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Abstract: This paper investigates the adequacy of radial basis function (RBF)-based models as
surrogates in uncertainty quantification (UQ) and CFD shape optimization; for the latter, problems
with and without uncertainties are considered. In UQ, these are used to support the Monte Carlo,
as well as, the non-intrusive, Gauss Quadrature and regression-based polynomial chaos expansion
methods. They are applied to the flow around an isolated airfoil and a wing to quantify uncertainties
associated with the constants of the γ−R̃eθt transition model and the surface roughness (in the 3D
case); it is demonstrated that the use of the RBF-based surrogates leads to an up to 50% reduction
in computational cost, compared with the same UQ method that uses CFD computations. In shape
optimization under uncertainties, solved by stochastic search methods, RBF-based surrogates are used
to compute statistical moments of the objective function. In applications with geometric uncertainties
which are modeled through the Karhunen–Loève technique, the use on an RBF-based surrogate
reduces the turnaround time of an evolutionary algorithm by orders of magnitude. In this type of
applications, RBF networks are also used to perform mesh displacement for the perturbed geometries.

Keywords: radial basis functions; uncertainty quantification; surrogates; shape optimization; design
under uncertainties; evolutionary algorithms; artificial intelligence

1. Introduction

Gradient-free and gradient–based optimization methods are nowadays broadly used
to solve shape optimization problems in aerodynamics. The same problems may also
consider uncertainties related to the boundary conditions, the flow model constants or
geometric imperfections, in which cases uncertainty quantification (UQ) methods are
needed. In an aerodynamic shape optimization loop, performing the UQ for any quantity
of interest (QoI) significantly increases the cost, since many calls to the computational fluid
dynamics (CFD) tool are needed.

Given that sampling-based techniques such as Monte Carlo (MC) are prohibitively ex-
pensive in computationally demanding problems, other efficient UQ approaches have been
proposed instead. The most important among them rely upon the spectral representation
of the uncertain quantities, referred to as the polynomial chaos expansion (PCE) and the
method of moments (MoM). The former can be used as an either non-intrusive or intrusive
technique [1–7]. First-Order Second-Moment, Second-Order Second-Moment as well as
projected variants of the MoM [8–11] can been found in the literature.

In UQ, the trend is to replace the computationally expensive CFD tool with artificial
intelligence (AI)-based surrogates. For instance, in [12], uncertainties in multi-phase
CFD simulations for bubbly flows were quantified and reduced using machine learning
(ML) techniques. Feed-forward neural networks and principal component analysis were
used as surrogates to the multi-phase CFD model and Gaussian processes for uncertainty
evaluation. The procedure was supported by experimental measurements and it was
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demonstrated that the proposed approach is capable of both quantifying and reducing the
uncertainties in multi-phase problems. Radial Basis Function (RBF) networks were used as
surrogate models in UQ of age and time-dependent fracture mechanics in [13]; emphasis
was laid on the prediction of the energy release rate in a concrete plate section with the
presence of an initial surface crack. The RBF models used to support MC proved to be
accurate enough despite the relatively small number of patterns/samples used to train
them. An AI-based smart proxy model to a multiphase CFD solver was created in [14]
so as to reduce the computational cost due to the required gas–solid flow simulations. It
was shown that a feed-forward artificial neural network (ANN) can accurately predict the
gas–solid flow behavior in fluidized beds. In [15], a data–driven approach for modeling
turbulent and transitional flows, based on inverse modeling and ML, was proposed. The
aim was to quantify deficiencies in turbulence and transition modeling using data from
simulations and measurements. The method was applied in turbulent (over a convex wall)
and transitional (over a flat plate) flows by modeling non-equilibrium turbulent boundary
layers and bypass transition. For transitional flows, in [16], UQ and sensitivity analysis
was performed for the two-equation γ−R̃eθt transition model. The idea was to quantify
the contribution of the model’s parameters to QoIs strongly related to transition effects
such as the skin friction coefficient, the transition onset and length and the size of the
separation bubble. The study was carried out for a series of flat plates and two isolated
airfoils; overall, it was concluded that the parameters which affect the uncertainty of QoIs
were those related to the γ equation.

In UQ, which accounts for geometric imperfections and in aerodynamic shape op-
timization, the need for adapting an existing mesh to new boundaries emerges. Mesh
displacement methods are nowadays frequently used instead of re-meshing. Among the
various methods proposed in the literature (based on spring analogies, the solution of
partial differential equations (PDEs), etc.), mesh displacement that takes advantage of
RBF interpolations [17–19] was proved to be fast and efficient for large deformations and
complex geometries.

This paper investigates and assesses the use of RBF-based surrogate evaluation models,
instead of expensive CFD codes, for UQ and aerodynamic shape optimization problems
with or without uncertainties. In UQ, the usage of the RBF surrogates is multifaceted
as these are incorporated into three different techniques which, by their own nature,
are computationally demanding as they need many calls to the evaluation software. In
specific, surrogates are used to support the Monte Carlo, the Gauss Quadrature (GQ) and
the regression-based PCE. It was also selected to demonstrate the capabilities of these
approaches in two different kinds of problems: (a) UQ related to ambiguities regarding the
proper values of the constants and surface roughness in the γ−R̃eθt transition model in
Reynolds-averaged Navier–Stokes (RANS) simulations and (b) shape optimization under
uncertainties, in which these are generated using the Karhunen–Loève (KL) method and
the optimization is performed using a stochastic, population-based search method. In case
of geometrical uncertainties, the RBF-based surrogate computes the statistical moments
of the QoI; in such a case, re-meshing is avoided by using a two-step RBF-based mesh
displacement method.

2. Methods and Tools
2.1. CFD Tool—Governing Equations

In this work, the CFD tool used is the GPU-accelerated in-house code PUMA [20],
which solves the RANS equations for steady flows of compressible fluids. The mean-flow
equations for 3D flows read

∂Un

∂τ
+

∂ f inv
nk

∂xk
−

∂ f vis
nk

∂xk
= 0 , n ∈ [1, 5] (1)
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and are solved for the conservative flow variables U = [ρ ρv1 ρv2 ρv3 ρE]T , where
ρ stands for the fluid’s density, vk are the Cartesian velocity components (k ∈ [1, 3]),
E = p

γ−1 + 1
2 ρvkvk the total energy per unit mass and p the pressure. τ is the pseudo-time

step and xk the Cartesian coordinates. f inv
nk are the inviscid fluxes and f vis

nk the viscous

ones which involve the stress tensor τkm =(µ + µt)
(

∂vk
∂xm

+ ∂vm
∂xk
− 2

3δkm
∂v`
∂x`

)
. Turbulence is

modeled by the one-equation Spalart–Allmaras model [21], computing (ν̃) by solving

∂(ρν̃)

∂τ
+

∂(ρν̃vk)

∂xk
− ρ

σ

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
− P̃ν̃ + Dν̃ = 0 (2)

and µt =ρν̃ fv1. The production term reads P̃ν̃ =ρcb1(1− ft2)S̃ν̃, while the definition of all
other terms and constants can be found in [21]. To predict laminar-to-turbulent transition,
the γ−R̃eθt transition model [22],

∂(ργ)

∂τ
+

∂(ρvkγ)

∂xk
− ∂

∂xk

[(
µ+

µt

σf

)
∂γ

∂xk

]
− Pγ + Dγ = 0 (3)

∂
(
ρR̃eθt

)
∂τ

+
∂
(
ρvkR̃eθt

)
∂xk

− ∂

∂xk

[
σθ,t(µ+µt)

∂R̃eθt
∂xk

]
− Pθ,t − DSCF = 0 (4)

is additionally solved to compute the fields of intermittency γ and transition momentum
thickness Reynolds number R̃eθt. The production and destruction terms in this model are

Pγ = ρcα1 FlengthFonset

[
φ−300

(
Ω,

M
√

MRe
20

)]
√

γ(1− cε1 γ) (5)

Dγ = ρcα2 Fturb

[
φ−300

(
Ω,

M
√

MRe
20

)]
γ(cε2 γ− 1) (6)

Pθ,t = ρ
cθ,t

T

(
Reeq

θ,t−R̃eθt

)
(1−Fθt) (7)

DSCF = cθ,t
ρ

T
ccross f low min

(
ReSCF − R̃eθt, 0

)
Fθt (8)

where φp(α, β) is a smooth min./max. operator function for two variables α, β (with p>0
for the max. operator and p < 0 for the min. ), Ω the vorticity and M the Mach number
based on freestream quantities. Surface roughness hrms is present into the ReSCF term. The
expressions of other terms can be found in [22]; in the same publication, the following
values are adopted for the model closure constants: cα1 = 2, cα2 = 0.06, cε1 = 1, cε2 = 50,
cθ,t = 0.03, ccross f low = 0.6, σθ,t = 2 and σf = 1. The γ field computed by solving the
corresponding equation (Equation (3)), affects the production term of the Spalart–Allmaras
model equation which becomes P̃ν̃ = γρcb1 S̃ν̃.

2.2. Shape Parameterization, Mesh Displacement and Geometric Uncertainties

To support shape optimization, PUMA offers a set of shape parameterization tools
based on volumetric Non-Uniform Rational B-Splines (NURBS) [23,24]. These are also
used to adapt the CFD volume mesh to new boundaries emerging during the optimization.
Another mesh displacement tool based on RBFs is also available, for use in cases with
geometric uncertainties, in which the geometry is not controlled by the NURBS lattice.
This tool, detailed in [19], includes a predictor and a corrector step. In the first step, all
mesh nodes (both boundary and internal) are agglomerated into clusters and an RBF
model with global support and the inverse multiquadratic activation function computes
the displacements. This process is accelerated by the fast multipole method [25] and, finally,
the displacements of clusters are interpolated to all mesh nodes. However, due to the
coarsening, the known boundary displacements are not fully met. Thus, a second step to
correct/refine the positions of boundary nodes is necessary. In this step, boundary nodes
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and only a few internal nodes (those located close to the boundary) become centers of an
RBF with local support through the Wendland C0 function.

All geometrical uncertainties, due to manufacturing imperfections, are modeled using
the KL expansion technique [26–29]. Uncertainties, in the form of stochastic perturbations,
are superimposed on the nominal airfoil geometry, in the normal-to-the-wall direction (unit
normal ~n). It was decided to separately perturb, with zero mean value, the suction and
pressure side of the airfoil. If L denotes the length of each side, a kernel characterized by
the following covariance function

Cov(s1, s2)=σ2e−|s1−s2|/L (9)

is assumed to correlate two positions s1 and s2 where s∈ [0, L] is the curvilinear coordinate
along each airfoil side, measured from the leading edge. Equation (9) requires the standard
deviation of manufacturing errors σ, here σ=0.3.

If~r0(s) is the position vector at any point/node along the nominal or mean airfoil, a
perturbed airfoil is generated as

~r
(

s,~ξ
)
=~r0(s) +~n

∞

∑
i=1

√
λiφi(s)ξi (10)

where ξi are random/uncertain variables, while λi and φi are the eigenvalues and eigen-
functions associated with the selected covariance kernel. In the KL expansion, each pair of
them is obtained by solving the following integral equation:∫

σ2e−|s1−s2|/Lφi(s2)ds2 = λiφi(s1)

where the integration takes place over the spatial domain of s1 and s2, as defined above.
Both λi and φi are given by closed-form expressions [27]. Initially, to compute the eigenval-
ues λi, a set of variables ωi is defined and results from the solution of the following equations:

g(ωi) =

ωi tan(ωiL)− c = 0, if i odd

c tan(ωiL)−ωi = 0, if i even

where c=1/2L. Then, λi result as λi =
2c

ω2
i +c2 . Finally, the eigenfunctions φi are computed as

φi(s) =


cos(ωis)

L+ 1
2ωi

sin(2Lωi)
1/2 , if i odd

sin(ωis)

L− 1
2ωi

sin(2Lωi)
1/2 , if i even

In Equation (10), instead of an infinite number of terms, as many terms as the smallest
integer M for which

M

∑
i=1

λi ≥ 0.95
∞

∑
i=1

λi (11)

are retained. Very close to the leading and trailing edges of both sides, a Hanning window
is applied and, thus, both edges remain unperturbed.

2.3. RBF Networks

An RBF network maps the N-dimensional input space onto the single-dimensional
output one, as RN 7→R1 [30]. It consists of three layers of processing units, namely the
input layer with N units where the input vectors~b are applied to, the hidden layer with K
processing neurons and the output layer with a single unit where the network response
emerges. In practice, there is no restriction on the size of the output layer and more outputs
can be processed at the same time. The hidden layer units are associated with the so-called
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RBF centers,~c(k), k ∈ [1,K] applying the non-linear radial-basis (activation) function G. The
K links connecting the hidden and output units are associated with the synaptic weights
wk and the network response becomes

o(~b) =
K
∑
k=1

wkG(‖~b−~c(k)‖, rk) (12)

In this work, a Gaussian activation function (G(u, r) = exp(−u2/r2)) is used. The
weights are computed, during the RBF training process, based on T patterns with known
responses. For K = T, the T samples are exactly interpolated. A generalization of the
network is possible by using less hidden nodes than training patterns, i.e., K<T. In such
a case, the selection of the RBF centers becomes important; herein, the centers are selected
during the RBF network set-up, as described in [20].

2.4. Optimization Method

A (µ, λ) in-house evolutionary algorithm (EA) [20] is used for the shape optimization
runs with or without uncertainties. In each generation g, the EA maintains and updates
three populations: the offspring population (Sg

λ), with λ individuals, the parent population
(Sg

µ), with µ individuals and the set of the best so-far or elite individuals (Sg
e ). These

populations evolve through the use of parent selection, crossover, mutation and elitism
(also known as evolution operators). Specifically, for the cases presented in this paper, in
each generation, Sg

µ is the outcome of a tournament selection with a size equal to 3 and
a 90% probability to select the best from the tournament. Real encoding of the design
variables, with 95% crossover probability, using the simulated binary crossover operator
and 2% mutation probability, is used.

2.5. Uncertainty Quantification Methods

Let the vector of M uncertain variables be ~ξ = (ξ1, ξ2, . . . , ξM), where each of them
has its own probability density function. The PCE of any QoI J(~ξ) can be expressed as

J(~ξ) =
∞

∑
i=0

Ji Hi(~ξ) (13)

where Hi(~ξ) are multivariate orthogonal polynomials. Practically, a maximum degree K of
the polynomials, the so-called chaos order, is selected and all polynomials up to that degree
are kept in the expansion. Once M and the value of K are known, the infinite number of
terms in Equation (13) is replaced by the sum of Q + 1 terms, where Q+1= (M+K)!

M!K! . The
Q+1 coefficients Ji are defined through Galerkin projections of J to Hi(~ξ); the resulting
integrals are computed by the GQ rules. This approach represents the GQ non-intrusive
PCE (gPCE) variant.

Once Ji are known, the first (mean, µJ) and second (variance, σ2
J , where σJ is the

standard deviation) statistical moments of the QoI are given by [1]

µJ = J0 , σ2
J =

Q

∑
i=1

Ji (14)

Another way to compute the coefficients Ji is through regression (to be denoted
as rPCE). This depends neither on Galerkin projections nor on numerical integration to
compute Ji; instead, it approximates them using a more stochastic approach [31]. Having
computed J at S different ~ξ value-sets (by sampling the uncertain space), the truncated
version of Equation (13) can be used to formulate the following system of equations:
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
H0(~ξ1) . . . HQ(~ξ1)

...
. . .

...

H0(~ξS) . . . HQ(~ξS)




J0

...

JQ

 =


J(~ξ1)

...

J(~ξS)

 (15)

with S equations and Q+ 1 unknowns. If S=Q+1, Equation (15) represents a square system
of equations. To increase accuracy, J is usually oversampled, in which case Equation (15)
corresponds to a least squares problem [32]. Herein, oversampling by 3 is used, i.e.,
S=3(Q + 1).

Finally, the MC method requires a very large number of evaluations to compute the
corresponding J values.

3. Applications
3.1. Case I—The NLF(1)-0416 Airfoil

The first case addresses the flow around a low-speed natural laminar flow (NLF)
airfoil, namely the NLF(1)-0416 one [33]. The flow conditions are as follows: M∞ = 0.1,
α∞ = 2.03◦, Rec = 4 · 106 and the turbulence intensity is Tu = 0.15%. As this is a widely
used test case for transition models [34], six structured meshes are publicly available: a
tiny (353× 49), a coarse (529× 73), a medium (705× 97), a fine (1057× 145), an extra fine
(1409× 193) and an ultra fine (2113× 289). On all these meshes, the prediction of the lift
(CL) and drag coefficient (CD), for α∞ =2.03◦, shows that mesh independence is achieved
for all meshes finer that the “Medium” one, as seen in Table 1. Numerical results are
also compared with the experimental data of [33], and a good agreement is obtained for
both CL and CD values above the aforementioned mesh size. Therefore, in what follows,
the “Medium” mesh is used.

Table 1. Case I: Mesh independence study for the Spalart–Allmaras turbulence model coupled with
the γ−R̃eθt transition model, at α∞ =2.03◦ and comparison with experimental data.

Experimental Tiny Coarse Medium Fine Extra Ultra

CL 0.672 0.7166 0.7075 0.7228 0.7230 0.7231 0.7235
CD 0.0051 0.006673 0.007269 0.005984 0.005952 0.005930 0.005905

A CFD analysis performed using the values of the transition model constants of
Section 2.1 (to be referred to as the nominal ones), which compute the velocity magnitude
isolines and the skin friction coefficient distribution along the airfoil contour shown in
Figure 1. On the same plot, one may also see the experimentally measured [33] range
of transition points; with the nominal constants, the CFD predicts them with acceptable
accuracy. As a first conclusion, the computed CL and CD values as well the transition point
location are in good agreement with the measurements, demonstrating the reliability of the
CFD tool.

This case is used to quantify uncertainties in the CL and CD (two QoIs) caused by
uncertainties in the values of the four (M=4) γ−R̃eθt model constants in Equations (5)–(8).
Specifically, cα1 , cα2 , cε2 and cθ,t are considered as uncertain variables with normal distribu-
tion as follows:

cα1∼N (2.0, 0.2), cα2∼N (0.06, 0.006), cε2∼N (50.0, 5.0), cθ,t∼N (0.03, 0.003) (16)

The Latin hypercube sampling (LHS) method is used to generate 40 samples in the
uncertain variables’ space. For the sampling, the bounds of each uncertain variable are
defined as ±3 σ with respect to their nominal (mean) value. This small number of samples
was intentionally selected since 40 calls to the CFD tool correspond to half of the CFD runs
(81 runs) needed to compute the statistical moments using the gPCE with the CFD tool (to
be referred to as gPCE-CFD) and chaos order equal to 2 (K = 2). Figure 2 illustrates the
C f distributions for the 40 samples as well as the computation with the nominal values
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of the transition model constants. Changes in the model constants within the decided
bounds significantly affect the transition point and, consequently, the QoIs. It seems that
the uncertain space is adequately sampled.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0  0.2  0.4  0.6  0.8  1

Suction Side

Pressure Side

Cf

x/c

Nominal

Figure 1. Case I: (Left) Velocity magnitude field around the airfoil computed using the nominal values
of all model constants. (Right) Skin friction coefficient (C f ) distribution along the airfoil contour
as computed using the CFD tool. The vertical zones in grey represent ranges of the measured [33]
transition points on both airfoil sides.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.2  0.4  0.6  0.8  1

Suction Side

Pressure Side

Cf

x/c

Nominal

Figure 2. Case I: Skin friction coefficient (C f ) distributions along the pressure (grey curves) and
suction (greyish-blue curves) sides of the 40 training patterns. Curves computed using the nominal
values of the γ−R̃eθt model constants are included in red, too.

Then, a single RBF network, with four inputs and two outputs, is trained and used
for predicting the two QoIs. The computational cost to evaluate the RBF training patterns
is forty time units, assuming that one time unit corresponds to the cost of running the
CFD tool once. The RBF network training represents negligible cost. To assess the so-
trained RBF network, 300 random samples (different than the 40 training patterns) are
additionally generated; these are both evaluated on the CFD tool and approximated using
the RBF-based surrogate. For these samples, the root mean square errors (RMSEs) for the
two QoIs are RMSECL = 1.097 · 10−3 and RMSECD = 9.412 · 10−5. Both are considered to be
absolutely satisfactory.

Given the above, the RBF network predictions can safely be used in UQ. In this case,
comparison among all UQ methods of Section 2.5, using the RBF network, is carried out. In
what follows, MC-RBF, gPCE-RBF and rPCE-RBF stand for a UQ using the MC, gPCE and
rPCE methods, respectively, all of them based exclusively on the RBF model. For the MC,
104 samples are generated at random. The gPCE used the 81 GQ points and the rPCE used
either the 81 GQ points or the 150 samples generated using the LHS.

The obtained results are summarized in Table 2. The same table includes the outcomes
of the gPCE-CFD and rPCE-CFD with 81 and 40 samples. The first column indicates the
UQ method, the tool to compute or approximate the QoIs and (in parenthesis) the number
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of samples used. It can be seen that the statistical moments, especially those of CL, are
computed with high accuracy using the proposed RBF-based surrogate. Since, in this work,
the interest is to assess the impact of the RBF models on UQ, whereas an MC-CFD run
with 104 replicates, which could give a dependable estimation of the statistical moments,
should be avoided, a fair way to evaluate the results of Table 2 is to compare the results
on a per-method basis. The comparison of gPCE-RBF with gPCE-CFD is excellent for
the mean values and has some “expected” differences in the standard deviations. The
rPCE-RBF and rPCE-CFD with 81 samples each are much closer, even in the prediction of
the standard deviations. It can also be considered that the rPCE-CFD (81) is more accurate
than rPCE-CFD (40), due to the double number of samples used. The MC-RBF performs
an exhaustive sampling in the uncertain space and it seems that (based on additional tests
not included in Table 2) no improvement is expected by further increasing the number of
samples. Overall, one may notice the rather close results obtained by the MC-RBF and
gPCE-RBF compared to those by the regression-based methods. The latter, either with the
RBF or the CFD tool, over-predict the µCD values. These differences also reflect the effect
of the sampling method, i.e., the LHS in the cases with 40 and 150 samples instead of a
sampling which considers the normal distributions of the uncertain variables. Thus, using
MC-RBF or gPCE-RBF, reduction in the computational cost by 50% is obtained, since the
cost comes practically only from the 40 CFD evaluations of the training patterns, rather
than the 81 CFD runs required for the gPCE-CFD.

Table 2. Case I: Statistical moments of the QoIs. Comparison of different UQ methods supported by
the RBF or the CFD tool.

Method/Tool Time Units µCL σCL µCD σCD

MC-RBF (104) 40 0.7204 0.004567 0.006195 0.0004196
gPCE-RBF (81) 40 0.7204 0.004643 0.006194 0.0004266
rPCE-RBF (81) 40 0.7204 0.004548 0.006383 0.0004203

rPCE-RBF (150) 40 0.7204 0.004615 0.006446 0.0004148

gPCE-CFD (81) 81 0.7210 0.004923 0.006153 0.0004477
rPCE-CFD (81) 81 0.7207 0.004584 0.006386 0.0004198
rPCE-CFD (40) 40 0.7206 0.004547 0.006421 0.0004132

3.2. Case II—The ONERA M6 Wing

Case II addresses the flow around the ONERA M6 wing at M∞ = 0.262, Re = 3.5 · 106,
zero angle of attack and zero yaw angle, Tu = 0.2% and surface roughness hrms = 5 µm [35].
The γ − R̃eθt transition model with crossflow effects is used as the CFD tool. The skin
friction coefficient (C f ) field on the wing surface computed using the nominal values of the
transition model is presented in Figure 3. White areas indicate the first part of each side of
the wing surface along which the flow remains laminar.

Figure 3. Case II: Skin friction coefficient (C f ) over the wing surface, as computed by the CFD tool.
(Left) Suction side. (Right) Pressure side.
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In this case, over and above the transition model constants, the surface roughness is the
fifth uncertain variable with hrms∼N (5 · 10−6, 1.6 · 10−6), so finally M=5. For the model
constants, the distributions of Equation (16) are used. Initially, 80 samples in the uncertain
variables’ space are generated using the LHS and used to train an RBF network to predict
CD/CL. The so-trained RBF is then used for the three aforementioned UQ methods and the
results are summarized in Table 3. For the MC method, 2 · 104 replicates are selected, while
for the gPCE-CFD the 35=243 GQ points. For rPCE-RBF various numbers of samples are
selected and tested, such as the 243 GQ points, the 80 initial samples or 120 samples. The
use of gPCE-CFD is avoided due to its high computational cost as it requires 243 CFD runs
for K=2. Instead, the rPCE-CFD with 80 and 120 samples is carried out. A good agreement
in the statistical moments computed by implementing the RBF-based surrogate, with all
the UQ methods, can be seen.

As in Case I, it is interesting to compare the rPCE-RBF (120) with rPCE-CFD (120)
and the rPCE-RBF (80) with rPCE-CFD (80). The comparison is very satisfactory and the
increase in the number of samples has the same effect. Surprisingly, the gPCE-RBF (243)
and rPCE-RBF (243) compute a different mean value compared to all other methods and,
also, differ from rPCE-RBF (120) which used half of the samples. For the MC-RBF, the
comment is similar to the one made in Case I.

Figures 4 and 5 present the statistical moments of C f computed using the gPCE-
RBF method. The mean value plot on the surface shows a close similarity with the plot
produced with the nominal values (Figure 3). Regarding the standard deviation of C f ,
high values (dark area) appear close to the leading edge and this is a clear indication that
these uncertainties affect a small area around the location of transition in Figure 3. In
Figures 4 and 5, one may see a narrow whitish zone, very close to the leading edge, which
corresponds to the very first part of the wing where the flow is not affected in any case.

Table 3. Case II: Statistical moments of the QoI (CD/CL). Comparison of different UQ methods
supported by the RBF or the CFD tool.

Method/Tool Time Units µCD /CL σCD /CL

MC-RBF (2 · 104) 80 6.8200 0.3277
gPCE-RBF (243) 80 6.7946 0.3249
rPCE-RBF (243) 80 6.7975 0.3127
rPCE-RBF (120) 80 6.8442 0.3152
rPCE-RBF (80) 80 6.8603 0.3057

rPCE-CFD (120) 120 6.8571 0.3277
rPCE-CFD (80) 80 6.8635 0.3179

Figure 4. Case II: Statistical moments of C f over the suction side. (Left) Mean value. (Right) Standard
deviation.
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Figure 5. Case II: Statistical moments of C f over the pressure side. (Left) Mean value. (Right)
Standard deviation.

3.3. Case III—The S8052 Airfoil

The third case addresses the flow around the S8052 isolated airfoil. The flow conditions
are as follows: M∞ = 0.1, α∞ = 3o, Rec = 5.05 · 106 and Tu = 1.28% and the simulation
uses the γ− R̃eθt transition model using the nominal values of the model constants, as seen
in Section 2.1. Herein, two shape optimization problems, without and with geometric un-
certainties, are considered. Geometric uncertainties are introduced using the KL expansion
method. The RBF network is used as a surrogate to the CFD tool in order to approximate
the QoI required for the computation of the statistical moments. The airfoil shape is param-
eterized using a 13× 9 NURBS control lattice, as seen in Figure 6. Control points marked in
red are allowed to be displaced in the normal-to-the chord direction, giving rise to N = 15
design variables in total. For the case with geometric uncertainties, M = 18 uncertain
variables resulting from the KL expansion (see Equation (11)) are considered.

Figure 6. Case III: NURBS control lattice used for the parameterization. Control points in black
remain fixed, while the red ones are allowed to be displaced in the normal-to-the chord direction.

The LHS method is used to sample the design space, according to the ranges associated
with the displaceable control points. A total of 200 different airfoil geometries are generated
and evaluated on the CFD tool. The 198 y-coordinates of the nodal points along the
contour of the airfoil are used as inputs to the RBF network. The selection of the nodal
coordinates instead of those of the control points allows for the network to predict the
CL and CD coefficients, not only in the case of a new airfoil geometry caused by changes
in the design variables (in which case, the volumetric NURBS method undertakes the
mesh displacement), but also when the shape is perturbed due to uncertainties. The
computational cost for obtaining the training patterns is 200 time units. The cost for
training the RBF network with 198 inputs and 2 outputs is rounded up to 1 time unit.
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3.3.1. Shape Optimization without Uncertainties

The first shape optimization study is a shape optimization without uncertainties, for
minimizing the drag-over-lift coefficient ratio, i.e., F = CD/CL. A comparison between the
optimization run relying on the CFD tool and that on the RBF-based surrogate is made.

Once the RBF surrogate is available, at the cost of 201 time units, this is used as the
sole evaluation tool during an EA-based search. The cost of an RBF-based evaluation
is ∼1/30 time units (this is, in fact, the cost for creating the airfoil contour using the
parameterization model) and a limit of 300 evaluations on the RBF model is set. Upon
termination of the EA run, the 10 best individuals seen during the search, excluding some of
the top solutions that are close enough (in the design space) to an even better solution, are
selected for possible re-evaluation on the CFD tool. The final number of individuals to be
re-evaluated on the CFD tool is determined by the RBF prediction accuracy, the percentage
error of which should not exceed 1%. Herein, after the first 300 evaluations on the RBF
model, 10 shapes solutions are re-evaluated (at the cost of 10 time units), since the mean
percentage error of CD predictions is 1.7%, whereas that of CL is 0.07%. The successive
steps that are formed by the RBF network training, the EA-based search on it and the best
solutions re-evaluations on the CFD tool constitute an optimization cycle. Therefore, once
the 10 re-evaluated individuals are appended to the training patterns, a new RBF network
is trained and a second optimization cycle starts. In the second cycle, five re-evaluations
are sufficient to lower the mean percentage error of CD at 0.8%. The convergence history of
this procedure is presented in Figure 7. The optimization terminates after three cycles, since
the RBF predictions reach the required level of accuracy and a noticeable improvement in
the objective function is no longer expected.

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140

 200  210  220  230  240  250

F

Time Units

EA on RBF

Re−evaluated on CFD

Figure 7. Case III: Convergence history of the shape optimization run relying on the RBF-based
surrogate (purple line with empty circles) with re-evaluation on the CFD tool (filled red circles).
The vertical axis values indicate either the RBF-based predictions (for the EA convergence histories;
purple lines) or the objective function values computed by the CFD tool for the re-evaluated solutions.
The horizontal axis starts after the first 201 time units to include the cost for evaluating the training
patterns (200 CFD runs, i.e., 200 time units) and training the RBF (1 time unit).

To quantify the gain from the use of the RBF-based surrogate, the optimization problem
is additionally solved using an EA relying exclusively on the CFD tool. Since we are dealing
with a stochastic optimization method, three runs are performed using different random
number generator seeds. A termination criterion of 500 CFD evaluations (500 time units) is
set and the corresponding convergence histories as well as the average of the three runs
are shown in Figure 8. The best solutions of the three cycles of the run on the RBF-based
surrogate, after being re-evaluated on the CFD tool, are also included. It can be seen that,
with the RBF-based surrogate, one may obtain a solution of, practically, the same quality
(almost the same objective function value) at a significantly lower computational cost.
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Figure 8. Case III: Convergence histories of the optimization runs relying on the CFD tool with
different initializations of the EA (three blue lines) and their averaged (black). The filled red circles
indicate the re-evaluated (on the CFD) outcomes of the three cycles of the EA optimization on the RBF.

3.3.2. Shape Optimization Under Geometric Uncertainties

Here, uncertainties in the airfoil geometry are additionally introduced. The latter are
modeled with the KL expansion presented in Section 2.2, using M = 18 uncertain variables.
The CD/CL is selected as the QoI (J) and the objective function to be minimized during
the shape optimization is the sum of the mean value and standard deviation of J, namely
F = µJ + σJ , corresponding to a possible worst-case scenario. For the computation of µJ
and σJ , both the MC-RBF and rPCE-RBF are used. To do so, for each new nominal airfoil
resulting from a change in the design variables, 1000 imperfect (perturbed) geometries
are generated using the KL expansion. The selected number of perturbed geometries is
adequate for the rPCE that needs to compute 190 coefficients (for chaos order 2) and a
compromise for the MC that, otherwise, would ask for thousands of perturbed geometries.
In this case, each evaluation (UQ) takes 0.15 time units and a termination criterion of
200 time units, over and above those required for the RBF training (200 time units), is set.
The convergence histories of these optimization runs are shown in Figure 9.

0.0134

0.0135

0.0136

0.0137

0.0138

0.0139

0.0140

 200  250  300  350  400

F

Time Units

MC−RBF

rPCE−RBF

Figure 9. Case III: Convergence histories of the optimization runs under geometric uncertainties. The
vertical axis corresponds to values of F predicted by the RBF model.
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The optimized shapes from both methods are re-evaluated on the CFD tool; this is
a very costly task as it requires 1000 CFD simulations, one for each imperfect geometry
resulting from the KL expansion. For these simulations, the RBF-based mesh displacement
tool of Section 2.2 is used to avoid re-meshing each imperfect geometry. A comparison of
the F and the statistical moments of the QoI with those of the baseline geometry is given in
Table 4. In either case, the optimized geometry is better than the baseline one. The use of
the RBF-based surrogate makes such an optimization run feasible, since running 1000 CFD
simulations for each candidate solution noticeably increases the computational cost.

Table 4. Case III: Comparison of the objective function F and statistical moments of J of the baseline
and the optimized solutions (re)-evaluated on the CFD tool.

Geometry/Method F µJ σJ

Baseline 0.0172588 0.01694 0.0003188
Optimized (using MC-RBF) 0.0134667 0.01317 0.0002967

Optimized (using rPCE-RBF) 0.0134317 0.01314 0.0002917

4. Discussion—Conclusions

The purpose of this paper was to assess different ways of using radial basis function
(RBF)-based surrogate models in UQ and CFD shape optimization with uncertainties. Ini-
tially, an RBF surrogate that predicts the QoI supports the Monte Carlo, GQ and regression
PCE methods which perform the UQ. Uncertainties were firstly related to a widely used
transition model with coefficients tuned according to experimental data and that, as such,
carry uncertainties. Two UQ studies, for an NLF airfoil and a wing, showed that the RBF
model may effectively support the above UQ methods and reduce the overall computa-
tional cost by even 50%, compared to the same method that uses the CFD tool. The error,
due to the use of the RBF model, in the first statistical moments of the lift and drag coeffi-
cients was very low and this made it a dependable UQ model for use in optimization loops.
For the sake of pluralism, to assess the use of the RBF-based UQ in optimization under
uncertainties, a shape optimization problem with geometrical uncertainties was selected.
Perturbed shapes are obtained through the Karhunen–Loève technique. The optimization
was based on an evolutionary algorithm. Since for each candidate solution (new geometry)
hundreds of perturbed geometries must be evaluated, all these computations of the QoI
were performed at low cost using the RBF surrogate model, instead of the CFD tool. The
latter is by orders of magnitude more expensive than the former, offering a huge saving in
computational cost.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CFD Computational Fluid Dynamics
PDE Partial Differential Equation
EA Evolutionary Algorithm
GQ Gauss Quadrature
KL Karhunen–Loève
LHS Latin Hypercube Sampling
MC Monte Carlo
ML Machine Learning
MoM Method of Moments
PCE Polynomial Chaos Expansion
QoI Quantity of Interest
RANS Reynolds-Averaged Navier–Stokes
RMSE Root Mean Square Error
RBF Radial Basis Function
UQ Uncertainty Quantification
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