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Abstract: In this work, we use the Green–Kubo method to study the bulk viscosity of various dilute
gases and their mixtures. First, we study the effects of the atomic mass on the bulk viscosity of dilute
diatomic gas by estimating the bulk viscosity of four different isotopes of nitrogen gas. We then study
the effects of addition of noble gas on the bulk viscosity of dilute nitrogen gas. We consider mixtures
of nitrogen with three noble gases, viz., neon, argon, and krypton at eight different compositions
between pure nitrogen to pure noble gas. It is followed by an estimation of bulk viscosity of pure
oxygen and mixtures of nitrogen and oxygen for various compositions. In this case, three different
composition are considered, viz., 25% N2 + 75% O2, 50% N2 + 50% O2, and 78% N2 + 22% O2. The
last composition is aimed to represent the dry air. A brief review of works that study the effects of
incorporation of bulk viscosity in analysis of various flow situations has also been provided.

Keywords: bulk viscosity; molecular dynamics; Green–Kubo relations

1. Introduction

Two coefficients of viscosity, viz., shear (µ) and bulk viscosity (µb), are required to
describe the flow of an isotropic, Newtonian, and homogeneous fluid in a continuum
framework. In commonly encountered flow problems, it is sufficient to account for only the
effects of shear viscosity and ignore the bulk viscosity. Therefore, bulk viscosity is relatively
less studied as compared to shear viscosity. In fact, for several years, the existence of bulk
viscosity had been questioned [1]. However, numerous studies [2–29] in the past three
decades have been carried out on estimation of bulk viscosity, and it is now well established
that fluids possess nonzero bulk viscosity. Several studies [30–42] have also been conducted
to study the effects of accounting bulk viscosity in these flow situations, and these suggest
that this transport property may play an important role in capturing physics of several
flow situations. However, the scope and accuracy of these studies are limited by available
values of the bulk viscosity of fluids. In contrast to shear viscosity, precise and accurate
values of bulk viscosity are rarely available and typically a wide variation in the estimates
of the latter can be observed in the literature.

In this work, we first briefly review the works that focus on mechanisms responsible
for bulk viscosity effects, and then summarize a few studies on effects of bulk viscosity in
various flow problems. Then, we use the Green–Kubo method in equilibrium molecular
dynamics framework to calculate the bulk viscosity of dilute gases and their mixtures. We
first study the effects of atomic mass on the bulk viscosity of dilute gas. To this end, we
have estimated the bulk viscosity of three isotopes of nitrogen. It is followed by a study on
the effects of addition of noble gases to dilute nitrogen by calculating the bulk viscosity of
mixtures of dilute nitrogen gas and noble gases. Furthermore, we have estimated the bulk
viscosity of pure oxygen and the mixture of nitrogen and oxygen (including a particular
case of dry air).

The rest of the paper is organized as follows. A brief overview of mechanisms of bulk
viscosity from the perspective of both dilute and dense fluids is given in Section 2. Section 3
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reviews past works on importance of bulk viscosity effects in various flow situations. The
details of numerical method and molecular model are given in Section 4. The results
and corresponding discussion is provided in Section 5. Concluding remarks are made
in Section 6.

2. Mechanism of Bulk Viscosity

Bulk viscosity is a macroscopic manifestation of the microscopic relaxation phe-
nomenon. On the basis of the type of energy involved in relaxation, it can be classified into
two components. Nettleton [43] named these two components as apparent and intrinsic
bulk viscosity. Apparent bulk viscosity is related to the finite rate of energy exchange
among translational and internal degrees of freedom. Therefore, this is the primary mecha-
nism of bulk viscosity in polyatomic fluids, e.g., N2, and CO2. On the other hand, intrinsic
bulk viscosity is related to the relaxation of potential energy. This mechanism is the primary
source of bulk viscosity in dense gases and liquids.

2.1. Apparent Bulk Viscosity

This mechanism was first suggested by Herzfeld and Rice [24]. Whenever a gas
is compressed or expanded, it gains or loses energy by means of work. However, this
exchange of energy only affects the translational mode of motion. That means the rise or
fall of translational energy is instantaneous. On the other hand, the internal modes, i.e.,
rotational and vibrational modes, receive/transfers energy from/to translational mode
by means of intermolecular collisions. Hence, the energy of internal modes does not alter
instantaneously but at a finite rate. The mechanical pressure is only caused by translational
motion, whereas the thermodynamic pressure is the mechanical pressure of the system
when brought to equilibrium through an adiabatic process [44]. Since, during change
of volume, the instantaneous translational energy of the system is not same as that if
the system is adiabatically brought to equilibrium, the mechanical and thermodynamic
pressures differ. This difference between mechanical and thermodynamic pressure causes
nonzero bulk viscosity.

2.2. Intrinsic Bulk Viscosity

This mechanism was first proposed by Hall [45] in 1948. Consider a compression
of dense fluid such as liquid water. During compression, two different processes take
place. The first one is that molecules are brought uniformly closer together. It can be
called molecular compression, and it is an almost instantaneous process. The second
process is that molecules are rearranged or repacked more closely. Hall identified this
process as configurational or structural compression. This process involves the breaking
of intermolecular bonds (e.g., hydrogen bonds) [46] or flow past energy barriers, which
stabilizes the equilibrium configuration. This is a finite rate process. Thus it is of relaxational
nature and is a source of nonequilibrium. This mechanism of bulk viscosity is present in
all fluids including monatomic gases. Hence, monatomic gases at atmospheric conditions
have a small (O(10−10) Pa s) but non-zero bulk viscosity. It should also be noted that at
hypothetical dilute gas conditions, the bulk viscosity of monatomic gases is considered to
be absolute zero.

3. Applications of Bulk Viscosity

Bulk viscosity effects become important when either the ∇ · ~u is high (e.g., inside a
shock wave), or when fluid is compressed and expanded in repeated cycles such that the
cumulative effect of the small contributions from each cycle is no more negligible (e.g.,
sound wave) [47], or when the atmosphere consists of the majority of those gases, such as
CO2, which exhibit a large bulk viscosity [48], or when results of interest might get affected
by even small disturbances, e.g., the study of Rayleigh–Taylor instability [49]. In such cases,
it becomes necessary to account for the bulk viscosity terms in the Navier–Stokes equation.
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Several researchers have investigated the effects of the incorporation of bulk viscosity
in analytical or CFD studies of various flow scenarios. Emanuel et al. [48,50–52] reviewed
bulk viscosity and suggested that the effects of bulk viscosity should be accounted for in
the study of high-speed entry into planetary atmospheres. They observed that the inclusion
of bulk viscosity could significantly increase heat transfer in the hypersonic boundary
layer [48]. Chikitkin [53] studied the effects of bulk viscosity in flow past a spacecraft.
They reported that the consideration of bulk viscosity improved the agreement of velocity
profile and shock wave thickness with experiments. Shevlev [54] studied the effects of
bulk viscosity on CO2 hypersonic flow around blunt bodies. The conclusions of their study
were in line with that of Emanuel. They suggested that incorporation of bulk viscosity may
improve predictions of surface heat transfer and other flow properties in shock layer.

Elizarova et al. [55] and Claycomb et al. [56] carried out CFD simulations of normal
shock. They found that including bulk viscosity improved the agreement with experimental
observations for shock wave thickness. A recent study by Kosuge and Aoki [30] on shock–
wave structure for polyatomic gases also confirms the same. Bahmani et al. [57] studied
the effects of large bulk to shear viscosity ratio on shock boundary layer interaction. They
found that a sufficiently high bulk to shear viscosity ratio can suppress the shock-induced
flow separation. Singh and Myong [31] studied the effects of bulk viscosity in shock–vortex
interaction in monatomic and diatomic gases. They reported a substantially strengthened
enstrophy evolution in the case of diatomic gas flow. Singh et al. [32] investigated the
impact of bulk viscosity on the flow morphology of a shock-accelerated cylindrical light
bubble in diatomic and polyatomic gases. They found that the diatomic and polyatomic
gases have significantly different flow morphology than monatomic gases. They produce
larger rolled-up vortex chains, various inward jet formations, and large mixing zones
with strong, large-scale expansion. Touber [35] studied the effects of bulk viscosity in
the dissipation of energy in turbulent flows. He found that large bulk-to-shear viscosity
ratios may enhance transfers to small-scale solenoidal kinetic energy and, therefore, faster
dissipation rates. Riabov [58] questioned the ability of bulk viscosity to model spherically
expanding nitrogen flows in temperature range 10 to 1000 K by comparing results to Navier–
Stokes equations to relaxation equation. He reported that the bulk viscosity approach
predicts much thinner spherical shock wave areas than those predicted by relaxation
equations. Moreover, the distributions of rotational temperature along the radial direction
predicted by the bulk viscosity approach had neither any physical meaning nor matches
with any known experimental data for expanding nitrogen flows.

Fru et al. [59] performed direct numerical simulations (DNS) study of high turbulence
combustion of premixed methane gas. They found that the incorporation of bulk viscosity
does not impact flame structures in both laminar and turbulent flow regimes. Later, the
same group extended their study to other fuels, viz., hydrogen, and synthetic gas. In
this study [60], they found that though flame structures of methane remained unchanged
before and after incorporation of bulk viscosity, the same for hydrogen and syngas showed
noticeable modifications. Sengupta et al. [49] studied the role of bulk viscosity on Rayleigh
Taylor instability. They found that the growth of the mixing layer depends upon bulk
viscosity. Pan et al. [33] has shown that bulk viscosity effects cannot be neglected for
turbulent flows of fluids with high bulk to shear viscosity ratio. They found that bulk
viscosity increases the decay rate of turbulent kinetic energy. Boukharfane et al. [36] studied
the mechanism through which bulk viscosity affects the turbulent flow. They found that
the local and instantaneous structure of the mixing layer may vary significantly if bulk
viscosity effects are taken into account. They identified that the mean statistical quantities,
e.g., the vorticity thickness growth rate, do not get affected by bulk viscosity. On this
basis of their study, they concluded that results of refined large-eddy simulations (LES)
might show dependence on the presence/absence of bulk viscosity, but Reynolds-averaged
Navier–Stokes (RANS) simulations might not, as they are based on statistical averages.

Connor [34] studied the effects of bulk viscosity in the compressible turbulent one-,
two-, and three-dimensional Couette flows through DNS simulations. The objective of the
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study was to test whether invoking the Stokes’ hypothesis introduces significant errors
in the analysis of compressible flow of solar thermal power plants, and carbon capture
and storage (CCS) compressors. They found that most of the energy is contained in
the solenoidal velocity for both CCS and concentrated solar power plants. Therefore,
assuming bulk viscosity to be zero does not produce any significant errors, despite the
compressors operating at supersonic conditions. However, bulk viscosity effects may
become significantly close to the thermodynamic critical point.

Billet et al. [61] showed that the inclusion of bulk viscosity in CFD simulations of
supersonic combustion modifies the vorticity of the flow. Lin et al. [38,39] have shown that
acoustic wave attenuation in CFD simulations can be accounted for by incorporating bulk
viscosity. Nazari [37] studied the influence of liquid bulk viscosity on the dynamics of a
single cavitation bubble. They reported that bulk viscosity significantly affects the collapse
phase of the bubble at high ultrasonic amplitudes and high viscosities. High bulk viscosity
values also altered the maximum pressure value inside the bubble.

In all of these applications and beyond, precise values of bulk viscosity are needed.
However, in contrast to shear viscosity, which is a well studied subject, neither the nature
of the bulk viscosity is well understood, nor widely accepted values of bulk viscosity are
available even for common gases, such as nitrogen, oxygen, and air. To this end, the present
work aims to fill some of this research gap by calculating bulk viscosity of dilute gases and
their mixtures through a molecular dynamics approach.

4. Molecular Model and Simulation Details

In the present work, we have performed molecular dynamics (MD) simulations and
applied the Green–Kubo formulation to calculate viscosity coefficients. A brief review of
the Green–Kubo method and corresponding simulation details are discussed in follow-
ing paragraphs.

4.1. Green–Kubo Method

There have been several methods proposed in the literature for the estimation of bulk
viscosity. A brief survey of these methods can be found in Refs. [11,12]. In our previous
publications [11,12], we have systematically studied two simulation methods to estimate
bulk viscosity, viz., nonequilibrium molecular dynamics (NEMD) based continuous expan-
sion/compression method and equilibrium molecular dynamics (EMD)-based Green–Kubo
method. It was established that both the methods predict accurate bulk viscosity values;
however, the Green–Kubo method requires less computational resources [12]. Therefore, the
same has been used in this present study to investigate the nature and quantitative value of
the bulk viscosity of dilute gases and their mixtures. This method is based on Green–Kubo
relations [Equations (1) and (2)], which are derived from fluctuation-dissipation theorem
and express viscosity coefficients in terms of the integral of auto-correlation functions of
components of pressure tensor.

µ = lim
t→∞

V
kBT

∫ t

0
〈Pij(t′) Pij(0)〉dt′ (1)

µb = lim
t→∞

V
kBT

∫ t

0
〈δP(t′) δP(0)〉dt′ (2)

Here, kB is the Boltzmann constant, V is volume, T is temperature, Pij(t′) is the
instantaneous value of ijth off-diagonal element of the pressure tensor at a time t′, and
the angle bracket represents the ensemble average. In the Equation (2), the P(t′) is an
instantaneous value of the average of three diagonal terms of pressure tensor at a time
t′, i.e., P(t′) = 1

3 [Pii(t′) + Pjj(t′) + Pkk(t′)]. The fluctuations, δP(t′), is deviation of mean
pressure from equilibrium pressure, i.e., δP(t′) = P(t′) − Peq; where Peq is equilibrium
pressure of the system, and it is calculated by time average of P(t′) over a long time.
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4.2. Molecular Model

In the present work, all the molecules are modeled using standard 12–6 Lennard–Jones
potential, V, given as follows:

V(rij) =

4ε

[(
σ
rij

)12
−
(

σ
rij

)6
]

, if rij < rcut-off

0 if rij > rcut-off

(3)

where, rij is the interatomic distance between atom i and atom j, and σ and ε are the
Lennard–Jones parameters. In the present work, we have simulated nitrogen, neon, argon,
krypton, and oxygen gases. The details of σ and ε used for nitrogen, neon, argon, and
krypton are given in Table 1. For oxygen, we have evaluated eight molecular potentials
available in the literature and then used one of them for final calculations. The details of
these potentials are given in Table 2. In order to model the interatomic interaction between
unlike molecules, the Lorentz–Berthelot combination rule given by Equations (4) and (5) is
used [4].

σ12 =
1
2
(σ11 + σ22) (4)

ε12 =
√

ε11 ε22 (5)

To perform MD simulations, a cubical simulation box with periodic boundaries is
generated. In the initialization step, 200 molecules of the desired gas are randomly placed
in the domain and given initial velocities sampled from the equilibrium Boltzmann distribu-
tion corresponding to the target temperature. After initialization, the system is equilibrated
first in canonical and then in the microcanonical ensemble for 104 and 106 time steps, re-
spectively. Finally, the production run is performed for 3× 108 time steps in microcanonical
ensemble. A time step size of 1 fs is used, and time integration is performed using the
standard velocity-Verlet algorithm.

To calculate viscosity values accurately, the time-decomposition scheme by Zhang
et al. [62] is used in the Green–Kubo framework. In this approach, the autocorrelation func-
tion required for the Green–Kubo method is calculated from the average of 120 trajectories,
each of which is 300 ns in length. Each of these trajectories is initialized with macroscopically
same but different microscopic state. These trajectories differed from each other in terms of
the random number seed used for sampling of initial velocities from equilibrium Boltzmann
distribution in the initialization step. Random number seeds used for sampling the initial
velocities of the molecules are 777001, 777002, 777003, . . . , 777120. Rigid rotor approximation
is applied everywhere except stated otherwise.

The open-source molecular dynamics simulation software LAMMPS [63] has been
used for performing molecular dynamics simulations. The open-source plotting software
VEUSZ [64] has been used for plotting graphs.

Table 1. Molecular models for nitrogen and noble gases.

Gas Source ε/kB [K] σ [Å] Bond-Length [Å]

Nitrogen Tokumasu et al. [65] 47.202 3.17 1.098

Neon Vrabec et al. [4] 33.921 2.8010 –

Argon Vrabec et al. [4] 116.79 3.3952 –

Krypton Vrabec et al. [4] 162.58 3.6274 –
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Table 2. Molecular models for oxygen gas.

Source ε/kB [K] σ [Å] Bond-Length [Å]

CHARM [66] 60.389 3.029 1.208
CHARM-2 [66] 60.389 3.029 1.12

Javananien et al. [67] 48.458 3.13 1.016
Bouanich et al. [68] 52.583 3.0058 1.21
Cordeiro et al. [69] 35.0 2.6 1.21
Fishcher et al. [70] 43.659 3.09 1.016
Porrini et al. [71] 52.331 2.96 1.12
Victor et al. [72] 67.0 3.57 1.214

5. Results and Discussion
5.1. Effect of Atomic Mass: Bulk Viscosity of Isotopes of N2

Bulk viscosity in dilute nitrogen gas at temperatures less than 800 K is primarily due
to the finite rate of energy exchange between translational and rotational modes. The
ease of rotation of a molecule depends on the moment of inertia, and hence, on the mass
of constitutive atoms and their distribution in the molecule. Therefore, it is expected
that different isotopes would show different values of bulk viscosity, even though their
interaction with neighboring molecules remains the same. To study this dependency
of bulk viscosity on the mass of nuclei, we have calculated the bulk viscosity of four
isotopes of nitrogen molecule. In the first three molecules, both the nitrogen atoms have
the same atomic mass, viz., 13.0057, 14.0067, and 15.0001, for three molecules. In the
fourth molecule, the two nitrogen atoms have different atomic masses, i.e., 13.0057 and
14.0067. For each of these molecules, both shear and bulk viscosities are calculated at 1 bar
at four different temperatures. Figure 1a,b plot the variation of obtained viscosity values
against temperature and compare them with the available experimental data for 14

7 N from
Refs. [15,19,20,73].

m1, m2 = 15.0001 u
m1, m2 = 14.0067 u
m1, m2 = 13.0057 u
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m2 = 14.0067 u
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Figure 1. Bulk and shear viscosity of different isotopes of nitrogen gas. Here, m1 and m2 are masses
of two atoms of the nitrogen molecule [15,19,20,73].

From Figure 1b, it can be observed that for the first group, where both the nuclei
have the same atomic mass, bulk viscosity increases with an increase in moment of inertia
(see Table 3). A possible explanation for this behavior could be that an increase in atomic
mass increases the moment of inertia, making any change in rotational energy/velocity
more difficult. Therefore, translational to rotational and rotational to translational energy
exchange is slowed down. Furthermore, the bulk viscosity of isotope with heterogeneous
nuclei is found to be smaller than the homogeneous ones. The probable reason is the fact
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that heterogeneous mass distribution causes shifting of the center of mass, which makes
rotation easier.

Table 3. Moment of inertia of molecules considered in Figure 1b.

m1 [u] m2 [u] I [u-Å2]

13.0057 13.0057 7.83986197

14.0067 14.0067 8.44326677

15.0001 15.0001 9.04209028

13.0057 14.0067 8.17510498

5.2. Bulk Viscosity of Mixture of Nitrogen with Noble Gas

In the process of understanding the effects of impurity (i.e., addition of another gas)
on bulk viscosity of dilute gases, a simplest mixture would be a mixture of a diatomic and
monatomic gas; as the dilute monatomic gases do not have rotational or vibrational degrees
of freedom, their mixture would also show negligible bulk viscosity. In this work, we have
estimated the bulk viscosity of mixtures of dilute nitrogen gas and three noble gases, i.e.,
neon, argon, and xenon. For each combination, bulk viscosity values were calculated at
300, 450, 600, and 750 K for thirteen different compositions, viz., 0, 5, 10, 20, 30, 40, 50, 60,
70, 80, 90, 95, and 100%. Figure 2 shows the obtained results. It can be observed that the
bulk viscosity increases with temperature. It can also be observed that the small amount
(<5%) of impurity of noble gas does not alter bulk viscosity value significantly. However,
a small amount (5%) of nitrogen in 95% noble gas does make a noticeable increase in the
bulk viscosity of mixture.
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Figure 2. Bulk viscosity of different compositions of mixture of nitrogen (N2) and noble gases (X).
(a) N2 + Ne (b) N2 + Kr (c) N2 + Ar.
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5.3. Bulk Viscosity of O2

Oxygen is the second-largest constituent (21%) of earth atmosphere after nitrogen
(78%). Therefore, it becomes important to understand the nature of bulk viscosity of this
gas before we study the bulk viscosity of mixture of oxygen and nitrogen. There are
several atom–atom models available for modeling oxygen molecule in molecular dynamics
simulations. Here, we have considered eight models and calculated their shear and bulk
viscosities. The details of these models, e.g., σ and ε, are given in Table 2. Figures 3a,b show
the results obtained for shear and bulk viscosity respectively and their comparison with
the available experimental data of Refs. [73–77]. A close inspection of these figures shows
that none of the models reproduces both shear and bulk viscosity values agreeing with
experimental data simultaneously. The models by Bouanich et al. [68] and Fischer et al. [70]
gives shear viscosity in close agreement to that of NIST [73] data but fails to reproduce bulk
viscosity values well. On the other hand, CHARM-2 [66] produces both the bulk viscosity
and slope of the curve in agreement with that reported by Brau and Jonkman [76] in their
experimental study. However, their shear viscosity values show a clear deviation from that
of NIST data. Out of all these models, the model by Javananien [67] is the only model that
gives bulk viscosity matching with experiments in the complete range of 300 to 600 K. The
deviation of shear viscosity predicted by this model is also small. Therefore, we have used
this molecular model of oxygen gas for further study of the estimation of bulk viscosity of
a mixture of nitrogen and oxygen gas.
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Figure 3. Shear and bulk viscosity of O2 calculated using different potentials [67–77].

5.4. Bulk Viscosity of N2 + O2 Mixture

Once we have optimum molecular models for both nitrogen and oxygen gases that
produce both shear and bulk viscosities reasonably well, we use these models to study the
mixture of nitrogen and oxygen gases. We calculate the bulk viscosity of this mixture at three
different compositions, i.e., 25% N2 + 75% O2, 50% N2 + 50% O2, and 78% N2 + 22 % O2.
The last composition is chosen such that it approximates the dry air. Figures 4a,b show the
results obtained for shear and bulk viscosity of these mixtures [78]. It can be observed that
the both the shear and bulk viscosity values vary linearly in the investigated temperature
regime. Furthermore, for dry air, these estimates give bulk to shear viscosity ratio (µb/µ)
between 0.6 to 0.8, as shown in Figure 5. Figure 5 also shows that the obtained µb/µ ratio
shows reasonably good agreement with previously reported values [23,79], especially those
reported in the recent 2021 study by Ma et al. [23]. It should be noted that the experimental
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bulk viscosity data given in Ref. [80] was calculated at pressure greater than 3 bar, whereas,
in the present work simulations are performed at pressure 1 bar. The reported results on
bulk viscosity are especially useful in simulations of high Mach number flow of air in
earth atmosphere, where bulk viscosity effects cannot be neglected. Finally, it should also
be noted that transport properties of mixtures are directly affected by the intermolecular
interaction potential. Here, to obtain viscosity values, we have approximated the interaction
between nitrogen and oxygen atoms using the Lorentz–Berthelot mixing rule. For an
accurate estimation of viscosity values, potentials obtained through ab-initio calculations
should be used.
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Figure 4. Bulk and shear viscosity of N2 and O2 mixture at various compositions [78].
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6. Conclusions

In this paper, we have studied the bulk viscosity of various gases and their mixtures,
viz., isotopes of N2; mixture of nitrogen with noble gases, i.e., N2+Ne, N2+Ar, N2+Kr;
pure O2; mixture of N2 and O2; and mixture of N2 + H2O gas mixtures. In the study
of isotopes of nitrogen gas, it was observed that the bulk viscosity of gas increases with
an increase in molecular mass, if the other molecule parameters, i.e., bond length and
interaction parameters, are kept the same. However, bulk viscosity decreases if the total
mass is kept constant but distributed nonuniformly among two constituent atoms of the
diatomic nitrogen molecule. In the study of bulk viscosity of mixtures of nitrogen with
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noble gases, it was observed that a small amount (5%) of impurity of noble gas does not
alter bulk viscosity significantly, and bulk viscosity of 95% N2 + 5% noble-gas mixture
remained almost same as pure nitrogen. In contrast, a small amount (5%) of nitrogen in
95% noble gas makes a noticeable increase in the bulk viscosity of the mixture compared to
the zero bulk viscosity of pure noble gases. Next, we reported the bulk viscosity of pure
oxygen and mixtures of nitrogen and oxygen. Both nitrogen and oxygen were found to
have almost similar values of bulk viscosity. Three different composition were considered,
viz., 25% N2 + 75% O2, 50% N2 + 50% O2, and 78% N2 + 22 % O2.

Future works can aim to study the effect of humidity on bulk viscosity of nitrogen
gas. This would require accurate modeling of vibrational levels accurately. However, it
is not straightforward to simulate vibrational levels accurately in the classical molecular
dynamics framework, as vibrational energy levels are quantized. Most of the potentials,
such as Morse and harmonic potentials, treat vibrational levels in a continuous fashion. The
present study is performed using classical molecular dynamics, and therefore, is limited
to the calculation of bulk viscosity due to rotational relaxation only. The obtained bulk
viscosity values can be directly applied to CFD simulations of moderate-temperature fluid
flows, wherein the vibrational energy modes can be expected to play a negligible role.
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