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Abstract: In this paper, we study the simple shear flows of a class of dilatant fluids with a limited shear
rate. This class of fluids is characterized by shear thickening behavior in which the apparent viscosity
tends to infinity as the modulus of the stress approaches a finite threshold. The apparent viscosity
function is a logarithmic type with two material parameters. We considered this specific form because
it fits very well with the flow curves of some granular suspensions for specific values of the material
parameters. Despite the nonlinearity of the constitutive law, it is possible to determine explicit
steady-state solutions for a simple shear flow, namely (i) the channel flow; (ii) the flow between
coaxial cylinders, and (iii) the flow down an inclined plane. We performed a two-dimensional linear
stability analysis to investigate the onset of possible instabilities of the steady basic flow, putting into
evidence the dependency of the critical Reynolds number on the material parameters.

Keywords: shear thickening fluid; simple shear flow; steady-state solution; linear stability analysis

1. Introduction

Shear thickening (or dilatant) fluids are part of a special class of non-Newtonian fluids
in which the viscosity increases with the shear rate. One of the first investigations on
shear-thickening fluids is probably the one by Metzner and Whitlock [1] who studied a
suspension of titanium dioxide (TiO2) particles in water. They showed that the relation
between the shear stress and the shear rate is nonlinear with the apparent viscosity that
grows with the increasing shear rate. For the elevated TiO2 volume fraction, the stress
curve appears to almost diverge as the shear rate increases. The most dramatic scenario
of this type of behavior is that of discontinuous shear thickening (DST), where viscosity
becomes infinite for a finite value of the shear rate and the material goes from fluid-like to
solid-like, see [2–4].

In the recent past, many works have investigated the nature of shear-thickening and
DST fluids, see [5–8]. In particular, the crucial effects of frictional contact forces (in the
framework of jamming transition) on the shear-thickening behaviors of the fluid have been
observed. As observed in [9], the scale of the stress (where the stress–shear rate constitutive
law starts to show large growth) can be attributed to the interfacial tension forces, which
increase abruptly due to the dramatic constraint of jamming.

In general, dense mixtures of granules and liquids behave as dilatant fluids, a classical
example being cornstarch and water. Some fluids, such as high-concentration suspensions,
insoluble polymer systems, clay, and quicksand display shear-thickening behaviors [10].
Although a large majority of fluids exhibit pseudo-plastic (or shear-thinning) behaviors [11],
shear-thickening fluids are also ubiquitous in a variety of practical applications, from
damping devices to machine mounts, as well as in the manufacturing of body armor [12],
where the shear-thickening properties are exploited to dampen the impacts of a bullet.

Regarding the counterintuitive behaviors of dilatant fluids, one can search the web
for a video of one running on a pool filled with cornstarch and water as if it was an actual
rigid surface, but sinking into it when walking or standing still. At the microscopic level,
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experiments have shown that dense suspensions are basically frictionless for low confining
pressure, while the transition from low to high friction occurs with normal stress near the
critical stress, see [13].

The constitutive law of a shear-thickening fluid is commonly represented by a function
in which the shear stress is expressed as a function of the shear rate and in which the first
derivative of that function increases with the shear rate. The most common example is that
of power law dilatant fluids, where the apparent viscosity is a given positive power of the
shear rate modulus. In the latter model, any arbitrarily large value of the shear rate can be
attained if a sufficiently large shear stress is applied (the strain is not limited). This type of
model is not appropriate when one considers a dilatant fluid in which the flow behavior is
similar to that of a discontinuous shear-thickening fluid. In this case, we may consider a
constitutive law in which there is a critical value to which the shear rate tends when the
stress becomes infinite (limited strain model), see [4,14].

A very basic limited strain model is the one considered in [4] for a system formed by a
mass, a dashpot, and an inextensible string; see Figure 1a. If the string is not completely
extended, the response of the system is that of a Newtonian fluid, but when the string
becomes fully extended, the response is that of a rigid body (the applied force produces no
deformation). The constitutive relation is, thus, the one shown in Figure 1b, which can be
seen as the “dual” of the Bingham constitutive law (the fluid flow only if the applied stress
is below a certain threshold). The one-dimensional unsteady channel flow of a fluid with
the constitutive law, as shown in Figure 1b, was studied in [4].

dashpost

inextensible
string

mass

force

sh
ea
rs
tre
ss

shear rate

(a) (b)

Figure 1. String-dashpot system (a) and constitutive law (b).

Let us suppose that the fluid is incompressible so that the Cauchy stress tensor can be
written (in the paper, the starred quantities are always dimensional) as T∗ = −p∗I + S∗,
where p∗ is the Lagrange multiplier due to the incompressibility constraint and S∗ is the
deviatoric part of the stress. The constitutive equation for a Newtonian fluid with a limited
shear rate can be seen in [4,14].

S∗ = 2µ∗D∗, | S∗ |6 τ∗c ,

| D∗ |= d∗c , | S∗ |> τ∗c ,
(1)

where µ∗ is the viscosity ([µ∗] = Pa·s), τ∗c is the critical shear stress ([τ∗c ] = Pa), and d∗c is
the critical shear rate ([d∗c ] = s−1). The quantities

| S∗ |=
[

1
2

S∗ · S∗
]1/2

, | D∗ |=
[

1
2

D∗ ·D∗
]1/2

,

represent the norm of the deviatoric part of the stress S∗ and the symmetric part of the
velocity gradient D∗, respectively. Looking at Figure 1b, it is evident that if we plot | S∗ |
vs. | D∗ |, we obtain a graph (the stress is not determinate for | D∗ |= d∗c ); hence, it is more
natural to express | D∗ | vs. | S∗ |, so that the relation is an actual function (see [15] for a
discussion on the material defined by implicit constitutive equations).



Fluids 2023, 8, 25 3 of 20

Relation (1) has a singularity in the first derivative at (d∗c , τ∗c ), which can be smoothed
if one takes, for instance,

S∗ = 2µ∗eff(| D∗ |)D∗, (2)

where the effective viscosity is given by

µ∗eff(ξ
∗) =

1
2ξ∗a∗

ln
(

b∗

b∗ − 2ξ∗

)
. (3)

The constitutive relation (2), (3) was selected because it fits the experimental flow
curves of dense suspensions, see [1,16].

In Figure 2, we plotted the relation (2), taking the norms on both sides. We normalized
| S∗ |with 1/(2a∗) and | D∗ |with b∗/2. The parameter a∗ has the dimension of the inverse
of the pressure, while the dimension of b∗ is that of a shear rate. In Figure 3, we plot the
effective viscosities (3) for some values of a∗ and with b∗ = 18 s−1. The ranges for these
values are consistent with the experimental data of [16]. We notice that for sufficiently large
values of a∗, the constitutive behavior of the fluid is similar to that of an inviscid fluid (the
effective viscosity is nearly zero almost everywhere in the range (0, b∗)) except for a small
boundary layer near the critical value b∗, where the viscosity becomes arbitrarily large
(rigid body behavior). The behaviors of the fluids for small values of | D∗ | are similar to
those of Newtonian fluids with constant viscosity

lim
ξ∗→0

µ∗eff(ξ
∗) =

1
a∗b∗

.

Hence, parameters a∗ and b∗ determine the “almost constant” viscosity of the fluid for
small shear rates, whereas b∗/2 is the limiting value for the shear rate.

Figure 2. Constitutive law (2) in which the shear rate is normalized with b∗/2 and the shear stress
with 1/2a∗.

The behaviors of parameters a∗ and b∗ with the particle concentration φ are related
to the shear-thickening effects due to the particle concentrations. From [1,16], it is evident
that the parameter b∗ is a decreasing function of φ. This is physically consistent since the
limiting shear rate increases if the particle’s volume fraction decreases because the frictional
effects between particles become less pronounced. The same is true for a∗ as the apparent
viscosity (which is proportional to 1/a∗) must decrease as the volume fraction decreases.
The exact dependencies of the parameters a∗ and b∗ on φ will surely involve some material
constants that take into account the particular suspension considered. The definition of
such a dependency is beyond the scope of this paper and certainly would require more
experimental data.
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The constitutive law (3) does not take into account the possibility that the slope
of the constitutive curve may start to decrease after a certain value of the shear stress.
In practice, it does not allow one to consider the S-shaped behavior exhibited by the
suspension. Here, we are only interested in the range of stresses for which the slope
of the shear stress shear rate curve is monotonically increasing and tends to be infinite,
such as the ones of [1,16].

Figure 3. Plot of the effective viscosity µ∗eff given in (3) as a function of the shear rate 2ξ∗ for different
values of a∗ and b∗ = 18 s−1. The values of these parameters are taken from [16].

In this work, we consider the responses of types (2) and (3) since we have seen that they
describe quite well the experimental flow curves of some dense suspensions. In particular,
we consider Figures 4 and 5, in which a∗ and b∗ are selected to fit the experimental curves of
two types of suspensions, namely a 47% TiO2 suspension in Figure 4 and a 50% cornstarch
suspension in Figure 5. The experimental data in Figures 4 and 5 are taken from [1,16]
respectively. This paper is devoted to the study of some simple shear flow of fluid with
a constitutive law of types (2) and (3). In particular, we focus on three types of flow, i.e.,
(i) planar channel flow; (ii) the flow between coaxial cylinders; and (iii) the flow down
an inclined plane. Despite the nonlinearity of (3), we shall see that in all geometrical
settings considered in this paper, it is always possible to determine an analytical steady-
state solution. For each problem, the flow equations are scaled appropriately so that the
velocity field can be expressed in terms of the Reynolds number and other non-dimensional
material (i.e., not depending on the flow) parameters. Because of the boundedness of the
shear rate, in some geometrical settings, the Reynolds number happens to be bounded,
meaning that the range of velocities that can be attained by increasing the force that drives
the motion is limited. This is consistent with the shear thickening and limited strain nature
of the fluid, where friction forces between layers (viscosity) grow with the shear stress,
preventing the velocity from increasing unboundedly. Models of types (2) and (3) are
useful because one can explicitly determine the velocity and stress profiles in the simple
flow, but also because they allow approximating the DST models by avoiding the intrinsic
singularities in the constitutive equations.

In addition to determining the steady-state solutions of the basic flow, we performed
a modal stability analysis to investigate the onset of possible instabilities. In the flow
considered here, the critical Reynolds number is an increasing function of both a∗ and b∗.
Looking at Figure 3, we may explain this behavior by observing that the increase of a∗ (this
is also true for the increase of b∗) results in the formation of boundary layers with high
viscosity near the rigid walls that tend to stabilize the flow. This type of behavior has also
been put into evidence in a recent paper [17] for the stress power-law fluids.
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The paper is organized as follows. In Section 2, we derive the mathematical formu-
lation of the problem and focus on (i) planar channel flow; (ii) the flow between coaxial
cylinders; and (iii) the flow down an inclined plane. In Section 3, we perform the linear
stability analysis for the above-mentioned simple flow. The last section is devoted to
conclusions and perspectives.

Figure 4. Flow curve (shear stress vs. shear rate) for TiO2 suspension (47%), see Figure 2 in [1].
Experimental data (stars) and fitting curve (continuous). Fitting parameters a∗ = 1.5 (ft2/lbr),
b∗ = 102 s−1.

Figure 5. Flow curve (shear stress vs. shear rate) for the cornstarch suspension (50%), see Figure 1
in [16]. Experimental data (stars) and fitting curve (continuous). Fitting parameters a∗ = 0.2 (Pa−1),
b∗ = 18 s−1.

2. The Mathematical Model

Let us consider the following constitutive equation

T∗ = −p∗I + S∗, S∗ = 2µ∗eff(| D∗ |)D∗, (4)

µ∗eff(| D∗ |) = 1
2 | D∗ | a∗

ln
(

b∗

b∗ − 2 | D∗ |

)
, (5)

and let us rescale the dimensional variables with

x∗ = L∗x, t∗ = (L∗U∗
−1
)t, (6)

p∗ = Π∗p, S∗ = a∗−1S, D∗ = (U∗L∗
−1
)D. (7)
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Introducing the quantities b = L∗b∗U∗
−1

and Π = Π∗a∗, we write the non-dimensional
mass and momentum balance (neglecting body forces) as

div v = 0,

Rev̇ = −Π∇p + div(S),
(8)

where Re = ρ∗U∗
2
a∗ is the Reynolds number. The non-dimensional constitutive equation

becomes:

S =

[
1

2 | D | ln
(

b
b− 2 | D |

)]
︸ ︷︷ ︸

=µeff

2D. (9)

We notice that b and Re are related by

b =
Γ√
Re

, Γ = L∗b∗
√

ρ∗a∗ (10)

where Γ is a non-dimensional material parameter (it does not depend on the flow). From [1,16],
we know that typically Γ = O(10).

2.1. Channel Flow Driven by a Pressure Gradient

Let us consider problems (8) and (9) for a fluid flowing in a planar channel of length L∗

and constant width 2H∗ driven by a pressure gradient ∆p∗ = p∗in− p∗out > 0. For simplicity,
here we assume that H∗ = L∗, but minor changes allow one to consider the cases in which
they are different. In this situation, it is natural to select Π∗ = ∆p∗ and Π = ∆p∗a∗. We
look for a stationary solution of problem (8) in the form v = u(y)i, p = p(x, y), so that the
incompressibility constraint div v = 0 is automatically satisfied. The problem becomes

0 = −Π
∂p
∂x

+
∂S12

∂y
,

∂p
∂y

= 0.

(11)

We immediately realize that

∂p
∂x

= −1, | D |=
| uy |

2
, S12 = sign

(
uy
)

ln
(

b
b− | uy |

)
. (12)

Integrating (11)1 and exploiting (12), we find

∂u
∂y

= −sign
(
uy
)
b
[
1− exp

(
−Π | y |

)]
. (13)

Integrating once more with the no-slip boundary conditions u(±1) = 0, we have

u(y) = b
[

1− | y | − 1
Π

(
exp(−Π | y |)− exp(−Π)

)]
, (14)

which provides the velocity profile in the whole domain. We may select the characteristic
velocity U∗ so that the velocity of the fluid in the centerline is 1. Imposing u(0) = 1, we
find

b =
Π

Π− 1 + e−Π ⇐⇒ Π =
b

b− 1
+W

[
b

1− b
exp

(
b

1− b

)]
, (15)
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whereW(z) is the zero branch of the Lambert function, see [18]. Relation (15)1 is equivalent
to setting

U∗ = L∗b∗
[

∆p∗a∗ − 1 + exp(−∆p∗a∗)
∆p∗a∗

]
. (16)

As one can easily realize, the increase of the pressure drop ∆p∗ is equivalent to the
increase in the characteristic velocity U∗, but since the shear rate is limited, the velocity U∗

is bounded from above (it cannot become arbitrarily large). Indeed, for ∆p∗ ∈ (0, ∞), we
have U∗ ∈ (0, L∗b∗), so that b > 1, no matter how strong the applied pressure drop ∆p∗ is.
We notice that

U∗ =

√
Re

ρ∗a∗
, ⇒ b =

L∗b∗
√

ρ∗a∗√
Re

=
Γ√
Re

> 1. (17)

From the inequality in (17), we realize that the Reynolds number is bounded for this
type of flow since from relation (16), the velocity U∗ ∈ (0, L∗b∗). In particular, Re ∈ (0, Γ2)
and b = b(Re) are functions of the Reynolds number. Inserting (15)1 into (14), and rear-
ranging, we finally find the velocity field expressed in terms of the Reynolds number

u(y) =

[
1− Π | y | −1 + e−Π|y|

Π− 1 + e−Π

]
,

Π =
b

b− 1
+W

[
b

1− b
exp

(
b

1− b

)]
, b =

Γ√
Re

, Re ∈ (0, Γ2).

(18)

In Figure 6, we show the velocity profile (18) for Re < Γ2, with Γ = 15. We observe
that the velocity profile assumes a wedge-like shape as Re approaches the limit value Γ2.

Re

Re

Re

Re

Figure 6. Velocity profiles (18) for various Re < Γ2, Γ = 15.

We observe that

Re = ρ∗a∗L∗
2
b∗

2︸ ︷︷ ︸
=Γ2

[
∆p∗a∗ − 1 + exp(−∆p∗a∗)

∆p∗a∗

]
︸ ︷︷ ︸

<1

< Γ2

Hence, Re is a monotonically increasing function of a∗. This is physically consistent since
an increase in the value of a∗ means a decrease in the apparent viscosity, i.e., less resistance
to the flow and, hence, a larger value of Re, which is always bounded by Γ2. Notice that Γ2

is a function of a∗. Hence, if a∗ increases, Γ2 also increases. For the other types of flow that
will be studied in the next sections, we can make analogous considerations.
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2.2. Flow between Coaxial Cylinder

In this section, we consider the flow between coaxial cylinders with inner and outer
radii R∗1 and R∗2 , respectively. Without loss of generality, we may assume that the inner
cylinder is fixed whereas the outer cylinder rotates anticlockwise with angular velocity Ω∗2 .
Distance is scaled with R∗2 , velocity is rescaled with Ω∗2 R∗2 , and pressure is rescaled with
a∗
−1

. Exploiting cylindrical coordinates, we look for a steady solution of the type:

v = u(r)eθ , p = p(r). (19)

The only non-zero component of the deviatoric stress tensor is Srθ . Introducing the
angular velocity ω(r) = u(r)/r, it is easy to see that

| D |= 1
2
| rω′ |= r

2
ω′, (20)

where ′ = d/dr and where ω′ > 0, since the non-dimensional angular velocity w must
be an increasing function of r ranging between 0 (inner cylinder) and 1 (outer cylinder).
Therefore,

Srθ = ln
(

b
b− rω′

)
. (21)

The mass balance is automatically satisfied, while the momentum balance is reduced
to 

−Reu2

r
= −∂p

∂r

0 =
[
r2Srθ

]′
=

[
r2 ln

(
b

b− rω′

)]′
.

(22)

Integrating the second of (22), we find

ω′(r) = b

[
1− e−c/r2

r

]
, (23)

with c being a positive constant to be determined. Integrating between R1 = R∗1/R∗2 < 1
and 1, we find (recall ω(R1) = 0 and ω(1) = 1)∫ 1

R1

ω′(r)dr = 1 = b
[
− ln R1 −

1
2

(
E1(c)− E1(c/R2

1)
)]

, (24)

where

E1(ξ) =
∫ ∞

ξ

e−z

z
dz,

is the exponential integral. Equation (24) allows one to determine the constant c. Indeed let
us rewrite (24) as

γ(c; R1) = − ln R1 −
1
2

∫ c/R2
1

c

e−z

z
dz =

1
b

. (25)

The integrand function can be rewritten as

e−z

z
=

1
z
+

∞

∑
n=1

(−1)nzn−1

n!
, (26)

so that

− 1
2

∫ c/R2
1

c

e−z

z
dz ≈ ln(R1)−

∞

∑
n=1

(−1)n

2n!n

[
cn −

(
c

R2
1

)n]
. (27)
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Hence, limc→0 γ(c; R1) = 0 and since

1
c
>

1
z
>

R2
1

c
,

we obtain ∫ c/R2
1

c

e−z

z
dz 6

1
c

[
e−c − e−c/R2

1

]
︸ ︷︷ ︸

>0

→ 0, if c→ ∞. (28)

Therefore, limc→∞ γ(c; R1) = − ln R1 > 0. Finally, we observe that ∂γ/∂c > 0, so that
γ is a positive strictly increasing function of c bounded between 0 and − ln R1 > 0. The
existence of a solution to (24) (or equivalently (25)) is, thus, guaranteed if b−1 ∈ (0,− ln R1),
i.e., if

Ω∗2 < b∗ ln
(

R∗2
R∗1

)
. (29)

Recalling that Re = ρ∗(Ω∗2 R∗2)
2a∗, we see that the existence of the solution is guaran-

teed if √
Re < b∗R∗2

√
ρ∗a∗ ln

(
R∗2
R∗1

)
= Γ ln

(
R∗2
R∗1

)
= −Γ ln(R1). (30)

In conclusion, the Reynolds number is limited for this type of flow. Once c is deter-
mined, the solution to the problem becomes

ω(r) =
Γ√
Re

[
ln
(

r
R1

)
− 1

2

(
E1

( c
r2

)
− E1

(
c

R2
1

))]
, (31)

where c is the unique solution of (24). From (23), we see that rω′ < b, so the stress Srθ

in (21) is well-defined. In Figure 7, we show the angular velocities ω(r) for different values
of Re with Γ = 15, R1 = 0.1, and with Re, satisfying (30).

Re

Re

Re

Re

Figure 7. Angular velocity (31) for various Re < Γ2, Γ = 15, R1 = 0.1.

2.3. Flow down an Inclined Plane

In this section, we focus on the flow down an inclined plane whose tilt angle with the
horizontal direction is θ. We assume that the flow is uniform in the z∗ direction so that
v∗ = (u∗(x∗, y∗), v∗(x∗, y∗)), and we denote with y∗ = h∗(x∗, t∗) the upper free surface.
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We take a reference system {O, x∗, y∗}, where the x∗ axis represents the bottom plane and
y∗ its normal direction. Rescaling as in the previous section, and assuming that the flow is
driven by gravity, the motion equation is

Rev̇ = −∇p + div(S) +
Re

Fr2

(
sin θi− cos θj

)
,

where
Fr =

U∗√
g∗L∗

is the Froude number. We suppose that the fluid is surrounded by a motionless ambient
gas so that, neglecting the surface tension on h∗(x∗, t∗), we can write the non-dimensional
free boundary conditions as

h2
x
(

p− S11
)
+ 2hxS12 +

(
p− S22

)(
1 + h2

x
) = 0, on y = h, (32)

S12
(
h2

x − 1
)
+
(
S11 − S22

)
hx = 0, on y = h, (33)

v = hxu + ht, on y = h. (34)

The first two relations express the continuity of the normal and tangential stresses,
respectively (dynamic conditions), while the last is a consequence of the fact that h(x, t) is a
material surface (kinematic condition). We look for a solution of the types v = u(y)i and
h = const, so that S12 = S12(y), S11 = S22 = 0 and

0 = −∂p
∂x

+
∂S12

∂y
+ λ sin θ,

0 = −∂p
∂y
− λ cos θ, λ =

Re

Fr2
= ρ∗g∗L∗a∗.

(35)

The constant λ is a material parameter. The dynamic boundary conditions for the
stress reduce to p = 0 (the external pressure is rescaled to zero), S12 = 0 on y = h, while
the kinematic boundary condition is automatically satisfied. The no-slip conditions on the
bottom plane are u = 0 and 2 | D |= uy > 0. Integration of linear momentum yields

p = λ cos θ
(
h− y

)
, S12 = ln

(
b

b− uy

)
= δ

(
h− y

)
. (36)

where δ = λ sin θ > 0. After some calculation, we find

uy = b
[
1− e−δ(h−y)

]
< b, (37)

and

u(y) = b

[
y− e−δ(h−y) − e−δh

δ

]
(38)

The thickness h of the fluid is unknown and can be determined by imposing the
inlet non-dimensional flux Q = Q∗/(U∗H∗), where Q∗ is the dimensional discharge.
Exploiting (38), we have

Q =
∫ h

0
u(y)dy = b

[
h2

2
− 1− e−δh(1 + δh)

δ2

]
(39)
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Hence, Q = Q(h) with Q(0) = 0, Q(∞) = ∞, Q′ = h(1− e−δh) > 0. As a consequence,
for any positive given Q, there exists a unique h, satisfying (39). We may select U∗, so
that the maximum velocity, which is attained at y = h, is equal to one. From (38), setting
u(h) = 1, we find

b =

[
h− 1− e−δh

δ

]−1

⇐⇒ h =
1
δ

(1 +
δ

b

)
+W

−e

(
1+

δ

b

)
, (40)

whereW is again the zero branch of the Lambert function. Substituting (40)1 into (38), we
find

u(y) =

[
e−δh + δy− e−δ(h−y)

e−δh + δh− 1

]
. (41)

Recalling that b = Γ/
√
Re, we finally write the velocity profile for the flow down an

inclined plane as 

u(y) =

[
e−δh + δy− e−δ(h−y)

e−δh + δh− 1

]
,

h =
1
δ


(

1 +
δ
√
Re

Γ

)
+W

−e

1+
δ
√
Re

Γ





(42)

In Figure 8 we show the velocity profile (42) for various Re with Γ = 15, λ = 1.3 and
θ = π/4.

Re

Re

Re

Re

Figure 8. Velocity (42) for various Re, Γ = 15, λ = 1.3, θ = π/4. Flow down an incline.

We observe that, in this case, no limitation on Re is present. Indeed, from (40), we see
that the increase of Re results in an increase in h, i.e., in practice, the height of the fluid layer
can adapt to the imposed discharge.
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3. Linear Stability Analysis

In this section, we consider two-dimensional perturbations of the basic solutions
determined in the previous sections. In particular, let ψb denote any of the steady solutions
found in the previous sections. We write

ψ = ψb + ψ̂(y)eiα(x−ct) (43)

so that ψ is the sum of the basic function ψb and the perturbation ψ̂(y)eiα(x−ct), where ψ̂ is
the complex wave amplitude, α is the wavenumber, c is the complex wave velocity, and we
assume that | ψ̂ |= O(ε), ε� 1. The stress tensor can be decomposed as

Sb + Ŝeiα(x−ct) = ln
[

b
b− 2 | Db + D̂eiα(x−ct) |

] (
Db + D̂eiα(x−ct))

|
(
Db + D̂eiα(x−ct)

)
|
. (44)

The above can be linearized (neglecting terms of order ε and higher) to obtain

Ŝ = ln
[

b
b− 2 | Db |

][
D̂
| Db |

− (Db · D̂)Db
2 | Db |3

]
+

(Db · D̂)Db

| Db |2
(
b− 2 | Db |

) (45)

so that Ŝ is linear in D̂.

3.1. Channel Flow

In the two-dimensional setting, we have

D̂11 = −D̂22 = −v̂′, D̂12 = − 1
2iα
(
v̂′′ + α2v̂

)
(46)

In the context of channel flow, we find

Ŝ11 = −Ŝ22 = −

T(y)︷ ︸︸ ︷[
1
| u′b |

ln
(

b
b− | u′b |

)]
2v̂′ (47)

Ŝ12 = −
[

1
b− | u′b |

]
︸ ︷︷ ︸

M(y)

(
v̂′′ + α2v̂)

iα
, (48)

where we indicated with ub(y) the basic solution (18). The perturbed momentum equation
is

− Re
[
(ub − c)

(
v̂′′ − α2v̂)− u′′b v̂

]
= 2iαŜ′11 + Ŝ′′12 + α2Ŝ12. (49)

Substituting (47), (48) into (49), we obtain the perturbation equation for v̂

−iαRe
[
(ub − c)

(
D2 − α2)− u′′b

]
v̂ = 4α2D

(
TDv̂

)
−D2

[
M
(
D2 + α2)v̂]− α2

[
M
(
D2 + α2)v̂] (50)

where M(y) and T(y) are defined in Equations (47) and (48), respectively. The boundary
conditions are v̂(±1) = Dv̂(±1) = 0. Equation (50) is solved via a spectral collocation
method based on Chebyshev polynomials. Notice that because of the particular constitutive
equation considered here, the classical Orr–Sommerfeld equation cannot be recovered
from (50). In Figure 9, we plot the neutral stability curves for some values of Γ, while in
Figure 10, we display the critical Reynolds number Rec as a function of the parameter Γ.
Notice that the critical Reynolds number is always below the limit Γ2, which is the upper
bound of Re, see Section 2.1. In particular, we observe that the deviation of Rec from the
limit value Re = Γ2 increases with Γ.
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0

0

0

0

0

Figure 9. Neutral stability curves in the (α,Re) plane, channel flow. Γ = 10, 15, 20, 25, 30.

Re

Figure 10. Critical Reynolds number vs. Γ: channel flow. Notice that the discrepancy between the
Rec and the upper bound Γ2 increases with Γ.

3.2. Taylor–Couette Flow

Here, we study the linear stability of the flow between coaxial rotating cylinders. In
this case, the perturbed velocity is v = vb(r)eθ + v̂(r)eiα(z−ct), where

v̂ = ûer + v̂eθ + ŵez

is the complex amplitude of the perturbation of the velocity, where vb(r) = rωb(r) is the
basic tangential velocity and where ωb(r) is the angular velocity given in (31). We are,
thus, considering an axisymmetric perturbation (there is no dependence on the azimuthal
coordinate θ). The components of the symmetric part of the perturbation velocity gradient
are

D̂rr = û′, D̂θθ =
û
r

, D̂zz = iαŵ. (51)

D̂rθ =
1
2

(
v̂′ − v̂

r

)
, D̂rz =

1
2
(
iαû + ŵ′

)
, D̂θz =

iαv̂
2

, (52)

where the prime now stands for differentiation with respect to r, i.e., ′ = d/dr. The
linearized momentum equation for the perturbations (û, v̂, ŵ) are

Re[−iαcû− 2ωbv̂] = −Π p̂′ +

(
rŜrr

)′
r
− Ŝθθ

r
+ iαŜrz (53)
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Re

[
−iαcv̂ +

(r2ωb)
′

r
û
]
=

(r2Ŝrθ)
′

r2 + iαŜθz (54)

Re[−iαcŵ] = −Πiα p̂ +
(rŜrz)′

r
+ iαŜzz (55)

Multiplying (53) by −iα, differentiating (55) with respect to r, and summing up, we
have

Re
[
iα
(
2ωbv̂− cŵ′

)
− α2cû

]
= − iα

r
(
rŜrr

)′
− 1

r2

(
rŜrz

)′
+

1
r
(
rŜrz

)′′
+ iα

(
Ŝθθ

r
+ Ŝ′zz − iαŜrz

)
(56)

From the continuity equation, we find

ŵ =
i
α

[
û′ +

û
r

]
, =⇒ ŵ′ =

i
α

(
û′′ − û

r2 +
û′

r

)
The linearized constitutive Equation (45) in the cylindrical coordinates becomes

Ŝ = ln
(

b
b− rω′b

)[
2D̂
rω′b
− 4D̂rθDb

(rω′b)
2

]
+

4D̂rθDb
rω′b(b− rω′b)

(57)

from which we derive

Ŝrr = T(r)2û′, Ŝθθ = T(r)
2û
r

, Ŝzz = −T(r)2
(

û′ +
û
r

)
(58)

Ŝrθ = M(r)
(

v̂′ − v̂
r

)
, Ŝrz = T(r)

i
α

(
û′′ − û

r2 +
û′

r
+ α2û

)
, (59)

Ŝθz = T(r)iαv̂, Ŝzz = −T(r)2
(

û′ +
û
r

)
, (60)

where

T(r) =
1

rω′b
ln
(

b
b− rω′b

)
, M(r) =

1
b− rω′b

.

Inserting (58)–(60) into (54), (56), we finally find the eigenvalue problem

c

 Re

(
D2 +

D

r
− 1

r2 − α2
)

0

0 −Reiα


 û

v̂

 = −

 L1 M1

L2 M2

 û

v̂

 (61)

where D = d/dr and where

L1 = i
[

T
(
−2α

r2 +
3

αr4 − α3
)
+ T′

(
α

r
− 3

αr3

)
+ T′′

(
1

αr2 − α

)]
+

i
[

T
(

2α

r
− 3

αr3

)
+ T′

(
3

αr2 + 2α

)
− T′′

(
1
αr

)]
D+

i
[

T
(

3
αr2 + 2α

)
− T′

(
3
αr

)
− T′′

(
1
α

)]
D2+

−i
[

T
(

2
αr

)
+ T′

(
2
α

)]
D3 −

[
T

1
α

]
D4



Fluids 2023, 8, 25 15 of 20

M1 = 2Reiαωb, L2 = Re
[
rω′b + 2ωb

]
M2 =

[
M′

r
+

M
r2 +

α2

r2 T
]
−
[

M
r
+ M′

]
D−MD2

The eigenvalue problem is coupled with boundary conditions û(1) = Dû(1) = v̂(1) = 0
and û(R1) = Dû(R1) = v̂(R1) = 0. Problem (61) is solved by a spectral collocation method
based on Chebyshev polynomials (the spatial domain [R1, 1] is mapped in the interval
[−1, 1]). In Figure 11, we plot the neutral stability curves for some values of Γ. In Figure 12,
we show the critical Reynolds number as a function of the parameter Γ. Notice that the
critical Reynolds number is always below the limit (−Γ ln R−1

1 )2. In particular, we observe
that the deviation of Rec from the limit value Re = (−Γ ln R−1

1 )2 increases with Γ as in the
channel flow.

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0

Figure 11. Neutral stability curves, the flow between rotating cylinders. Γ = 10, 15, 20, 25, 30.

Re

Figure 12. Critical Reynolds number vs. Γ: flow between rotating cylinders. Notice again the
discrepancy between Rec and the upper bound as Γ increases.

3.3. Flow down an Inclined Plane

In this section, we study the linear stability of the downhill flow presented in Section 2.3.
The perturbed variables are in the form (43) and the equation for the perturbation is still (50),
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the spatial domain being [0, hb], with hb given in (42)2. Introducing the perturbed free
surface

h = hb + ĥeiα(x−ct), ĥ ∈ C,

we check that the linearized boundary conditions (32)–(34) become:

ĥ = −2b−1v̂′(hb)− p̂(hb)

λ cos θ
, (62)

ĥ = − 1
δb

v̂′′(hb) + α2v̂(hb)

iα
, (63)

v̂(hb) = iαĥ
[
1− c

]
. (64)

The pressure term in (62) can be written in terms of v̂ exploiting the first component
of the linearized momentum equation for the perturbation, namely

Re
(
v̂′(c− ub) + v̂u′b

)
= −iα p̂ + iαŜ11 + Ŝ′12, (65)

with Ŝ11, Ŝ12 given by (47), (48). Using (65), and eliminating ĥ from (62), (63) we find that(
v̂′′ + α2v̂

)(
1− c

)
+ δbv̂ = 0, y = hb, (66)(

v̂′′′ + α2v̂
)
−
(

v̂′′ + α2v̂
)(

iα cot θ + δ
)

− v̂
(

4α2 + iαbRe(1− c)
)
= 0, y = hb. (67)

Conditions (66), (67), together with the no-slip conditions

v̂(0) = v̂′(0) = 0, (68)

provide the boundary conditions for the perturbation v̂. In conclusion, the eigenvalue
problem for the stability of the flow down an inclined plane is given by Equation (50)—
in the domain [0, hb]-and the boundary conditions (66)–(68). The complex values of the
parameter c that produce a non-trivial solution give the relation between the basic flow
and the evolution of the disturbance modes. In particular, when the growth rate of the
disturbance σ = αIm(c) is positive, the amplitude of the disturbance becomes unbounded
and the system is unstable. Here, we limit our analysis to the so-called long-wave analysis,
i.e., we assume that α� 1, so that the solution can be sought in the form of expansion in
powers of α,

v̂ = v̂o + αv̂1 + α2v̂2 + ......, c = co + αc1 + α2c2 + .......

Inserting the expansion above in the eigenvalue problem and grouping the terms of
the same order, we obtain a sequence of eigenvalue problems that can be solved iteratively.
In particular, it can be proved that the problem at the zero order is given by

[
M(y)v̂′′o

]′′
= 0,

v̂o = v̂′o = 0, y = 0

v̂′′o (1− co) + δbv̂o = 0, y = hb,

v̂′′′o − δv̂′′o = 0, y = hb.

(69)
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Problem (69)1 is solved by

v̂o = eδy − δy− 1, co =
e−δhb

[
(δ + b)eδhb − b(δhb + 1)

]
δ

(70)

from which we immediately see that co ∈ R. We notice that the general eigenvalue
problems (50), (66), (67), (68) are homogeneous, so that the solution is defined up to a
multiplicative constant. Following the procedure used in [19], we select such a constant so
that v̂(hb) = v̂o(hb), implying v̂i(hb) = 0 for i = 1, 2, 3, ..... The problem with the first order
is, therefore, 

iRe
[
(ub − co)v̂′′o − u′′b v̂o

]
=
[

M(y)v̂′′1
]′′

,

v̂1 = v̂′1 = 1, y = 0[
v̂′′1 (1− co) + δbv̂1

]
− c1v̂′′o = 0, y = hb,

[
v̂′′′1 − δv̂′′1

]
+
(
iRev′o(co − 1)− i cot θv̂′′o

)
= 0, y = hb,

v̂1 = 0, y = hb.

(71)

Integration of (71)1 gives functions v̂1 = v̂1(y; A, B, C, D) in which the dependencies
on the integration constants A, B, C, D are linear. The impositions of the five BCs (71)2–(71)5
lead to a linear system whose solution provides the constants A, B, C, D, and the eigenvalue
c1. The calculation for the determination of the eigenvalue c1 was checked using the
symbolic software wx Maxima. We obtain

c1 = i

{
(co − 1)

[
δ3(B2hb + B1 − B5)− 2B4

]
+ bδ

(
B5δ− 3

)}
δ3(eδh − δh− 1)

+

+ i
(co − 1)B4

[
(δhb)

2 + 2(δhb + 1)
]
+ δ(1 + δhb)(B3 − bB5δ)

δ3eδh(eδh − δh− 1)
∈ C (72)

where Bi, i = 1, 2, 3, 4, 5 are functions of the parameters b, hb, δ, Re, cot θ, co. In particular,
Bi is a pure real number (the imaginary part is zero), so that c1 is a pure complex number.
For the sake of brevity, we did not report their expressions, which are quite lengthy. In the
long wavelength expansion, of the first order, we take c ≈ co + αc1, so that the growth rate
of the amplitude disturbance is

σ = −iαc1. (73)

Recalling that hb = hb(Re, Γ, δ), b = b(hb, δ) (see (40)), δ = λ sin θ we immediately
realize that at the first order

Bi = Bi(Re, Γ, θ, λ), =⇒ c1(Re, Γ, θ, λ).

and
σ = σ(α, Re, Γ, θ, λ) = −iαc1(Re, Γ, θ, λ).

In Figure 13, we plot the approximation of the marginal stability curves (valid for
small α) σ = 0 for θ = π/4, λ = 1 and with Γ = 10, 15, 20, 25, 30. These are clearly
vertical straight lines in the plane (Re, α) that provide the critical Reynolds above which
we have instability. The dependency of the critical Reynolds number Rec as a function of Γ
is depicted in Figure 14.
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Figure 13. First-order approximation of the neutral stability curves, downhill flow. Γ =

10, 15, 20, 25, 30, θ = π/4, λ = 1.

Re

Figure 14. Critical Reynolds number vs. the Γ downhill flow. θ = π/4, λ = 1.

As observed in Section 2.3, here we have no limitation of the Reynolds number, since
the quantity b = Γ/

√
Re is not limited. We notice that the critical Reynolds for the flow

down an incline is, in general, much smaller than in the other two cases considered earlier.
This is due to the fact that the channel flow and the flow between concentric cylinders
are wall-bounded, while the flow down an incline has a free surface. Indeed, it is well
known that in the wall-bounded flow, we may have the development of boundary layers
that tend to stabilize the flow, see [20]. Furthermore, the discrepancy between the critical
Reynolds number of the channel flow (or Taylor–Couette flow) and the flow down an
incline is evident even in the case of a Newtonian fluid. For instance, in the channel flow
of a Newtonian fluid driven by a pressure drop Rec ≈ 5700 (and in the free flow down an
incline), the critical Reynolds is given by the relation, see [21]

Rec =
5
4

cot θ, (74)

for an angle of π/4 (as the one I have considered in the paper) gives Rec = 1.25. Finally, we
remark that the critical Reynolds numbers for the free surface flow are in the same range as
those obtained in [22].
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4. Conclusions and Perspectives

We investigated a simple shear flow of a class of dilatant fluids in which the modulus
of the deviatoric stress diverges as the modulus of the shear rate tensor tends to a finite
positive value. For convenience, these fluids have been termed dilatant fluids with a
limited shear rate. The constitutive equation is given by a logarithmic function with
two material parameters, 1/a∗ and b∗, representing the characteristic apparent viscosity
and the shear rate threshold, respectively. The motivation for choosing such a specific
form for the apparent viscosity is that it fits (for appropriate values of a∗ and b∗) the
flow curves of granular suspensions. The adopted constitutive equation can be viewed
as a regularization of a discontinuous shear-thickening constitutive law, such as the one
depicted in Figure 1b. Despite the nonlinearity of the apparent viscosity, we are able
to determine steady-state solutions for some simple shear flow types. In particular, we
considered the (i) planar channel flow, (ii) the flow between concentric cylinders, and (ii) the
flow down an inclined plane. In the first two cases, we have shown that the Reynolds
number cannot exceed a certain threshold that depends on the material parameters. This
seemingly weird behavior is explained; the increase in the velocity automatically increases
the resistance opposed to the flow by the increasing viscosity. In this mechanism, the
acceptable velocities experienced by the fluid cannot exceed a fixed threshold. In particular,
we proved that the limit threshold for the Reynolds number is an increasing function of a∗

and b∗. To investigate the response of the basic steady-state flow to disturbances, we also
performed a two-dimensional modal stability analysis for each of the three simple flow
types considered. In cases (i) and (ii), the corresponding eigenvalue problems were solved
by means of a spectral collocation method based on Chebyshev polynomials, allowing us
to plot the neutral stability curves and detect the critical Reynolds number. For the case
of the flow down an inclined plane, we limited our analysis to long-wave disturbances
(i.e., small wave numbers), explicitly determining the critical Reynolds number. For the
three simple shear flow types considered, we found that the critical Reynolds number is an
increasing function of a∗ and b∗. This proves that when the limit shear rate threshold is
increased, or when the apparent viscosity is decreased, the fluid can be stable for a larger
range of Reynolds numbers.

A natural continuation of this work would be (i) the extension to some other simple
shear flow; (ii) the analysis of the flow in small-aspect ratio geometries (e.g., lubrication
flow); (iii) the investigation of the effects of three-dimensional disturbances and the verifica-
tion of the validity of Squire’s theorem, which is not automatically valid for non-Newtonian
flow. All of these issues are currently under investigation and will be the subject of a
forthcoming paper.
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