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Abstract: Different strategies have been developed to incorporate bioactive compounds into food
products to improve their biological activity against degradation effects. The aim of this study
was to develop natural yogurt enriched with mango (Mangifera indica) peel extracts (MPEs) in
chitosan–xanthan gum dispersions and to evaluate their physicochemical, rheological, and antioxi-
dant activity. A hydroethanolic extract of mango peel was obtained, with a yield of 33.24 ± 1.27%, a
total content of phenolic compounds of 305.04 ± 10.70 mg GAE/g, and an antioxidant activity of
1470.41 ± 59.75 µMol Trolox/g. The encapsulation of the extracts was achieved using a chitosan–
xanthan gum dispersion, resulting in the rheological characteristic of a strong gel. The incorporation
of dispersions into yogurt did not modify the physicochemical properties and increased their bioac-
tive properties. The rheological properties show samples with double yield points and a decrease
in viscoelastic parameters. These results show dispersions as a strategy to incorporate bioactive
compounds into dairy products, preserve the physicochemical and rheological properties of yogurt,
and improve their biological activities (such as antioxidant activity) and activities related to the
compounds found in the MPE.

Keywords: antioxidant activity; bioactive compounds; rheological properties; yield stress; yogurt

1. Introduction

Yogurt is widely consumed and considered one of the most popular dairy products
worldwide [1]. It is produced through a fermentation process using a culture of lactic acid
bacteria, primarily Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus [2].
These bacteria are responsible for yogurt texture and gel matrix formation through casein
aggregation and post-acidification [3]. Traditionally, various studies have focused on modi-
fying the yogurt-making process to improve its flavors, texture, nutritional content, and
biological activity [4,5]. Consequently, the production of yogurts with health-promoting
compounds from plant extracts has become a major concern, involving, for example, yogurt
with tea and coffee extracts [3], yogurt incorporated with cranberry pomace extract [6],
and others. However, the addition of extracts can affect yogurt stability because of the
viability of acid lactic bacteria with the accumulation of organic acids and the subsequent
decrease in pH during storage [7]. Other authors have used some vehicles to gradually
release extracts into yogurt and decrease the impact on cultures, such as yogurt using carrot
waste extract encapsulated in alginate as an edible material, which can ensure the stability
and long shelf life of the extract in yogurt [8], and also chitosan liposomes charged with
cherry extract, added to yogurt as microcapsules, which improved the biological activity
and some physical characteristics of yogurt [9].

Mango (Mangifera indica) is a tropical fruit highly sought after for its vibrant color and
sweet and exquisite flavor, and it is considered a potential source of phytochemicals with
intriguing biological properties [10]. Mango peel, which represents approximately 20% of
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the fruit, contains a significant number of valuable components, including polyphenols,
carotenoids, enzymes, vitamin E, and vitamin C. These components show a variety of
biological properties, including antitumor, antioxidant, antimicrobial, anti-inflammatory,
cardiovascular, and hepatoprotective effects [11,12]. Therefore, mango peel represents an
alternative to the development of new products.

Natural plant extracts contain a diverse array of phytochemical compounds with
biological activities. The incorporation of these extracts into food products poses signif-
icant challenges due to their poor solubility and potential impact on the functional and
technological properties of the final product. However, natural plant extracts have been
used in different areas of the food industry, such as coatings, to enhance their biological
activity, [13] and as additives in different food systems [14,15]. Most bioactive compounds
in food are not very stable and are easily degraded during processing, storage, transport,
and digestion, so different strategies have been developed, such as those involving food
gels [16], liposomes [9], and microcapsules obtained by spray-drying [17].

Gels are colloidal systems that form interconnected three-dimensional molecular net-
works with a density similar to that of liquids, although they have a structure similar to that
of a solid [18]. The strength of gels depends primarily on the structure and concentration
of the gum concerned, as well as factors such as ionic strength, pH, and temperature.
Most gums are safe to eat, so they are widely used for the delivery of drugs and food
additives [19], i.e., guar, tragacanth, xanthan, chitosan, acacia, and alginates [20], or in the
design of encapsulation and delivery systems to carry different extracts, such as gels with
grape extracts [21], lemongrass essential oil encapsulated in sodium alginate dispersion [22],
hydrogels to encapsulate clove essential oil [23], and chitosan with xanthan gum for drug
delivery due to their synergic interaction, promoting gel formation and expanding their
range of applicability [24]. Furthermore, different delivery systems have been used to carry
bioactive plant extracts, such as other solutions presenting polymer–polyphenol interac-
tions that improve the functional properties of gels [22,25]; stable emulsions formulated
with different polymers to carry essential oils [26,27]; foams used to preserve and deliver
turmeric (Curcuma longa L.) and licorice extract, which presented interesting conservation
properties due to foam systems that preserve polyphenols and antioxidants [28,29]; and
emulsion gels to be applied in different food products as a replacement for saturated fats
for these systems, with biological activity enhanced with natural extracts isolated from
mango and grape [21,30], among other things.

The present study aimed to develop natural yogurt fortified with mango peel extracts
(Mangifera indica) in chitosan–xanthan gum dispersions and to evaluate their physicochemi-
cal, rheological and biological activity.

2. Materials and Methods
2.1. Materials

Hydrochloric acid and ethanol (99.5% purity) were purchased from Panreac (for
Barcelona/Spain). Acetic acid, NaOH, Folin-Ciocalteu reagent, 2,2 azinobis (3-ethylbenz-
othiazoline-6-sulfonic acid) diammonium salt (ABTS radical), and phenolphthalein were
purchased from Sigma-Aldrich (for St. Louis, MO/USA). Commercially pasteurized and
homogenized whole milk was purchased from a local Colombian market. All other reagents
were analytical grade.

2.2. Mango Peel Extracts (MPEs)

Mango (Mangifera indica) var. Corazón was harvested and obtained from the province
of Bolivar (Colombia) at commercial maturity. The fruits were cleaned with an aqueous
sodium hypochlorite solution (100 ppm), then peeled and dried using a freeze dryer (Lab-
conco Freezone 1.5 L, Kansas City, MO, USA). Subsequently, grinding was performed using
a mill (IKA MF 10.2, Burladingen, Germany) in order to obtain mango peel powder with
a particle size less than 250 µm in diameter. Subsequently, ultrasound-assisted extraction
(UAE) was performed following the procedures described by Quintana et al. [13], Mieles-
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Gómez et al. [30], and Lastra Ripoll et al. [31] with some modifications. Briefly, a ratio of
1:10 mango peel: hydroethanolic solution (50% ethanol and 50% water) was sonicated using
an ultrasonic probe (ultrasonic process FS-1200 N) with an operating frequency of 60 kHz
and an input power of 240 W at a maximum temperature of 40 ◦C for 20 min, and an ice
bath was used to avoid sudden temperature rises. After that, the mixture was filtered, and
the solvent was eliminated using a rotary evaporator (IKA RV 8, Burladingen, Germany)
and then freeze-dried (Labconco Freezone 1.5 L, Kansas City, MO, USA). The extraction
yield (Y%) of the MPE was calculated using Equation (1):

Y% =
mango peel extract(g)

mango peel(g)
× 100 (1)

2.3. Preparation of Chitosan–Xanthan Gum–MPE Dispersions

The xanthan gum–chitosan–MPE dispersion (XG–XH–MPE) was developed following
the procedure described by Cofelice et al. [22]. A dispersion of xanthan gum (1% w/v) and
chitosan (1% w/v) in water, as a continuous phase, was obtained by continuous stirring at
25 ◦C for 4 h. Subsequently, MPE (as dispersed phase) was added in different percentages
(1, 3 and 5%) by homogenization at 10,000 rpm for 7 min using a digital Ultra-Turrax (IKA
T-25, Germany). The dispersions were stirred at 4 ◦C until use.

2.4. Yogurt Preparation

The yogurt was prepared following the procedure proposed by Qiu et al. [32] with
some modifications. The previously pasteurized cow milk was heated to 43 ◦C. Milk
was inoculated with 0.03 g L−1 of a starter culture of probiotic yogurt with Lactobacillus
delbrueckii ssp. bulgaricus and Streptococcus thermophilus; then, the milk with the culture
was incubated at 42 ± 1 ◦C until the pH reached 4.5. The yogurt was cooled and stirred at
300 rpm for 2 min, then 3% of the chitosan–xanthan gum–MPE dispersions were added.
Finally, 200 mL of each sample was stored at 4 ◦C.

2.5. Water Holding Capacity (WHC) and Syneresis

Water holding capacity (WHC) and syneresis susceptibility were determined following
the procedures described by Ismail et al. [33] and Mohamed Ahmed et al. [1]. Briefly, 15 g
of the sample was centrifugated at 4000 rpm for 15 min at 4.0 ± 1 ◦C, and then the
separated whey weight was obtained. WHC and syneresis were calculated according to
Equations (2) and (3):

WHC(%) =
(Yogurt weight− Separated whey)

Yogurt weight
× 100 (2)

Syneresis(%) =
Separated whey
Yogurt weight

× 100 (3)

2.6. Physicochemical Analysis

The pH value of the yogurt samples was evaluated using a glass electrode pH meter
(FoodCare HI-98161, Hanna, Romania). The titratable acidity (TA) of the yogurt samples
was determined by titration. Briefly, 10 g of yogurt was mixed with 20 mL of distilled water
and titrated with NaOH (0.1 N) in the presence of phenolphthalein, and the results were
expressed as a percentage of lactic acid.

2.7. Color Analysis

Color analysis was measured using a colorimeter (Konica Minolta CR-20, Sakai, Japon).
A CIELAB system was used to obtain the values of the parameters of lightness (L*), red–
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green chromaticity (a*), and blue–yellow chromaticity (b*). Equations (4) and (5) were used
to calculate the chroma index (C*) and color variation (∆E*), respectively.

C* =

[(
a*
)2

+
(

b*
)2

]0.5
(4)

∆E* =

[(
∆L*

)2
+

(
∆a*

)2
+

(
∆b*

)2
]0.5

(5)

2.8. Total Phenolic Content (TPC) and Antioxidant Activity

The total phenolic content (TPC) was determined using the method described by
Singleton et al. [34]. The antioxidant activity was determined by scavenging ABTS free
radicals according to the method described by Re et al. [35].

2.9. CG-MS

The identification and quantification of bioactive compounds from mango peel ex-
tracts were carried out following the procedures described by Mieles-Gómez et al. [30]
employing a GC-MS-FID using 7890D Agilent Technologies (Santa Clara, CA, USA). A
DB-5 ms capillary column (Agilent, Tokyo, Japan) (30 m × 0.25 mm × 0.25 µm) was
used. Chromatographic methods started at 25 ◦C, then increased from 120 ◦C to 220 ◦C
(40 ◦C/min, hold time 0.5 min), then increased to 290 ◦C (4 ◦C/min, hold time 8 min). The
flame induction detector temperature was 300 ◦C; the hydrogen flow rate was 40 mL/min;
the air flow rate was 450 mL/min; the tail gas flow rate was 1.03 mL/min; and the injection
volume was 1.0 µL. Compounds were identified with the NIST 2014 mass spectral library.
The relative content of each component was obtained using the peak area normalization
method for quantification.

2.10. Rheological Analysis

The rheological characterization was carried out following the procedure described by
Quintana et al. [13] using a Haake Mars 60 modular advanced controlled stress rheometer
system (Thermo Scientific, Karlsruhe, Germany) equipped with a cone and plate geom-
etry (1◦; 35 mm diameter and 0.053 mm diameter GAP). Viscous flow tests were car-
ried out in a steady state without shear history, analyzing the variation in viscosity in a
range of deformation rates between 10−3 and 103 s−1 at 25 ◦C. A stress amplitude sweep
test was carried out within the range of 0.01–1000 Pa and with an angular frequency of
1 Hz for all samples, to determine the linear viscoelastic regime (LVR). Subsequently, the
frequency sweep was carried out at 0.1 Pa to maintain stress in the LVR, within the range
of 0.01–100 rad·s−1.

2.11. Statistical Analysis

The assays were performed in triplicate. Data were analyzed with unidirectional
ANOVA using Statgraphics software (version centurión XVI) in order to determine statisti-
cally significant differences (p < 0.05) between samples.

3. Results and Discussion
3.1. Mango Peel Extracts

Mango peel extracts (MPEs) were obtained using a hydroethanolic solution (50%
ethanol and 50% water) as solvent. An extraction yield of 3.24 ± 1.27% was obtained in
association with increased mass transfer due to the creation of waves by ultrasonic power,
which promotes the penetration of solvent into vegetable tissues by violent implosions
of bubble gas in the solvent. These transform potential energy into heat, resulting in a
decrease in the viscosity of the solvent, which allows an easy penetration of the solvent into
the plant matrix [36]. Then, by combining all these effects during sonication, there is an
improvement in mass transfer and a diffusion of the bioactive compound of mango in the
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solvent [37]. This means that the extraction of the yield depends on various factors such as
cultivars, ripening state, and conditions during processing such as time and power, but
mainly in the extraction method, such as ultrasound help [38,39].

The MPE presented 305.045 ± 10.70 mg GAE/g of extracts, recovering
101.52 ± 7.38 mg GAE/g of dry matter (DM) and a TEAC value of 489.25± 38.09µMol Trolox/g
DM. The obtained TPC values were similar to mango var. Keitt (103.82 mg GAE/g of DM)
from Spain [40] and considerably higher than mango var. Alphonso from India (49.89 and
69.84 mg GAE/g of DM) [41] and mango var. Tommy Atkins from Brazil (6 to 13.82 mg
GAE/g of DM) [42]. In addition, antioxidant activity presented similar values to Castañeda-
Valbuena et al. [43] for by-products of mango var. Haden (239.1 to 1155.83 µMol Trolox/g
of DM) and values higher than mango var. Tommy Atkins extracts, with values ranging
from 46.7 to 73.8 µMol Trolox/g of DM [44]. TPC and antioxidant activity in mango depend
mainly on genetics, cultivars, soil conditions, geographic site of production, maturity stage,
postharvest practices [45]. The main compounds in mango peel that have been described
are dietary fiber, polyphenols, antioxidants such as vitamin C and E, and other components
with demonstrated health-promoting activities [46,47]. Therefore, MPE presents the inter-
esting bioactive activity of mango by-products, which can be used as a raw material for
innovative functional food developments as an ingredient with antioxidant activity and a
great number of phytochemicals and.

Subsequently, a GC-MS analysis of MPE revealed the presence of various compounds
such as 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6methyl; palmitic acid (Diethyl phtha-
late); linoleic acid (9,12-octadecanoic acid); methyl oleate (9-octadecanoic acid); stearic acid
(Octadecanoic acid); and maltol. Among these, certain compounds demonstrate significant
potential to exert antioxidant effects and offer various health benefits. These benefits may
contribute to the prevention of chronic diseases such as cardiovascular disease, cancer,
neurodegenerative disorders, and age-related conditions [48]. Bioactive substances and
their metabolites, including fatty acids predominantly present in mango peel extract (MPE),
have been proposed to participate as antioxidants in the mechanism of free radical elimina-
tion [49]. Furthermore, the compound 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6methyl
has been identified as one of the compounds present in an aqueous extract that exhibits
antioxidant properties due to its capacity to remove free radicals [50], which may have been
facilitated by the nature of the solvent used. This compound has been attributed to a strong
antioxidant capacity when isolated [51]. Maltol is a natural synergistic aromatic compound
with broad-spectrum properties and a natural antioxidant and has been shown to protect
nerve cells, inhibit peroxidation caused by diabetes, exhibit significant antitumor activity,
and effectively inhibit liver inflammation [52,53]. Therefore, the compounds identified
in MPE can contribute to its antioxidant character when used as an active ingredient in
formulations.

3.2. Dispersions Enriched with Bioactive Compounds

Four dispersions of xanthan gum–chitosan with different percentages of MPE were
obtained—0 (XG–CH), 1 (XG–CH–MPE-1), 3 (XG–CH–MPE-3), and 5% (XG–CH–MPE-
5)—to evaluate the effect of the percentage of the extract on the rheological properties
of the dispersions and their applications in yogurt. Dispersions did not show any phase
separation; MPE was always dispersed in the dispersion, as bioactive compounds are
entrapped by polymer systems and form complexes, which can increase the solubility and
bioavailability of target bioactive molecules under gastrointestinal conditions and also
reduce oxidation reactions and prolong the shelf life of some fresh products [54–56].

The color parameters a* (+, red; −, green) and b* (+, yellow; −, blue) (Table 1) are good
color indicators and provide information about how this dispersion may affect or influence
the final color in the matrix in which it will be applied [57]. The dispersion without extract
(XG–CH) was visually more transparent than the sample with MPE. The dispersions with
MPE presented lower values for a*, and this parameter decreased as a higher proportion
of extract was added, portraying a subtle reddish tint that was not readily noticeable to
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the naked eye and decreased as a higher proportion of extract was added. Small positive
values of b* indicate that the dispersions possess a slight yellowish hue, which becomes
increasingly pronounced with the addition of MPE. The brightness (L*) of the samples
increased significantly with the addition of MPE, which means that the dispersions with the
addition of MPE were brighter (p < 0.05), and the chroma (C*) showed a significant increase
(p < 0.05). The total color difference (∆E) was evaluated related to the color aspect that was
evaluated. The ∆E value increases with the percentage of MPE. Therefore, increasing MPE
concentration causes an increase in overall color difference, with this trend presented in
their visual appearance.

Table 1. Color parameters obtained for chitosan/xanthan gum dispersions enriched with bioactive
compounds from MPE.

Sample Code L* a* b* C* ∆E

XG–CH 7.40 ± 1.26 a 1.30 ± 0.10 a 0.16 ± 0.06 a 1.31 ± 0.09 a

XG–CH–MPE-1 13.70 ± 0.45 b 0.62 ± 0.31 b 3.69 ± 1.87 b 3.74 ± 0.90 b 7.43 ± 0.21 a

XG–CH–MPE-3 14.56 ± 2.73 b 0.52 ± 0.15 b 7.20 ± 1.20 c 7.21 ± 0.25 c 8.34 ± 0.36 a

XG–CH–MPE-5 19.18 ± 0.36 c 0.30 ± 0.04 b 9.16 ± 0.99 c 9.17 ± 0.99 c 10.59 ± 0.72 b

Data are the mean ± standard deviation. Different letters in the same columns express statistically significant
differences (p < 0.05).

The flow curves for each dispersion are shown in Figure 1. In all cases, a decrease in
viscosity (η) with the increase in shear rate (

.
γ) was observed; this behavior is characteristic

of a non-Newtonian fluid, a type of shear-thinning fluid [58]. This behavior is related to
structural damage and deformation in the entanglement created when the system is in
equilibrium before being subjected to deformation; then, as the shear rate increases, the
elongated particles begin to align in the flow direction. In addition, the system presents
a loss of viscosity since the reticular structure of polysaccharides is broken and the en-
tanglement structure cannot be recovered. This is caused by shear stress, thus showing a
reduction in resistance to flow, mainly due to the hydrodynamic forces that dominate the
flow properties of the material, as opposed to interparticle forces and Brownian motion [59].
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Waele model of MPE-enriched dispersions at 25 ◦C.

Different authors have shown dispersions with shear-thinning behavior, explained
by the structural deformation of the network, including systems with natural extracts
such as in the case of film formation solutions prepared with chitosan/zein to incorporate
α-tocopherol in the system [60], and also when using of chitosan and gelatin as carriers of
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grape and jabuticaba extracts [61]. Tudrorache et al. [62] observed the same behavior for
three different polysaccharides with different phytochemicals.

Since all dispersions presented a non-Newtonian fluid of the shear-thinning type, the
flow curves obtained were adjusted to the Ostwald de Waele model, and this model is
frequently used to describe the rheological properties of shear-thinning fluids, primarily in
polymer and foam solutions [63]. The model is described by Equation (6):

η = k
.
γ

n−1 (6)

where η is the apparent viscosity, k is the consistency index and n is the flow behavior index.
Adjustment parameters are shown in Table 2. Although the parameter n shows signif-

icant changes with the addition of MPE, n was less than 1 in all cases, corroborating the
shear-thinning behavior [64]. Further, k increases with the concentration of MPE, which
means that the apparent viscosity increases; this could be explained by the creation of
intermolecular interactions between polymers and polyphenols. Consequently, the greater
the strength of the interactions, the higher the viscosity of the system, principally at low
shear rates [65] when the system is in equilibrium. Even at a low shear rate, different types
of chemical linkages could be formed between chitosan, xanthan gum, and polyphenols,
such as hydrophobic interactions, van der Waals force, and hydrogen bonds. Furthermore,
the large number of polyphenols can also affect the chitosan/xanthan gum interactions
when dispersions are subjected at high shear rates [66]. Unlike our findings, where viscosity
decreased with an increase in MPE, other studies have presented an increase in viscos-
ity at higher extract values, and this depends mainly on the composition of the extract.
Meng et al. [67] found that peanut skin extract produced an increase in viscosity of film
formation solutions with an increase in extract, but for the use of peanut shell extract, the
viscosity of the solutions decreased with the amount of extract used, and this was attributed
to the different composition of extracts. Additionally, Tong et al. [68] observed that grape
peel extract increased viscosity, but only up to a critical concentration, at which the viscosity
of the solution decreased drastically.

Table 2. Ostwald de Waele model parameters for the viscous test of dispersions enriched with MPE
at 25 ◦C.

Sample Code K n R2

XG–CH 50.32 ± 7.21 a 0.01 ± 0.03 a 0.96
XG–CH–MPE-1 49.73 ± 2.98 a 0.02 ± 0.01 a 0.99
XG–CH–MPE-3 20.69 ± 1.57 b 0.11 ± 0.01 a 0.97
XG–CH–MPE-5 8.41 ± 0.58 c 0.31 ± 0.01 a 0.97

Data are the mean ± standard deviation. Different letters in the same columns express statistically significant
differences (p < 0.05).

The viscoelastic properties of the dispersions are shown in Figure 2. The storage
modulus (G′) was higher than the loss modulus (G′′ ) throughout the mechanical spectrum
studied, exhibiting a gel-like character with a strong network [69]. To analyze the effect of
the addition of MPE on the viscoelastic properties of dispersions, G′ and G′′ as a function
of the frequency were fitted to the power law by Equations (7) and (8).

G′ = k′ωn′ (7)

G′′ = k′′ωn′′ (8)

where k′ and k′′ represent G′ and G′′ modulus (Pa·sn′ and Pa·sn′′ , respectively), and dimen-
sionless parameters n′ and n′′ are the frequency dependence parameter (time stability) of
G′ and G′′, respectively [70].
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Figure 2. Viscoelastic properties of dispersions of chitosan/xanthan gum enriched with bioactive 
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model. Systems with high consistency, such as concentrated dispersions, are structurally 
more similar to solids in terms of their elasticity than to liquids in terms of their viscous 
part, due to the ability to store more energy than they dissipate or lose during the test. 
This is characteristic of most food materials that have been classified as viscoelastic solids 
[64]. 

  

Figure 2. Viscoelastic properties of dispersions of chitosan/xanthan gum enriched with bioactive
compounds from MPE at 25 ◦C. Frequency sweep module G′ and G′′ (Pa) vs angular frequency (ω)
(rad/s).

Table 3 shows the fitting values of the viscoelastic parameters using the power-law
model. Systems with high consistency, such as concentrated dispersions, are structurally
more similar to solids in terms of their elasticity than to liquids in terms of their viscous
part, due to the ability to store more energy than they dissipate or lose during the test. This
is characteristic of most food materials that have been classified as viscoelastic solids [64].

Table 3. Rheological properties of chitosan/xanthan gum dispersions enriched with bioactive com-
pounds from MPE adjusted to the power-law model.

Sample Code k’ n’ R2 k’’ n’’ R2

XG–CH 111.96 ± 1.88 a 1.14 ± 0.05 a 0.93 27.25 ± 0.52 a 1.11 ± 0.06 a 0.92

XG–CH–MPE-1 926.74 ± 9.51 b 1.08 ± 0.03 b 0.91 144.31 ± 3.16 b 1.05 ± 0.08 a 0.93

XG–CH–MPE-3 2921.44 ± 25.41 c 0.99 ± 0.03 b 0.95 374.85 ± 8.02 c 1.02 ± 0.08 a 0.97

XG–CH–MPE-5 2677.49 ± 41.88 d 1.14 ± 0.05 a 0.93 623.59 ± 20.19 d 1.20 ± 0.09 ab 0.95

Data are the mean ± standard deviation. Different letters in the same columns express statistically significant
differences (p < 0.05).

The dispersions did not show a significant dependence on the frequency, since all
values of n′ and n′′ presented values close to 1 (n ≈ 1); these parameters indicate the
frequency dependence (time-stability), suggesting that there are no strong changes in
their viscoelastic properties because of bond creation between the polymeric components
(chitosan and xanthan gum). Previously, these polymeric systems have demonstrated
their ability to bind to bioactive components, resulting in a stronger gel matrix with any
temporal instability [24,71]. Furthermore, this association presented significant changes
as the storage modulus (G′) and loss modulus (G′′ ) presented an increase in their values
when the percentage of MPE increased. This is a result of the polymer–polyphenolic
links throughout the hydroxyl group and the -OH or -COOH groups found in phenolic
compounds [67]. The addition of 5% MPE also increased the loss modulus G′ ′ with respect
to the storage modulus G′ for the XG–CH-5% dispersion, with the viscous component
being more representative; therefore, the energy required to deform the system will be
lower [72].

3.3. Yogurt with Dispersions Enriched with Natural Extracts

Four yogurts (Figure 3) were developed with the aim of boosting the bioactive po-
tential of a pivotal dairy product. These formulations were designed to serve as efficient
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delivery systems and have been shown to be effective in safeguarding bioactive compounds
throughout the digestion process. They achieve this by maintaining optimal ionic strength
and pH levels, promoting cell absorption, and preserving the biological activity of the
extract and its bioactive constituents under challenging environmental conditions [73,74].
To assess the amount of extract used in the yogurt formulation without negatively affecting
the final sensory, physicochemical, rheological quality, or safety attributes of the yogurt,
four yogurts were prepared with three percentages of dispersions obtained. We used a
control sample (Y-XG–CH) as well as XG–CH–MPE-1 (Y-XG–CH–MPE-1), XG–CH–MPE-3
(Y-XG–CH–MPE-3), and XG–CH–MPE-5 (Y-XG–CH–MPE-5).
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3.3.1. Physicochemical Properties

The physicochemical properties of yogurts are shown in Table 4. The pH of yogurt
did not vary (values between 4.41 and 4.49), but the acidity presented a slight increase
in lactic acid (from 1.062 to 1.278% (p > 0.05)), related to normal acidification due to the
activity of lactic acid bacteria. Mohamed Ahmed et al. [1] found different results in yogurt
fortified with Argel Hayne leaf extract of Solenostemma, as did Ogusku-Quintanilha et al. [2]
for yogurt with Moringa oleifera extract, as the pH of their samples decreased with the
addition of extract. Then, the dispersion of xanthan–chitosan–MPE improves the acidity of
yogurt, taking into account that the bioactive compounds are sensitive to variations in pH,
leading to the production of organic acids, which decreases pH because of the release of
H + ions [75].

Table 4. Physicochemical parameter of yogurts with dispersions enriched with bioactive compounds.

Sample Code pH TA
% Lactic Acid

Syneresis
%

WHC
%

TPC
mg GAE/g

TEAC
µMol Trolox/g

Y-XG–CH 4.49 ± 0.02 a 1.062 ± 0.07 a 58.30 ± 4.01 a 41.69 ± 4.09 a 3.69 ± 0.28 a 8.05 ± 0.26 a

Y-XG–CH–MPE-1 4.47 ± 0.01 a 1.134 ± 0.07 a 58.85 ± 1.15 ab 41.14 ± 1.12 ab 9.66 ± 0.72 b 11.74 ± 0.08 b

Y-XG–CH–MPE-3 4.45 ± 0.01 a 1.152 ± 0.07 a 58.46 ± 2.17 ab 41.53 ± 2.22 ab 18.75 ± 0.71 c 21.76 ± 0.03 c

Y-XG–CH–MPE-5 4.41 ± 0.01 a 1.278 ± 0.05 a 55.78 ± 2.12 b 44.21 ± 2.07 b 23.65 ± 1.03 d 31.90 ± 0.75 d

TA: Titratable acidity. TPC: Total Phenolic Content. TEAC: Trolox Equivalent Antioxidant Capacity. Data are
the mean ± standard deviation. Different letters in the same columns express statistically significant differences
(p < 0.05).

The WHC and syneresis did not vary between the control sample (Y-XG–CH), and
samples with 1 and 3% MPE (Y-XG–CH–MPE-1 and Y-XG–CH–MPE-3), with values of
58.30 ± 4.01, 58.85 ± 1.15 and 58.46 ± 2.17, respectively, for syneresis, and 41.69 ± 4.09,
41.14 ± 1.12 and 41.53 ± 2.22 for WHC, respectively. Then, yogurt with a higher addition
of MPE (Y-XG–CH–MPE-5) decreased syneresis in yogurt samples (p < 0.05), which was
associated with the interaction of polyphenols in the extract and some yogurt proteins,
enhancing protein cohesion by changing the structure and affinity and thus holding more
whey due to the firmness of the gel matrix of yogurt [1,76]. Other studies have shown this
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behavior, where the addition of different extracts enhances WHC, thus reducing syneresis—
for example, in the case of yogurt enriched with cherry extract encapsulated in chitosan,
there was a significant decrease in syneresis when the extract was added [9]; the reduction
in syneresis was reported due to the addition of riceberry extract in yogurt [7]; and an
increase in WHC values was reported, followed by a decrease in syneresis, in yogurt with
the addition of Rosa rugosa cv. Plena flower extract [32]. These parameters are important in
determining the quality and stability of yogurt over time [32] since it is the ability of yogurt
to retain whey or the aqueous part that contains soluble proteins and minerals and the loss
of the ability to retain water that results in an increase in syneresis. Through syneresis,
yogurt loses whey, and this is related to changes in microstructure [77,78].

3.3.2. Total Phenolic Content (TPC) and Antioxidant Activity

The total phenolic content (TPC) and the antioxidant activity (ABTS* scavenging
activity) of the yogurt enriched with MPE are shown in Table 4. TPC and ABTS* scaveng-
ing activity for Y-XG–CH were 3.69 ± 0.28 mg GAE/g and 8.05 ± 0.26 µMol Trolox/g,
respectively, and these values increased significantly with increasing MPE concentration in
yogurt in all cases compared to the control (p < 0.05). TPC and antioxidant activity in yo-
gurt containing the lowest percentage of extract ((Y-XG–CH–MPE-1) increased by 261.78%
and 145.83%, respectively; for Y-XG–CH–MPE-3, the increase was 508.13% and 270.31%,
respectively; and finally, the highest increase in yogurt bioactive activity was obtained for
yogurt with the highest percentage of MPE (Y-XG–CH–MPE-5), which was 640.92% and
396.27%, respectively, presenting interesting results to improve yogurt biological activity
by enriching with mango (Mangifera indica) by-products. This increase in the bioactivity of
yogurt enriched with MPE is mainly related to the number of phenolic compounds that
are added through the extract [1]. This evidence provides a basis for affirming that the
incorporation of MPE through dispersions in yogurt enhances the bioactive properties and
antioxidant activity and therefore its potential health benefits. Furthermore, other similar
reports have been registered in different publications, such as in the case of yogurts with
different plant extracts used as pigments and to improve their bioactivity, obtaining values
in the range of 42.75 to 69.14 mg GAE/L of yogurt [79]; this is also evident in yogurts with
Rosa rugosa cv. The plena flower extract presents TPC values of 25 up to 112 µg GAE/mL
of yogurt, and this extract increases the antioxidant capacity of yogurts. Moreover, [1]
found that yogurt fortified with the Argel Hayne leaf extract of Solenostemma presented TPC
values ranging from 23.38 to 31.14 mg of GAE/100 g of yogurt, the extract also improved
antioxidant activity at higher concentrations, and the results reported in this investigation
were always higher. Consequently, fortifying yogurt with natural plant extracts rich in
bioactive compounds, such as phenolics, may improve the health benefits of products,
mainly dairy products, as they have a great daily demand [80].

3.3.3. Analysis of Color

The color properties of yogurt are some of the most important attributes that affect
product marketability and directly determine consumer acceptance. In Table 5 are listed the
color parameters evaluated for the different yogurts obtained. The parameter a* indicates
that samples have a slight greenish tint, imperceptible to the eye, and b* shows that samples
have a yellow tint. In addition, it can be observed that in all cases the addition of MPE did
not affect the color of the final yogurt (∆E values of between 1.64 ± 1.50 and 2.80 ± 1.39).
Since no significant differences (p > 0.05) were found between yogurts with MPE and the
control yogurt for any of the parameters, it can also be corroborated in the change of color
∆E, since the addition of MPE showed low values.
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Table 5. Color parameters obtained for yogurt samples enriched with bioactive compounds
from MPE.

Sample Code L* a* b* C* ∆E

Y-XG–CH 76.32 ± 4.32 a −2.18 ± 0.32 a 16.17 ± 0.34 a 71.18 ± 3.71 a --

Y-XG–CH–MPE-1 75.60 ± 2.13 a −2.16 ± 0.06 a 16.48 ± 0.20 a 70.45 ± 1.66 a 2.89 ± 1.66 a

Y-XG–CH–MPE-3 77.88 ± 2.89 a −2.19 ± 0.14 a 16.49 ± 0.50 a 72.29 ± 2.51 a 1.64 ± 1.50 a

Y-XG–CH–MPE-5 77.69 ± 2.05 a −2.15 ± 0.23 a 16.23 ± 0.71 a 72.30 ± 0.65 a 2.80 ± 1.39 a

Data are the mean ± standard deviation. Different letters in the same columns express statistically significant
differences (p < 0.05).

The yogurts show a variation in color when extracts are used directly as additives,
and this depends on the concentration used in yogurt. This has been corroborated with
the use of plant pigment, where all the studied parameters of stirred yogurt (L*, a*, and b*)
were significantly different [79]. However, contrastingly, when a delivery system is used
for the extracts, the color is not strongly affected, such as in the case of yogurt containing
encapsulated carrot waste extract using alginate, which did not present significant changes
in color parameters [8], or the case of coating chitosan with sour cherry extract and applying
it to yogurt, which exhibited the same behavior [9]. Considering that the addition of the
extract did not present significant changes in the color of the final yogurt, MPE in xanthan
gum–chitosan as a delivery system can be used for the formulation of dairy products to
enhance bioactive potential without affecting one of the main factors consumers consider
when choosing these products—the visual appearance.

3.3.4. Rheological Properties

Physical properties are vital for the popularity of yogurt products among consumers.
As it depends on different factors, such as ingredients in the formulation, processing time,
or different treatments, it is imperative to understand the effects of the addition of MPE
on rheological characteristics, which at the same time are of great importance for sensory
attributes in yogurt, principally because preferences for the body and texture of yogurt
vary throughout the world for consumers [1,74] and because viscosity is one of the most
important parameters for yogurt since it is highly related to formulation composition [81].

Figure 4 shows the flow properties of the prepared yogurts. A typical response of a
shear-rate-dependent or non-Newtonian fluid is observed (Figure 4a), exhibiting a decrease
in viscosity as the shear rate increases, which is caused by the reduction in electrostatic
repulsion, the intermolecular interaction, and, principally, the breakdown of the weak
bonds in the internal gel matrix of yogurt formed by flocculated casein micelles networks.
This effect is a result of the increase in shear forces and the hydrodynamic forces in the fluid,
which accelerate the process until the particles are aligned in the flow direction [81,82].
Most yogurts produced are within the non-Newtonian fluid classification because they
usually present a weak viscoelastic gel with shear-thinning characteristics [74].

Since conventional yogurt is primarily composed of two ingredients (pasteurized
milk and cultures), some other components have been used to give different properties
to yogurt, and each ingredient plays a critical role in viscosity or firmness and is directly
related to the composition of the formulation [74]. In this case, the component of interest
is the percentage of extract in dispersions. The viscous flow shows the slight influence
of dispersions containing MPE on the viscosity values of the different curves. Viscosity
decreases in all cases involving extract implementation due to the ability of phenolic
compounds to interact with milk protein, directly affecting the functionality of dairy
products. This is also explained by the contracting effect on the micelle matrix of the casein
and the dissolution of calcium and inorganic phosphate when there is a decrease in pH.
As has been described for yogurt samples with the addition of MPE [9], even a small
decrease in pH produces a decrease in charge, which affects the development of a stable
colloidal system, making it weaker [6]. Previously, different researchers have reported
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this phenomenon and the relationship existent between the reduction in viscosity and the
implementation of phenolic compounds, such as in the case of Jaster et al. [78] and İçier
et al. [80], where authors attribute the decreasing viscosity to the nature of the extract.
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Figure 4. Flow properties of yogurt samples enriched with bioactive compounds from MPE.
(a) viscous flow test. (b) Shear stress.

Although the flow behavior of yogurt was shear-thinning, Figure 4b shows the vis-
cosity curves against the shear stress, where it can be observed that there exists a yield
point in two different zones of the curve during the decrease in viscosity. The first is when
there is low shear stress applied, known as the static yield point, given by the first drop
in viscosity and the fluid yield point, which take place at great values of stress; and the
second point could be attributed to the destruction of the structure formed by the yogurt
gel and the yogurt sensitivity when they present a quasi-stable state and are subjected to
the shear stress at which this state is broken [82]. Some other researchers have presented
this characteristic behavior when shear stress and shear rate have values close to 50 Pa
and 10 s−1, respectively, such as in the case of yogurt with the addition of monk fruit
extract [83] and in yogurts with the addition of hydrocolloid from a squash and xanthan
gum mixture [82].

The viscoelastic properties of yogurt are dominated by different stages and aspects of
the production process, such as temperature, heating pretreatment, starter culture, time and
fermentation conditions, milk composition, and storage conditions of milk, which allow
the formation of the internal matrix of yogurts. These properties are very useful in the food
industry and consequently for yogurts, mainly to describe the strength of the internal gel
structure and how it can change with the formulation of this dairy product [74,84].

Figure 5a presents the stress sweep, where the linear viscoelastic region (LVR) and the
nonlinear viscoelastic region are shown. In the LVR, which takes place up to values close to
10 Pa, the storage modulus is greater than the loss modulus (G′ > G′′ ) and presents a long
plateau zone until great values of stress are reached. Then, the modules begin to decline,
losing the linear characteristic and exhibiting the static yield stress (τ0−1) (previously
mentioned). Additionally, the second yield stress, identified as dynamic yield stress (τ0−2),
listed in Table 6, occurred outside the LVR when the storage modulus tended to be in a
quasi-stable state, and the increase in stress produced a sharp drop, typical for the yogurt
gel network [82]. For yogurt samples prepared, the yield stress parameters τ0−1 and τ0−2
presented significant differences (p < 0.05) with the addition of MPE, since the yogurt
system consisted of aggregated particles within a gel matrix and meant a stress value was
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necessary to deform the yogurt matrix. Additionally, the change in pH as a result of the
addition of MPE produced some instability in the colloidal system [3,85].
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Table 6. Yield stress parameters in viscoelasticity of yogurt samples enriched with bioactive com-
pounds of MPE.

Sample Code τ0−1
Pa

τ0−2
Pa

G’=G”

Pa

Y-XG–CH 2.83 a 35.71 a 10.14 a

Y-XG–CH–MPE-1 0.82 b 15.09 b 2.44 b

Y-XG–CH–MPE-3 0.30 c 9.29 c 2.39 b

Y-XG–CH–MPE-5 1.05 d 19.27 d 3.18 c

The data present the CV coefficient of variation CV < 0.5. Different letters in the same columns express statistically
significant differences (p < 0.05).

The frequency sweep is shown in Figure 5b, portraying the response of dynamic
rheological parameters (G′andG′′ ) that provide valuable insights into the internal struc-
tures inside the prepared yogurts. In the entire mechanical spectrum, yogurt samples
showed weak gel-type behavior, since the storage modulus values were higher than the
loss modulus (G′ > G′′ ). Furthermore, there was a slight increase in both moduli when the
frequency increased, thus presenting characteristics of a cross-linked or physical gel due
to the gel formation of β-lactoglobulin disulfide interaction or hydrophobic association
formed by casein particles [86]. Then, the elastic component was predominant against
the viscous component, as previously reported throughout the LVR, and is typical for
yogurts [32,74]. This viscoelastic behavior is determined by the formation of a gel network
due to the aggregation of casein as the main structural component in yogurts, which oc-
curs during acidification caused by the metabolic process of cultures [86]. The addition
of MPE presented a slight decrease in both modules, mainly for Y-XG–CH–MPE-1 and
Y-XG–CH–MPE-3, as previously described, due to the reduction in colloidal stability and
the increase in Y-XG–CH–MPE-5 compared to the other yogurts with extracts. This was
due to the increase in polyphenol–polymer interactions, which then resulted in a reduction
in the aggregation of the casein network [9,81].
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The great importance of viscoelastic essays is to take control of processing variables
since most of these processes can affect and lead to undesirable changes in yogurt mi-
crostructure, rheology, texture, and consequently, sensory parameters [86]. Measurements
within the LVR are tested in a non-destructive mode, but in the mouth, the destruction
of the structure is irreversible, so the viscoelastic properties can suggest the initial mouth
sensation for consumers [81].

4. Conclusions

The hydroethanolic extract of mango peel exhibited high total phenolic content and
was successfully dispersed throughout the gel matrix of the chitosan–xanthan gum dis-
persions. However, it caused a noticeable color change that could potentially affect the
final color of the product if it was used in greater proportions than those used in this
investigation.

Rheological characterization revealed that the chitosan–xanthan gum dispersion dis-
played non-Newtonian fluid behavior, specifically shear-thinning. The dispersion exhibited
viscoelastic properties resembling those of a gel, with higher G′ values than G′′ values.
Furthermore, mango peel extract (MPE) demonstrated a stable interaction with the chi-
tosan/xanthan gum dispersion.

Yogurt samples enriched with MPE using chitosan–xanthan gum dispersion as a
delivery system showed increased biological value. This enhancement was attributed to
elevated levels of total phenolic compounds and a subsequent improvement in antioxidant
activity. Furthermore, the incorporation of MPE did not significantly affect the color as
a sensory parameter. However, the structure of the yogurt experienced a decrease in gel
strength due to a change in pH, which affected the colloidal properties. Consequently,
there was a decrease in viscosity and viscoelasticity, which are initial parameters that affect
texture.

The findings of this study provide an opportunity for the technological and functional
utilization of mango peel, a by-product of the fruit processing industry, to obtain functional
ingredients. Furthermore, it proposes a viable delivery system for bioactive compounds,
specifically in yogurt formulation. Yogurt, being one of the most important dairy products
with inherent functional properties, can benefit from the incorporation of mango peel
extracts, which are rich in phenolic compounds and exhibit significant antioxidant activity.
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