when
MB = 1.0.

The results for a forcing case, ∆ = 0.05 s−1, when MB = 1.0 are shown in Figure 25.
Many breathers grow over time as seen at T = 50 s and become chaotically distributed
throughout the domain in a short time. Large variations appear in the Y direction, while
many excited large waves are moving in the X direction.
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The conservation of energy E is preserved when ∆ = 0 s−1. and E grows with the
growth rate 2∆ as shown in Figure 26 (left). The maximum amplitudes over time when
MB = 1.0 for various values of ∆ are shown in Figure 26 (right). The behaviour is similar
to the deep water case in that the maximum amplitude increases in an oscillatory manner
after a particular time when ∆ > 0.05 due to modulation instability.
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Figure 25. Finite depth: Case 2, q = 1.7, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plots of |A| when
MB = 1.0.
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Figure 26. Finite depth: Case 2, q = 1.7, plots of E from (10) and the maximum of |A| for MB = 1.0
for various values of ∆.

4.2.3. Case 3: Long Wave Perturbation

As in the deep water case in Section 4.1.3, we set Γ = γ = 0.1 m−1. In the absence
of forcing, contour plots of |A| when MB = 1.0 (M = 6.624 m) are shown in Figure 27.
This initial amplitude produces many breathers and their interactions, see T = 20 s. When
comparing with Figure 12 for the corresponding deep water case, many breathers in this
finite depth case are generated, more than in the deep water case, and these are dense with
a smaller support area. These then disperse at the longer time, see T = 50 s.

When there is forcing, contour plots of |A|when MB = 1.0 and ∆ = 0.05 s−1 are shown
in Figure 28. The forcing enhances the breather interactions which become chaotic at later
times. Many peaks are distributed throughout the domain in both the X and Y directions.

Plots of the maximum amplitude shown in Figure 29 (right) reveal different growing
amplitudes for each forcing value. There is a modulation stage around 0 < T < 10 s. After
this stage, forcing still affects the wave growth that increases in an oscillatory manner,
similar to the deep water case. The predicted growth rates exp(2∆) of E still give good
predictions as can be seen in Figure 29 (left). Overall, the energy law is preserved with
exponential growth rate for all values of ∆.
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Figure 27. Finite depth: Case 3, q = 1.7, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 1.0.

Figure 28. Finite depth: Case 3, q = 1.7, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 1.0.
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Figure 29. Finite depth: Case 3, q = 1.7, plots of E from (10) and the maximum of |A| for MB = 1.0
for various values of ∆.

4.2.4. Case 4: Periodic Perturbation

Modulation instability of a periodic plane wave solution is described by (20) and the
following text. Using the flow parameters for a finite depth q = 1.7 described above for
a 5 s carrier wave, the modulation instability region in the K− L plane when M = 0.5 m
and M = 1.0 m are shown in Figure 1 (left) and (right), respectively. Modulation instability
occurs in the region around the K axis for this depth. There is an instability band in the
K− L plane emerging from the K-axis for |K| < 0.207 m.

In the absence of forcing ∆ = 0 s−1, two cases of MB = 0.1 and 0.5 are investigated.
Contour plots of |A| when MB = 0.1, M = 0.662 m for K = 0.03 m−1 and L = 0.001 m−1
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are shown in Figure 30. After running for 0 < T < 400 s, the modulation of periodic plane
waves is unstable with increasing maximum amplitude; this case can be compared with
the deep water case in Figure 15. A case of MB = 0.1, M = 0.662 m with K = 0.5 m−1

and L = 0.5 m−1 is also investigated. Modulation instability occurs with the maintained
maximum amplitude over 0 < T < 400 s. When MB is increased to MB = 0.5, M = 3.312 m
contour plots of |A| are shown in Figure 31 . The modulation of the periodic plane wave
is unstable over 0 < T < 50 s with the development of breathers. High frequency waves
develop chaotically over the two-dimensional domain. A larger initial MB results in more
modulation instability.

To study forcing, we put ∆ = 0.01, 0.05, 0.1 s−1 with an initial MB = 0.1, M = 0.662 m
with K = 0.5 m−1 and L = 0.5 m−1. For small forcing ∆ = 0.01 s−1, periodic plane waves
are modulated with amplitude increased, see Figure 32 at T = 100 s. For larger forcing,
the wave amplitude increases rapidly at early times. Forcing induces high frequency waves
and waves growing throughout the domain. Plots of the maximum amplitude are shown
in Figure 33 (right). The energy also increases and agrees with the theoretical growth rate,
see Figure 33 (left).

Figure 30. Finite depth: Case 4, ∆ = 0 s−1, contour plot of |A| when MB = 0.1, K = 0.03 m−1 and
L = 0.001 m−1.

Figure 31. Finite depth: Case 4, ∆ = 0 s−1, contour plot of |A| when MB = 0.5, K = 0.5 m−1 and
L = 0.5 m−1.

4.3. Shallow Water

When q = kh < 1.363, we set q = 1.2 and again consider a 5 s carrier wave, so that
σ = tanh q = 0.834, ω = 2π/P = 2π/5 = 1.257 s−1, the wavenumber k = ω2/gσ =
0.193 m−1 and the water depth h = q/k = 6.215 m. The wave phase speed c = ω/k =
6.508 m s−1 and from (3), cg = 4.683 m s−1. Then, from (6)–(9), the coefficients are
δ = −0.819 m2s−1, δ1 = 12.126 m2s−1, µ = 0.028 m−2, α = 0.640, and β = −0.151 m−2 s−1.
We solve for B in (21) where α̂ = 9.479, β̂ = −5.371. Since now µδ < 0, both Peregrine
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breathers and line solitons are singular along the X axis. Nevertheless, we simulate them
by ensuring that at the initial time the singularities lie outside the numerical ξ-domain.

Figure 32. Finite depth: Case 4, ∆ = 0.01 s−1, contour plot of |A| when MB = 0.1, K = 0.5 m−1 and
L = 0.5 m−1.
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Figure 33. Finite depth: Case 4, plots of E from (10) and the maximum of |A| for MB = 0.1,
K = 0.5 m−1 and L = 0.5 m−1 for various values of ∆.

4.3.1. Case 1: Peregrine Breather

The Peregrine breather (25) using the sign corresponding to µ > 0 is singular at
ξ = ±ξS, where

2M2
Bξ2

S = 1 + 4M4
BT2 . (31)

Hence at the initial time T = −T0, we choose MB,−T0 so that ±ξS are outside the compu-
tational ξ-domain. In the numerical simulations, the initial time is T = −T0 = −25 s with
Γ = 0.1 m−1 and MB = 0.5 (M = 2.980 m). The singularities are at ξs = ±17.73. To avoid
these singularities, we set the computational domain [ξ, η] = [−4π, 4π]× [−40π, 40π] with
the number of Fourier modes 211 for each spatial direction.

In the absence of forcing, ∆ = 0 s−1, contour plots at various times are shown in
Figure 34. Modulation instability occurs mainly along the X direction emanating from the
X boundaries as now expected, while the wave amplitude disperses in both directions as
time increases. The outcome can be compared to the finite depth case for the same value of
MB = 0.5 as shown in Figure 20. The shallow water case shows rapid modulation that can
be seen at T = 20 s in Figure 34. The wave amplitude does not decay smoothly but with
modulation as can be seen in the maximum of |A| in Figure 35 (right). The modulation
occurs clearly at the early time step (around T = −15 s), while the modulation occurs more
slowly compared with the finite depth case in Figure 21 (right) (around T = 10 s).

When forcing is added, we set ∆ = 0.01, 0.05, 1.0 s−1. The forcing affects the modula-
tion of this singular Peregrine breather causing wave growth, but the energy (10) remains
preserved. Energy plots for various values of ∆ are shown in Figure 35 (left) which grows
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as exp(2∆T) as expected. The maximum values of |A| for various values of ∆ are shown in
Figure 35 (right), and these grow with high modulation.

Figure 34. Shallow water: Case 1, q = 1.2, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 0.5.
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Figure 35. Shallow water: Case 1, q = 1.2, plots of E from (10) and the maximum of |A| for MB = 0.5
for various values of ∆.

4.3.2. Case 2: Line Soliton

The line soliton (27) now has κ = iκ̂ so that it becomes

B(ξ, η, T) = MB ENV(|δ1|1/2η) sec(Θ̂) exp (iΦ) , (32)

where Θ̂ = κ̂(|δ|1/2ξ −VT) , Φ = K̂|δ|1/2ξ − Ω̂T ,

and 2|δ|κ̂2 = M2
B , V = 2δK̂ , Ω̂ = δK̂2 +

µ

2
κ̂2 .

This is singular at Θ̂ = ±π/2, · · · . At T = 0 s, these are at κ̂|δ|1/2ξ = ±π/2, · · · and
can be placed outside the computational ξ-domain by appropriate choice of κ̂ through
MB. Here, we put MB = 0.1 (M = 0.596 m), and then the nearest singular points are
ξ = ±22.21. To avoid these singularities, we set the computational domain [ξ, η] =
[−5π, 5π]× [−40π, 40π] with the number of Fourier modes 211 for each spatial direction.
We simulate only over a short time period 0 < T < 20 s to avoid some reflection effects
from the truncated boundaries.

The results when MB = 0.1 and Γ = 0.1 m−1 without forcing is shown in Figure 36.
The initial envelop soliton is moving in the X direction with modulation instability along
the X axis, see T = 20 s. During the motion of the modulated soliton, dispersion effects
also appear as can be seen by the maximum of |A| over time in Figure 37 (right).

Conservation of energy E is preserved when ∆ = 0 s−1 and grows with the growth
rate 2∆ as shown in Figure 37 (left). The maximum amplitudes over time when MB = 0.1
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for various values of ∆ are shown Figure 37 (right). The maximum amplitude increases
in an oscillatory manner when ∆ > 0.05 s−1 due to modulation instability and forcing.
Modulation instability is mainly along the X axis for this shallow water case.
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Figure 36. Shallow water: Case 2, q = 1.2, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 0.1.
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Figure 37. Shallow water: Case 2, q = 1.2, plots of E from (10) and the maximum of |A| for MB = 0.1
for various values of ∆.

4.3.3. Case 3: Long Wave Perturbation

The initial condition is (28) again with equal envelope support Γ = γ = 0.1 m−1 in
the X, Y directions. The simulations were performed in the rescaled Equations (21) and (22).
The computational domain is [ξ, η] = [−200π, 200π]× [−200π, 200π] with the number of
Fourier modes 211 for each spatial direction. We simulate two cases with MB = 0.5, 1.0
(M = 2.980 , 5.961 m), but we show only the case MB = 1.0 as it is representative.

In the absence of forcing, ∆ = 0 s−1, contour plots of |A| are shown in Figure 38. Many
breathers occur at the initial stage, see T = 20 s, which are modulated and disperse in both
directions; the effect in the Y direction is faster than in the X direction. These patterns are
similar to the finite depth case shown in Figure 27, but in this shallow water case there
are many more smaller waves. For this initial amplitude MB = 1.0 (M = 5.961 m), the
wave elevation of 2εM is over a water depth 6.215 m, and so the small parameter ε must be
chosen to ensure that 2εM� h = 6.215 m, placing an implicit limitation on the use of the
asymptotic system (4) and (5) in shallow water. For instance when MB = 1.0, we require
that ε� 0.521.

The simulation was conducted only for a short time period 0 < T < 50 s since modu-
lation appears rapidly in both directions. Interpretation as modulation instability agrees
with the linear modulation stability analysis in two dimensions, see [17,32], although
this is based on the K, L perturbation wavenumber plane. The instability is baseband as
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it emerges from K = L = 0 with progressively larger wavenumbers as time increases, see
contour plots at T = 50 s of Figure 38.

When there is forcing, contour plots of |A| when MB = 1.0 and ∆ = 0.05 s−1 are
shown in Figure 39. Similar to the finite depth case, the forcing effect enhances the breathers
interactions. Many peaks are generated sparsely throughout the domain.

Plots of E from (10) over time for MB = 1.0 and various values of ∆ are shown
in Figure 40 (left). The simulation results again agree with the theoretical growth rate
exp(2∆) for this type of initial condition over the shallow water depth. The maximum
value of |A| over time is shown in Figure 40 (right). Unlike the deep water and finite depth
cases, the maximum amplitude decreases relatively monotonically at the early stage in
the unforced case. There is no sign of excitation in terms of the maximum amplitude. For
forcing cases with ∆ > 0.05 s−1, the maximum of |A| in shallow water grows more rapidly
than in the finite depth case. For instance, at T = 30 s the maximum of |A| in Figure 29
is about 10− 15 m, while it is approximately 25–30 m in Figure 40. A similar argument
can be made for the deep water when considering the maximum of |A| in Figure 14 for
∆ = 0.05 s−1. However, now ε < 1 so the physical time scale here is increased as ε−1 and
is closer to the finite depth case.

Figure 38. Shallow water: Case 3, q = 1.2, ∆ = 0 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 1.0.
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Figure 39. Shallow water: Case 3, q = 1.2, ∆ = 0.05 s−1 and Γ = 0.1 m−1, contour plot of |A| when
MB = 1.0.

4.3.4. Case 4: Periodic Perturbation

Modulation instability of a periodic plane wave is described by (20) and the following
text. Using the flow parameters of shallow water flow q = 1.2 described above for a 5 s
carrier wave, the modulation instability region in the K− L plane when M = 0.5 m and
M = 1.0 m are shown in Figure 2 (left) and (right), respectively. Modulation instability
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emerges from K = L = 0 with a band along the L-axis, implying there is transverse
modulation instability, see Peregrine [41].
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Figure 40. Shallow water: Case 3, q = 1.2, plots of E from (10) and the maximum of |A| for MB = 1.0
for various values of ∆.

In the absence of forcing, ∆ = 0, we fix K = 0.5 m−1 and L = 0.5 m−1 to compare
the results with the deep water and finite depth cases described above. Two cases of
MB = 0.1 and 0.5 are investigated. Contour plots of |A| when MB = 0.1, M = 0.596 m
are shown in Figure 41. After running for 0 < T < 400 s, the modulation of a periodic
plane wave is unstable with increasing maximum amplitude. This shows that this shallow
water depth case enhances modulation instability. At a longer time T = 400 s, large waves
develop along the X axis with very high frequency along the Y axis, corresponding to the
transverse modulation instability along the L-axis. Cases of smaller values K = 0.03 m−1

and 0.001 m−1 when L = 0.5 m−1 for MB = 0.1, M = 0.596 m were also investigated but
are not shown here. The results show modulation instability with the development of large
amplitude breathers. To compare the results with a case of smaller L, we set MB = 0.1,
M = 0.596 m, K = 0.03 m−1 and L = 0.001 m−1; the corresponding contour plots of |A|
are shown in Figure 42. Modulation instability occurs but slowly with a slight increasing
of the maximum amplitude compared with Figures 15 and 30 for other depths. Contour
plots of |A| when MB = 0.5, M = 2.980 m are shown in Figure 43. After running for
0 < T < 200 s, the modulation of the periodic plane wave is unstable with increasing
maximum amplitude as time increases. Instability occurs at an early time step, see at
T = 20 s where high frequency waves develop over the entire domain. A larger initial MB
results in more modulation instability.

Figure 41. Shallow water: Case 4, ∆ = 0 s−1, contour plot of |A| when MB = 0.1, K = 0.5 m−1 and
L = 0.5 m−1.
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Figure 42. Shallow water: Case 4, ∆ = 0 s−1, contour plot of |A| when MB = 0.1, K = 0.03 m−1 and
L = 0.001 m−1.

Figure 43. Shallow water: Case 4, ∆ = 0 s−1, contour plot of |A| when MB = 0.5, K = 0.5 m−1 and
L = 0.5 m−1.

To investigate forcing, we set ∆ = 0.01, 0.05, 0.1 s−1 with an initial MB = 0.1,
M = 0.596 m for K = 0.5 m−1 and L = 0.5 m−1. Again, forcing enhances high frequency
waves growing throughout the domain. Plots of the maximum amplitude are shown in
Figure 44 (right). The energy also increases and agrees with the theoretical growth rate,
see (10).
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Figure 44. Shallow water: Case 4, plots of E from (10) and the maximum of |A| for MB = 0.1,
K = 0.5 m−1 and L = 0.5 m−1 for various values of ∆.

5. Summary and Discussion

In the articles Maleewong and Grimshaw [21,22], we examined the evolution of water
wave groups, with and without wind forcing, in a one horizontal space co-ordinate setting
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based on the one-dimensional forced nonlinear Schrödinger Equation (fNLS). In this paper,
that study has been extended to two horizontal space co-ordinates using the forced Benney–
Roskes system (4) and (5), which is a two-dimensional NLS-type equation with a nonlocal
nonlinear term. As in Maleewong and Grimshaw [21,22], our approach is to use four
contrasting initial conditions, each of which in an unforced one-dimensional (X) setting
would lead to wave groups propagating in the X-direction.

Each initial condition case is explored numerically, and the results are described in
detail in Section 4 in three scenarios, deep water (q→ ∞), finite depth (q = 1.7) and shallow
water (q = 1.2), where q = kh and each scenario is for a 5 s carrier wave. The initial
conditions are described in Section 3. Case 1 is a Peregrine breather designed to produce a
single Peregrine breather in the unforced NLS Equation. Case 2 is a line soliton designed to
produce a single line soliton in the unforced NLS Equation. Case 3 is a long wave perturba-
tion, which is expected to produce line solitons and Peregrine breathers in the unforced
NLS Equation. In each of these three cases, the initial condition is augmented with a slowly
varying Y-envelope ENV(Y) (16). Case 4 is a periodic perturbation which demonstrates
modulation stable and unstable outcomes in the unforced NLS Equation. Here, the periodic
perturbation has both X and Y components with K and L wavenumbers, respectively.

Case 1 Peregrine breather: when ∆ = 0 s−1, see Figure 5 for deep water and
MB = 0.1 M = 0.392 m, modulation effects appear along the X direction with dispersive
effects in the Y direction due to term ENV(Y). The result for finite depth in Figure 19
when MB = 0.1 M = 0.662 m is similar to the deep water case. However, when
MB = 0.5, M = 3.312 m in finite depth, the results are different as shown in Figure 20.
The modulation of large amplitude waves develop along the X direction with a chaotic
nature in two dimensions. The effect of finite water depth can be seen more clearly in
Figure 34 when the water depth is shallow. Large breathers develop along the X direction
with modulation effects in the Y direction. When ∆ > 0 s−1, the energy E of all simulated
water depths grows exponentially with the theoretical growth rate 2∆. The maximum of |A|
grows in time. A larger initial MB leads to an increase of max(|A|) in an oscillatory manner.

Case 2 Line soliton: when ∆ = 0 s−1, see Figure 9 for deep water, a line soliton
moves with constant speed in the X direction, while the main feature is the dispersion
effects in two dimensions. A finite depth case is shown in Figure 24 and shows dispersion
effects similar to the deep water case. An adjustment is needed for the initial condition of
a line soliton in shallow water since then µ > 0 and singularities appear in the domain.
Hence, we truncate the computational domain so that the singularities are initially outside.
The initial amplitude MB can only be set to be a small value, and we perform the simulation
over a short time to avoid unexpected effects from the truncated boundaries. The line
soliton is then along the X direction in shallow water as expected, but now there is a rapid
modulation along the X axis, see Figure 36. When ∆ > 0 s−1, large amplitude waves
develop in the two-dimensional domain along with the moving soliton. Some small waves
are generated over the moving soliton as time increases. This is the main feature in both
deep and finite depth cases. The max(|A|) grows oscillating in time while E is preserved
and agrees with the theoretical growth rate.

Case 3 Long wave perturbation: when ∆ = 0 s−1, we can see the modulation of
breathers at an early time. These then disperse in the Y direction more than in the X
direction, see Figure 12 for a deep water case. This feature also occurs in finite depth, see
Figure 27, but with more modulations. The modulation of breathers at an early time is
dense for a shallow water case, see Figure 38. The modulation is enhanced, and large
variations appear in the Y more than in the X direction. When ∆ > 0 s−1, max(|A|) grows
oscillating in time, and many peaks over many small waves can be observed. The growth
wave amplitude when forcing is inserted is sensitive to the water depth. When MB = 1.0,
finite depth and shallow water cases are more sensitive to forcing than for a deep water
case. Small ∆ = 0.01 s−1 can induce growth of maximum amplitude for finite depth and
shallow water but not for deep water. In all three cases of water depth, E is preserved and
agrees with the theoretical growth.
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Case 4 Periodic perturbation: ∆ = 0 s−1 modulation instability in the Benney–Roskes
system (4) and (5) was analysed by Benney and Roskes [40] and extended to ∆ > 0
by Grimshaw [32]. It can also be deduced directly from the slant-wise forced NLS Equa-
tion (11). Modulation instability occurs when κ(κ − 2νM2) < 0, see (20). For simplicity,
when the initial periodic plane wave is considered in one dimension L = 0, there is modu-
lation instability, as in the one-dimensional NLS Equation, when δµ > 0, |K| <

√
2µ/δ|M|.

However, in two space dimensions modulation, instability occurs in bands of the K− L
plane, and now the value of the depth parameter q = kh characterises the instability region.
In deep water and when q > 1.363 in finite depth, the instability band emanates from the K
axis, where |K| <

√
2µ/δ|M|. However, in shallow water when q < 1.363, the instability

band emanates from the L-axis, where |L| <
√

2µ/δ1|M|, see Benney and Roskes [40], Pere-
grine [41]. In this work, we have performed some numerical simulations to observe these
theoretical results. In deep water and finite depth, we set L = 0.001 m−1 to represent the
limit L→ 0 while setting M and K to satisfy the instability condition. A periodic plane wave
is modulation unstable with wave amplitude increasing and steepening in time, see Fig-
ures 15 for deep water and Figure 30 for finite depth, although even in these cases the initial
amplitudes are small: MB = 0.1, M = 0.392 m for deep water and MB = 0.1, M = 0.662 m
for finite depth. When MB is set to be larger, MB = 0.5, M = 1.959 m for deep water
and MB = 0.5, M = 3.312 m for finite depth, a periodic plane wave is unstable with high
frequency waves developing chaotically over the entire domain. Two-dimensional effects
were simulated by setting L = 0.5 m−1 and K = 0.5 m−1. Then, the solutions of the deep
water and finite depth cases were modulation stable when MB = 0.1, since the instability
region is now narrow. However, in shallow water, when MB = 0.1, M = 0.596 m−1, the
solution is modulation unstable, see Figure 41. These results show that the water depth
affects the modulation stability of a periodic plane wave. In all three cases of water depth,
the larger value of initial amplitude results in more modulation instability. Again when
∆ > 0 s−1, the conservation of energy E is preserved with the growth rate 2∆ for this type
of initial condition.

Overall, the results resemble those for the one-dimensional fNLS Equation described
by Maleewong and Grimshaw [21,22], with the main difference that the additional Y
spatial dimension allows for enhanced wave growth due to modulation instability with a
Y component. This is especially notable in the shallow water scenario. However, unlike
the one-dimensional case, there is a prevalence of breather formation over line soliton
formation. This we attribute to the enhanced modulation instability when a Y dependence
is allowed. In addition, we note that the Benney–Roskes system (4) is hyperbolic with
respect to the highest derivatives, while (5) is elliptic, and the former would inhibit the
phase relationship needed for line soliton formation.

The forced Benney–Roskes system (4) and (5) is an asymptotic reduction from a
fully nonlinear air–water system. We plan to test the results obtained here using a mod-
ified Euler system with two horizontal space dimensions analogous to that with one
horizontal space dimension described by Maleewong and Grimshaw [22]. A fully nonlin-
ear air–water system with a turbulent wind is well beyond our computational capacity
which is why we prefer the reduction to a modified Euler system which as described
by Maleewong and Grimshaw [22] is a one-fluid (water) system with wind forcing mod-
elled following Miles [2].
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Appendix A. Numerical Method

We describe the Fourier split step method to solve the forced Benney–Roskes system
(4)–(5) numerically. Assume that |A|2 and Q can be written in terms of Fourier series in
two dimensions as follows.

|A|2 =
∞

∑
j=−∞

∞

∑
k=−∞

Âjkei(µjX+νkY) ,

and

Q =
∞

∑
j=−∞

∞

∑
k=−∞

Q̂jkei(µjX+νkY) ,

where Âjk and Q̂jk are the double Fourier transform of |A|2 and Q, respectively, and µj and
νk are the Fourier frequencies in the X and Y directions, respectively.

Applying the double Fourier transform in space dimensions X and Y to (5) yields,

∞

∑
j=−∞

∞

∑
k=−∞

(αµ2
j + ν2

k )Q̂jkei(µjX+νkY) = β
∞

∑
j=−∞

∞

∑
k=−∞

ν2
k Âjkei(µjX+νkY)

for any j and k such that αµ2
j + ν2

k 6= 0, then

Q̂jk =
βν2

k
αµ2

j + ν2
k

Âjk . (A1)

By taking the inverse Fourier transform, we can find Q(X, Y, T) when A(X, Y, T) is known.
At the initial time T = T0, A(X, Y, T0) is given. Then, we will know Q(X, Y, T0) explicitly.

To calculate the numerical solution in time, we apply the second-order Fourier split
step method. First, rewriting (4) as

AT = i
[
δAXX + δ1 AYY − i∆A + µ|A|2 A + QA

]
.

Next, we split the operators by writing

AT = iL(A) + iN(A) A ,

where the linear and nonlinear operators, L(A) and N(A), are defined by

L(A) = δAXX + δ1 AYY − i∆A and N(A) = µ|A|2 + Q .

Define the notations
Am

jk = Ajk(Tm) ,

and
Am+1

jk = Ajk(Tm+1) = Ajk(Tm + dt) ,

where Tm refers to time at step m with time spacing dt. Calculating the numerical solution
in time is composed of three steps as follows.

N : Wm
jk = exp[i dt N(Am

jk)/2] Am
jk ,

L : W̃m
jk = F−1{exp[i dt E]F{Wm

jk }} ,

N : Am+1
jk = exp[i dt N(W̃m

jk )/2] W̃m
jk , (A2)

where E is −(δµ2
j + δ1ν2

k )− i∆. Then, for a given initial condition A(X, Y, T0), we use (A1)
to approximate Q and then calculate A using (A2) for the next time step. Directly, we can
approximate B in the rescale coordinate from (21) using the transformations (23) and (24).
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