

Article

Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects

Saeed Mahmoodpour ^{1,*}, Mrityunjay Singh ^{2,*}, Ramin Mahyapour ³, Sina Omrani ⁴, and Ingo Sass ^{2,5}

- ¹ Group of Geothermal Technologies, Technische Universitat Munchen, 80333 Munich, Germany
- ² Institute of Applied Geosciences, Geothermal Science and Technology, Technische Universitat Darmstadt, 64287 Darmstadt, Germany
- ³ Department of Petroleum Engineering, Sharif University of Technology, Tehran 11155-9161, Iran
- ⁴ Institute of Petroleum Engineering, College of Engineering, University of Tehran, Tehran 4563-1115, Iran
- ⁵ Geoenergy Section, GFZ, 14473 Potsdam, Germany
- * Correspondence: saeed.mahmoodpour@tum.de (S.M.); mrityunjay.singh@tu-darmstadt.de (M.S.)

Highlights:

- 1. What are the main findings?
- CO₂–N₂ mixture dissolution in brine is examined by considering the cross-diffusion effect for CO₂ sequestration in a deep storage reservoir.
- Heterogeneity lowers the average dissolved CO₂ and impedes the onset of convection.
- 2. What is the implication of the main finding?
- Correlations are developed to predict the transition time between the dissolution regimes.

Abstract: The possibility of impure carbon dioxide (CO₂) sequestration can reduce the cost of these projects and facilitate their widespread adoption. Despite this, there are a limited number of studies that address impure CO₂ sequestration aspects. In this study, we examine the convection-diffusion process of the CO_2 -nitrogen (N₂) mixture dissolution in water-saturated porous media through numerical simulations. Cross-diffusion values, as the missing parameters in previous studies, are considered here to see the impact of N₂ impurity on dissolution trapping in more realistic conditions. Homogeneous porous media are used to examine this impact without side effects from the heterogeneity, and then simulations are extended to heterogeneous porous media, which are a good representative of the real fields. Heterogeneity in the permeability field is generated with sequential Gaussian simulation. Using the averaged dissolved CO₂ and dissolution fluxes for each case, we could determine the onset of different dissolution regimes and behaviors of dissolution fluxes in CO₂-N₂ mixture dissolution processes. The results show that there is a notable difference between the pure cases and impure cases. Additionally, a failure to recognize the changes in the diffusion matrix and cross-diffusion effects can result in significant errors in the dissolution process. At lower temperatures, the N2 impurity decreases the amount and flux of CO2 dissolution; however, at higher temperatures, sequestrating the CO_2-N_2 mixture would be a more reasonable choice due to enhancing the dissolution behavior and lowering the project costs. The results of the heterogeneous cases indicate that heterogeneity, in most cases, reduces the averaged dissolved CO₂, and dissolution flux and impedes the onset of convection. We believe that the results of this study set a basis for future studies regarding the CO₂-N₂ mixture sequestration in saline aquifers.

Keywords: CO₂ sequestration; impurity; dissolution trapping; heterogeneity; convection–diffusion

1. Introduction

The continuous and significant increase in greenhouse gas emissions due to the excessive use of fossil fuels in the industrial production, power, and transportation sectors

Citation: Mahmoodpour, S.; Singh, M.; Mahyapour, R.; Omrani, S.; Sass, I. Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects. *Fluids* 2023, *8*, 22. https://doi.org/10.3390/ fluids8010022

Academic Editor: Mehrdad Massoudi

Received: 30 November 2022 Revised: 20 December 2022 Accepted: 31 December 2022 Published: 6 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). has caused global warming and climate change [1-3]. In order to control greenhouse gas emissions and prevent global warming, carbon dioxide (CO₂) capture and storage (CCS) in geological formations is considered a viable tool for reducing atmospheric CO₂ concentrations [4-11]. Saline aquifers, depleted oil and gas reservoirs, unmineable coal seams, hydrate storage of CO₂ within the subsurface environment, and CO₂-based enhanced geothermal systems are the main CO₂ storage options in underground geological formations [12,13]. Among these options, saline aquifers have attracted more attention due to their chemistry, permeability, porosity, temperature, pressure, massive capacity for the storage of CO₂, wide distribution, and vicinity to the sources of production [6,14-20]. Involved processes during CCS happen in a fully coupled framework, which is one of the main challenges in this regard. Examining such a complex problem requires a multidisciplinary approach. Here, detailed numerical simulations, which consider these coupled processes, could be helpful, and they supported us in the underlying gaps in our knowledge for a successful CCS project [21,22].

The high cost of CCS in saline aquifers is a barrier to the implementation of these projects, and the possibility of impure CCS (CO_2 + impurities) is proposed as a solution to reduce the project cost [23]. Currently, the three main CO_2 capture technologies used in large-scale power plants are post-combustion, pre-combustion, and oxyfuel combustion, all of which produce CO_2 -dominant streams containing impurities [24,25]. It was indicated that impurities have an influence on all types of geological CO_2 storage mechanisms [26,27]. Although permitting the existence of impurities in the CO_2 storage the cost of CCS projects, it can have undesirable and unknown effects, such as decreased CO_2 storage capacity, corrosion, and so on [28].

Nitrogen (N₂) is an abundant species in impure CO₂ streams [29–31]. Accordingly, various studies have been performed to investigate the feasibility of the sequestration of CO_2-N_2 mixtures in saline aquifers [28,32–39]. From some aspects, N_2 injection alongside CO_2 is examined, and it seems a suitable solution. For example, N_2 is a non-toxic and inert gas that is not present in most aquifers. Previous studies showed that the lower viscosity and water solubility of N_2 in comparison to CO_2 cause N_2 to move in the leading edge of the injected gas, which can be used as a safety signal against leakage in the long-term by monitoring N_2 [32,33]. Additionally, during the injection period, N_2 increases gas mobility and plume propagation. Hence, the surface area between the injected gas mixture and brine could increase and subsequently enhance the solubility trapping [36,40,41]. The corrosion effects of N₂ on the equipment used in the CCS project are negligible. Therefore, there are no safety concerns about damage to equipment with the N_2 co-injection [42]. In the CO₂–N₂-brine system, experimental studies show that N₂ increases capillary trapping and causes a reduction in leakage risks through this mechanism [35]. Despite the mentioned advantages, like other impurities, it is believed that N_2 reduces the storage capacity of saline aquifers due to the possible reduction of the solubility ratio [43,44] and requires additional investigations on the other aspects.

The estimation of dissolution flux during different dissolution regimes is one of the most significant aspects of the studies mentioned in previous experimental and numerical studies [16,45–51]. These estimations provide a pragmatic tool for policy and engineering applications to have an initial knowledge about the efficiency of the dissolution process and, consequently, of the storage capacity and project safety in different time scales [52]. During various time scales of CCS, the diffusion coefficient plays an important role. In the injection phase, it controls the viscous fingering and, consequently, the capillary trapping mechanism [8]. Moreover, it is a vital factor for dissolution trapping and, because of that, for mineralization trapping [53,54]. All of these trapping mechanisms are essential to a project's safety [55]. In previous studies, researchers ignored the impurity effects on the diffusion coefficient due to the complexity of its direct measurement and used the diffusion coefficient of the pure case [28,36,40,41,53,56] to simulate the dissolution process during the impure CCS.

Recently, Omrani et al. [57] provided a data set for the diffusion coefficient of CO_2-N_2 -water systems through the molecular dynamics simulation (shown in Methodology section). These data are validated based on the experimental tests for pure CO_2 [57]. However, for the CO_2-N_2 -water systems, there are no experimental data about the cross-diffusion values for validation. However, the data set generally follows up a trend that is observed during our previous experimental tests for the overall effects of the impurity on the diffusion and, consequently, on the onset of convection and dissolution flux [38,39]. Furthermore, we have observed such changes in the diffusion coefficient values, which are measured for specific three-component mixtures (not for impure CO_2 in water) [58–60].

We considered the effects of heterogeneity in porous media to examine the process in a more realistic condition. Heterogeneity can be examined from structural heterogeneity resulting from fault, fold, or salt diapirs and stratigraphic heterogeneities within facies [61]. Here, we focus on heterogeneous stratigraphic structures within facies. The coupled effect of the gas impurity and heterogeneity in porous media is studied by creating a permeability field through the sequential Gaussian simulation (SGS) [62–64].

To the best of the authors' knowledge, no simulation study has investigated the convective dissolution behavior of complex CO_2-N_2 -water systems by considering the cross-diffusion effects. In this study, we tried to examine the effect of cross-diffusion on convective dissolution behavior in the CO_2-N_2 -water system. We conducted this evaluation based on the amount of dissolved CO_2 and the dissolution flux rate through three sets of experiments with mixtures of pure CO_2 , 90% $CO_2 + 10\%$ N₂, and 80% $CO_2 + 20\%$ N₂. In addition to the homogeneous porous media, which enables us to track the effect of impurity separately, the simulations are followed up on heterogeneous porous media, which are good representatives of the real field conditions. Although great achievements have been made through previous studies on solubility trapping, in this study, we intend to examine the role of N₂ impurity in the diffusion–convective dissolution in both homogeneous and heterogeneous porous media. The findings of this study are supposed to provide insights into impure CO_2 geological storage and show whether the composition of impurity can be engineered to control the dissolution process, which may be beneficial to the practical deployment of CCS technology.

2. Methodology

To capture the CO_2 or $CO_2 + N_2$ dissolution in a water-saturated porous medium, a rectangular system away from the injection well was selected as the domain of interest. At distances far enough from the injection well, it can be assumed that the gas-brine contact is horizontal. To examine the behavior of the system through a high-resolution simulation framework, it is essential to use a small-scale domain from the computational costs aspect. A thickness of 10 m is used as the most frequent thickness between the reported aquifers data [60]. The length of the domain is 20 m here. A sharp interface is considered for the gas–water contact, which is a valid assumption for aquifers deeper than 1 km [61,62]. The no-flow boundary conditions are imposed on the side and bottom boundaries of the model. Initial CO_2 and N_2 concentrations in water are set to zero, and the presence of CO_2 or CO_2+N_2 at the top boundary is represented by the fixed concentrations based on the solubility of CO_2 and N_2 in brine.

The governing equations in the ternary system are as follows (derived from Kim et al. [54]):

 ∇

$$.U = 0 \tag{1}$$

$$\varphi \frac{\partial C_1}{\partial t} = \varphi \left(D_{11} \nabla^2 C_1 + D_{12} \nabla^2 C_2 \right) - U.\nabla C_1 \tag{2}$$

$$\varphi \frac{\partial C_2}{\partial t} = \varphi \left(D_{22} \nabla^2 C_2 + D_{21} \nabla^2 C_1 \right) - U.\nabla C_2 \tag{3}$$

The first equation is the continuity equation, and Equations (2) and (3) are the mass transfer equations for each gas. In these equations, φ and *C* are porosity and the concen-

tration of dissolved gases, respectively. D_{11} and D_{22} are the main diffusion coefficients, and D_{12} and D_{21} are the cross-diffusion coefficients. Here, U is the velocity vector that can be calculated through Darcy's law, which describes the motion of Newtonian fluid in the porous medium.

$$U = -\frac{k}{\mu}(\nabla P - \rho g) \tag{4}$$

In which k, μ , and ρ are permeability, viscosity, and density, respectively. The mentioned equations are coupled and solved by the finite element method through the COMSOL Multiphysics software to catch the behavior of CO₂ or CO₂ + N₂ dissolution in water. The density of the aqueous phase is calculated by the below equation:

$$\frac{M_{aq}}{\rho_{aq}} = \frac{x_w M_w}{\rho_w} + \sum_{i=1}^{NCG} V_i x_i \tag{5}$$

In this equation M, ρ , x, and V stand for the molecular weight, density, mole fraction, and partial molar volume, respectively. Furthermore, subscripts aq, w, and i are used for the resulting solution, water, and dissolved gases. Table 1 lists the model parameters that are used during the simulation. The involved parameters are updated based on pressure and temperature during the simulation. In order to better interpret the convection–diffusion problems, the Rayleigh number is used, which is a dimensionless number and is defined as follows [63]:

$$Ra = \frac{\Delta\rho kgH}{\mu D\varphi} \tag{6}$$

Table 1. The model parameters.

Pressure (bar)	Temperature (K)	Porosity (-)	Permeability (mD)	
100	323.15			
200	373.15	0.25	250	
300	423.15			

To distinguish the different regimes in the dissolution process, we plotted the dissolution flux versus the logarithm of dimensionless time (t_D). The t_D is defined as tD/H^2 where t, D, and H are the time, diffusion coefficient, and height of the system, respectively. Further analyses were performed on these plots to determine the start of the quasi-steady state regime, its dissolution flux, and the starting time of the shut-down regime.

Table 2 lists Fick's diffusion matrix elements. D_{11} and D_{22} are the main diffusion coefficients, and D_{12} and D_{21} are the cross-diffusion coefficients. The main diffusion coefficients express the section of the component diffusion that depends on its own concentration gradient, and the cross-diffusion coefficients provide the molar flux of one component driven by the concentration gradient of another component. We applied the molecular dynamic simulation to evaluate the CO₂–N₂-water diffusion matrix for the first time. For more detail on how these values are calculated, we refer you to our previous work [57].

Temperature (K)	Pressure (bar)	CO ₂ Mole Fraction	$D_{11} \ (imes 10^{-9} \ \mathrm{m^2/s})$	D_{12} (×10 ⁻⁹ m ² /s)	D ₂₁ (×10 ⁻⁹ m ² /s)	D ₂₂ (×10 ⁻⁹ m ² /s)
323	100	1	3.453	-	-	-
323	100	0.9	2.3119	0.2616	0.0495	39.715
323	100	0.8	1.8604	-0.4292	-0.0033	26.108
373	100	1	6.983	-	-	-
373	100	0.9	4.3614	-1.0323	0.0061	89.2921
373	100	0.8	6.5221	-0.5939	-0.0024	55.8109
423	100	1	10.716	-	-	-
423	100	0.9	8.976	-1.3035	0.0133	130.0136
423	100	0.8	10.0413	-0.1552	0.0578	54.9741
323	200	1	3.7	-	-	-
323	200	0.9	1.4821	-0.146	0.0149	13.15855
323	200	0.8	1.946	-0.3165	-0.0368	9.3242
373	200	1	6.73	-	-	-
373	200	0.9	3.3163	-0.8697	-0.019	39.4697
373	200	0.8	3.76365	-0.84585	-0.0085	49.32485
423	200	1	11.033	-	-	-
423	200	0.9	5.7988	-0.9622	0.1099	76.7250
423	200	0.8	5.52505	-0.24735	0.0503	33.1235
323	300	1	3.683	-	-	-
323	300	0.9	1.3997	-0.4567	-0.0383	9.9591
323	300	0.8	1.6961	-0.3346	-0.0718	6.1526
373	300	1	6.633	-	-	-
373	300	0.9	2.7572	-0.1616	0.0411	24.0971
373	300	0.8	2.8922	-0.2709	-0.0625	14.6273
423	300	1	11.1	-	-	-
423	300	0.9	4.1235	-1.0655	-0.0414	34.9856
423	300	0.8	5.0785	-0.0885	0.0638	20.1737

Table 2. Fick diffusion coefficients of CO₂–N₂–water system [57].

In order to investigate the effect of heterogeneity, a random permeability field is created by applying the sequential Gaussian simulation (SGS) algorithm. The SGeMS software was used to generate a normal random distribution in the range of 0-1. The following equation is used to create a log-normal permeability distribution based on the normal random distribution.

$$k_{log-normal} = k_{average} \times exp(\sigma \times k_{SGeMS}) \tag{7}$$

where $k_{log-normal}$, $k_{average}$, σ , and k_{SGeMS} are the permeability field in the log-normal distribution, the average permeability of the reservoir, the standard deviation of the permeability field, and the permeability field in the standard normal distribution obtained from the SgeMS software, respectively. Each random permeability value generated by this method is assigned to a point in the simulation domain at a specified distance in length, and the permeability between these points is interpolated to reach a continuous field. The average permeability of the reservoir is 250 mD (Table 1), the standard deviation of the permeability field is 1, and the distance length is 1 m in both the *x* and *y* directions. Due to the high difference in distribution pattern from one realization to another, repetition of the simulations for each case is necessary for the results to be reliable. In this regard, considering the computational limitations, we chose 20 realizations for each case.

We conducted a mesh sensitivity analysis to ensure that our results were mesh independent. We selected the most difficult case with the highest Rayleigh number for this purpose. We found that a triangular mesh with a maximum size of 0.1 m is a good choice for this case (and other cases with lower Rayleigh numbers). We considered 4 different triangular meshes: maximum mesh sizes of 0.08, 0.1, and 0.12 m and an adaptive meshing with a maximum size of 0.1 m. Moreso, except for the case with a maximum size of 0.12 m, the average dissolved CO₂ for all the other cases overlapped with each other. It should be noted that for the case with a maximum size of 0.1 m, we used 55294 elements to mesh the system, while for the case with a maximum size of 0.08 m, we used 84942 elements. However, we employed an adaptive meshing option in all the simulations to capture the fingers' movements with a high resolution in some of the high permeability zones of the heterogeneous porous media. We employed adaptive time stepping through the second-order backward differentiation formula (which is a linear multi-step implicit method) to increase the computational speed. To do this, we used 4.375×10^{-4} years as the first-time step to reach the convergence. Additionally, we used the absolute tolerance of 0.001. The consistent initialization was completed through the backward Euler methodology with 0.001 as the fraction of the initial step. To solve the fully coupled equations, we used the automatic highly nonlinear Newton method with an initial damping factor of 10^{-4} and a minimum damping factor of 10^{-8} . We restricted the update for step size by a factor of 10. The solver in this numerical model is the Multi-frontal Massively Parallel sparse direct Solver (MUMPS). Here, the recovery damping factor is 0.75. Furthermore, due to the computational restrictions for the gas mixture dissolution process in a 3D heterogeneous porous structure, we used 2D simulations. For the discretization of pressure in Darcy's law, we used the quadratic approach, and for the concentration values in the mass transfer equation, we employed the linear discretization approach.

3. Results and Discussion

At the beginning of this section, the results of the pure CO_2 cases are presented. Then, we discuss the impure cases and the changes that N_2 will impose on the dissolution behavior. The simulations are conducted to represent up to 7 years, which is sufficient to catch all the regimes that appear in a dissolution process. For analyzing the CO_2 or $CO_2 + N_2$ dissolution process, the total concentration of the dissolved gas and dissolution flux, and the dissolution patterns, number, and shape of the convective fingers are considered. Figure 1 shows a schematic of the dissolution behavior. The dissolution process starts with a diffusion-dominated regime. CO_2 diffuses into the water due to the concentration gradient. The dissolution flux slows down because of the reduction of the concentration gradient at the interface. The dissolved CO_2 + water has a higher density than pure water. This initiates instabilities that lead to the downward motion of dissolved gas and water. As the fingers grow and descend to the bottom, freshwater moves up to the interface to improve the dissolution process. This process continues until the bottom water that moves up to the interface contains dissolved gas. From this stage, the dissolution process moves toward the shut-down regime until a point where the system can no longer dissolve more gas and reaches its maximum capacity. Table 3 lists the details of the pure cases at different temperatures and pressures. Figure 2 illustrates the average dissolved CO_2 and dissolution flux for all the pure cases. As was expected, the case with the highest Rayleigh number reaches the higher dissolution flux, and the case with the lowest Rayleigh number ends with the lowest dissolution flux among all the cases. Three cases of 7-p, 8-p, and 9-p almost have the same Rayleigh number; however, the case with a lower diffusion coefficient ends in the higher dissolution flux. This behavior can be seen by comparing the 2-p and 3-p cases. Furthermore, based on the lower solubility of case 3-p, this case would finally result in a lower dissolution capacity. By comparing the dissolution flux curves, it can be interpreted that with the increase of the Rayleigh number, the onset of the quasi-steady and shut-down regimes happens faster, and the dissolution flux of the quasi-steady state regime raises. We fitted and proposed some correlations that relate these parameters to the Rayleigh number. These equations are as follows:

$$c_D^{Onset} = (64, 491) Ra^{-2.487}$$
 (8)

$$t_D^{QS} = (1320.5)Ra^{-1.744} \tag{9}$$

$$F = \left(2 \times 10^{-10}\right) Ra^{1.5517} \tag{10}$$

$$t_D^{SD} = (1925.1)Ra^{-1.629} \tag{11}$$

where t_D^{Onset} , t_D^{QS} , t_D^{SD} , and *F* are the non-dimensional time of onset of convection, the onset of the quasi-steady state, the onset of the shut-down regime, and the dissolution flux during the quasi-steady regime, respectively.

Figure 1. A schematic of different regimes in a dissolution process.

Table 3. Details of the pure cases.

Case Name	Temperature (K)	Pressure (bar)	t_D^{Onset}	t_D^{QS}	F	t_D^{SD}	Ra
1 - p	323	100	0.00015	0.00091	4.0329	0.00443	2555
2-p	373	100	0.00066	0.00284	2.7641	0.00839	1691
3-p	423	100	0.00071	0.00392	1.9180	0.00135	1527
4-p	323	200	0.00007	0.00098	5.3417	0.00383	2790
5-p	373	200	0.00028	0.00168	5.1562	0.00558	2522
6-p	423	200	0.00038	0.00253	3.4526	0.01040	2325
7-p	323	300	0.00017	0.00108	6.6560	0.00301	3058
8-p	373	300	0.00015	0.00128	5.7127	0.00497	3029
9-p	423	300	0.00025	0.00157	5.4777	0.00535	2906

Figure 2. The averaged dissolved CO₂ and dissolution flux for the pure case. Legends for left- and right-hand subplots are same.

For a ternary system of CO_2 – N_2 –water, a 2 × 2 matrix of the diffusion coefficient was needed to describe the diffusion behavior. The diagonal elements are the main diffusion coefficients, and the cross-diagonal elements are the cross-diffusion coefficients. In previous studies, for analyzing impure cases, researchers either used the pure diffusion coefficient

or the effective diffusion coefficient that was calculated from experimental data, and it was assumed to be independent of concentration for the diluted solution [38,64]. In this study, wherever the diffusion coefficient was needed, we used the summation of the main diffusion coefficient and cross-diffusion coefficient of each component. In other words, $D_{CO_2} = D_{11} + D_{12}$ for analyzing the CO₂ dissolution and $D_{N_2} = D_{21} + D_{22}$ for the N₂ dissolution behavior (see Equations (2) and (3)) are the effective conditions.

The details on the impure cases of CO₂ are listed in Table 4. These data indicate that impure cases do not exactly follow what was expected based on pure cases. The dissolution flux does not act in accordance with the Rayleigh number. In the pure cases, we observed a relation between the increase of the Rayleigh number and the dissolution flux, yet there are contradictions of this relation in the impure cases. In comparison to the pure cases, it seems that at higher pressure, there is no noticeable reduction in the dissolution flux, and it is either the same as the pure cases or has a higher value. However, at lower pressure, the change in dissolution flux can be considerable. Other than the dissolution flux, there are special relations between the Rayleigh number with t_D^{Onset} , t_D^{QS} , and t_D^{SD} . The cases with a higher Rayleigh number have a faster onset of convection, quasi-steady and shut-down regimes. We proposed the following correlations for predicting the t_D^{Onset} , t_D^{QS} and t_D^{SD} of impure cases:

$$t_D^{Onset} = (0.1575)Ra^{-0.812} \tag{12}$$

$$t_{\rm D}^{QS} = (2.7486) Ra^{-0.945} \tag{13}$$

$$t_D^{SD} = (18.325)Ra^{-1.013} \tag{14}$$

CO₂ Mole t_{D}^{QS} (-) t_D^{Onset} (-) $t_{\rm D}^{\rm SD}$ (-) F (-) Case Name Temperature (K) Pressure (bar) Ra (-) Fraction (-) 1-i 323 100 09 0.00022 0.00064 2.19 0.00446 3215 323 2-i 100 0.8 0.0001 0.000871.88 0.00255 5384 3-i 373 100 0.9 0.00019 0.00161 2.13 0.00383 3341 4-i 373 100 0.8 0.00043 0.00264 1.45 0.0095 1765 5-i 423 100 0.9 0.00024 0.00184 2.31 0.0075 2005 6-i 423 100 0.8 0.00053 0.00365 1.61 0.01553 1458 7-i 323 200 0.9 0.00009 0.00043 2.74 0.00221 7903 8-i 323 200 0.8 0.00012 0.00048 2.140.00251 6100 373 9-i 200 09 3.08 0.000140.00074 0.00334 6672 10-i 373 200 0.8 3.00 0.00021 0.000720.00287 5284 426 200 0.9 0.00018 0.00103 5.37 0.00311 5263 11-i 12-i 426 200 0.8 0.00013 0.00103 4.47 0.00341 4451 323 300 0.9 3.05 13-i 0.00007 0.00034 0.00125 12,664 323 300 2.67 8169 14-i 0.80.000099 0.0007170.00198 15-i 373 300 0.9 0.00022 0.0009 4.68 0.0023 7521 373 16-i 300 0.80.00011 0.0007 4.01 0.0022 7184 17-i 423 300 0.9 7.13 10,628 0.00008 0.00043 0.00155 18-i 423 300 0.8 0.00011 0.00071 4.90 0.00324 6064

Table 4. Details of the impure CO₂ cases.

These equations are in good agreement with our previous studies that show impurities in the system of CO_2 -water (such as different types of gases and salts) and demonstrate a drastic impact on the CO_2 dissolution parameters [48]. We conducted all simulations with and without considering cross-diffusion to check the influence of the diffusion coefficient on the dissolution behavior. Figure 3 shows the averaged dissolved CO_2 and dissolution flux of all the impure cases. It is obvious that there is a clear difference between these two sets of simulations. It can be implied that ignoring the changes in the diffusion coefficient can cause significant errors in the dissolution process parameters. For example, if we do not consider the change in the diffusion matrix, case 1-i reaches the average dissolved CO_2 of about 0.3 (Figure 3c); however, by applying these changes, it reaches the final value of almost 0.4 (Figure 3a). Moreover, by looking at the dissolution flux curves, the noticeable alteration of the onset of different regimes and dissolution flux is indisputable. Referring to the impure cases with consideration given to cross-diffusion (Figure 3, first and third rows), higher or lower Rayleigh numbers do not necessarily lead to higher or lower dissolved CO_2 or dissolution flux. Furthermore, these results imply that reducing the CO_2 main diffusion coefficient at higher temperatures results in a higher amount of dissolved CO_2 and dissolution flux. By comparing cases 13-i and 17-i, we can see that case 17-i, even with a lower Rayleigh number than case 13-i, has the highest amount of dissolved CO_2 and dissolution flux among all impure cases, with 90% CO_2 -10% N₂.

Figure 3. The averaged dissolved CO_2 and dissolution flux for the systems of 90% CO_2 -10% N_2 with considering cross-diffusion (**a**,**b**) and without considering cross-diffusion (**c**,**d**); the systems of 80% CO_2 -20% N_2 with considering cross-diffusion (**e**,**f**) and without considering cross-diffusion (**g**,**h**). Legends for left- and right-hand subplots are same.

Suppose we consider cases based on their temperature, as in Figure 4, at 323 K, then the difference between the pure and impure cases is obvious, both in the average dissolved CO_2 and dissolution flux. This suggests that in a reservoir with lower temperatures, it is probably better to sequester pure CO_2 . At a temperature of 373 K, the pure cases show a higher amount of dissolved CO_2 and dissolution flux than the impure cases, but the differences are insignificant. Due to the high costs of purifying the injection stream, impure CO₂ storage can be a more reasonable choice. At 423 K, the 90% CO₂-10% N₂ cases reach higher dissolved CO_2 and dissolution flux than the pure cases. Therefore, injection of CO_2 with N_2 in reservoirs with high temperatures can lead to higher dissolved CO₂, higher dissolution flux, and a faster onset of quasi-state and shut-down regimes in the dissolution process. Figure 5 illustrates the dissolved CO₂ pattern at the times of the onset of convection, flux growth, the onset of a quasi-steady state, and the onset of the shut-down regime for 7-p, 13-i, 9-p, and 18-i. At early times, the activation of the convective flow holds the intense decrease of dissolution flux, and the convective fingers grow independently; however, as time progresses, these fingers grow and interact with each other in different patterns, which are discussed in our previous work [48]. The higher number and faster descending motion of convective fingers bring more freshwater to the interface, which leads to the enhancement of the diffusion-convection mass transfer rate and CO₂ dissolution flux. In Figure 5, if we compare cases with higher dissolved CO_2 (cases 7-p and 18-i) with lower ones, a special pattern can be identified in the number and interaction of convective fingers. Due to the restriction of lateral movement at the side boundaries, the downward finger motion at these sites may be faster. The comparison of cases 7-p and 13-i confirm the reduction of dissolved CO_2 and dissolution flux due to the addition of 10% N_2 into the injection stream. Despite this, case 18-i has the highest dissolved CO_2 ratio among the impure cases, appears to have more convective fingers, and, therefore, has a stronger convection flow than its pure case (9-p). These patterns, alongside the previous findings, show the effects and importance of N_2 impurity on the CO₂ dissolution process. Figure 6 shows the averaged dissolved N_2 and dissolution flux for the impure cases. It can be seen that, in most cases, there is no convection regime, and there is only a monotonic downward trend. At lower pressures, the N_2 diffusion coefficient drastically increases, leading to a stronger diffusion-dominated flow, but at higher pressures, there are indications of a convective flow.

We developed the dissolution model to include the reservoir heterogeneity in permeability in the presence of the fluid's cross-diffusion effect. We chose five cases of 1-i, 2-i, 3-i, 4-i, and 9-i (see Table 4). Figures 7–11 display these cases. We depicted all the realizations for each case (dotted lines) beside the curves for the homogeneous system with and without considering the cross-diffusion (solid line and dashed line, respectively). Almost in all cases, heterogeneity decreases the averaged amount of dissolved CO₂. Furthermore, it can be seen that it impedes the onset of the convective regime and lowers the dissolution flux. Intuitively, heterogeneity increases the uncertainty and complexity of a system. To demonstrate a clearer picture, we averaged the results of all the realizations for each case (Figure 12). Detecting the onset of convection in Figure 12 is indistinct visually. However, it is well known that the onset of convection corresponds to the minimum dissolution flux, and we can estimate this point from Figure 12 or measure it from the dissolution flux data. It should be noted that this behavior comes from the combined effect of heterogeneity in porous media and cross-diffusion from the impurity. By comparing the homogeneous and heterogeneous cases of 3-i and 9-i (Figures 3a and 12), it can be inferred that heterogeneity increases the separation between these two cases and has a stronger impact at lower pressures.

Figure 4. The averaged dissolved CO_2 and dissolution flux for pure and impure cases classified based on temperature. Legends for left- and right-hand subplots are same.

Figure 5. Dissolved CO₂ patterns for cases 7-p (first row), 13-i (second row), 9-p (third row), and 18-i (fourth row): (**a**) case 7-p at $t_D = 0.00017$; (**b**) case 7-p at $t_D = 0.00055$; (**c**) case 7-p at $t_D = 0.00108$; (**d**) case 7-p at $t_D = 0.00301$; (**e**) case 13-i at $t_D = 0.00007$; (**f**) case 13-i at $t_D = 0.00017$; (**g**) case 13-i at $t_D = 0.00034$; (**h**) case 13-i at $t_D = 0.00125$; (**i**) case 9-p at $t_D = 0.00025$; (**j**) case 9-p at $t_D = 0.0007$; (**k**) case 9-p at $t_D = 0.00157$; (**l**) case 9-p at $t_D = 0.00035$; (**m**) case 18-i at $t_D = 0.00036$; (**o**) case 18-i at $t_D = 0.00071$; (**p**) case 18-i at $t_D = 0.00324$.

Figure 6. The averaged dissolved N_2 and dissolution flux for impure cases. Legends for left- and right-hand subplots are same.

Figure 7. The heterogeneous realizations (dotted lines), homogeneous with considering crossdiffusion (solid line), and homogeneous without considering cross-diffusion (dashed line) averaged dissolved CO_2 and dissolution flux for case 1-i. Legends for left- and right-hand subplots are same.

Figure 8. The heterogeneous realizations (dotted lines), homogeneous with considering cross-diffusion (solid line), and homogeneous without considering cross-diffusion (dashed line) averaged dissolved CO_2 and dissolution flux for case 2-i. Legends for left- and right-hand subplots are same.

Figure 9. The heterogeneous realizations (dotted lines), homogeneous with considering cross-diffusion (solid line), and homogeneous without considering cross-diffusion (dashed line) averaged dissolved CO₂ and dissolution flux for case 3-i. Legends for left- and right-hand subplots are same.

Figure 10. The heterogeneous realizations (dotted lines), homogeneous with considering cross-diffusion (solid line), and homogeneous without considering cross-diffusion (dashed line) averaged dissolved CO_2 and dissolution flux for case 4-i. Legends for left- and right-hand subplots are same.

Figure 11. The heterogeneous realizations (dotted lines), homogeneous with considering cross-diffusion (solid line), and homogeneous without considering cross-diffusion (dashed line) averaged dissolved CO_2 and dissolution flux for case 9-i. Legends for left- and right-hand subplots are same.

Figure 12. The averaged dissolved CO₂ and dissolution flux averaged for all the realizations of heterogeneous cases. Legends for left- and right-hand subplots are same.

4. Conclusions

In this study, we examined the CO_2-N_2 mixture dissolution in water-saturated porous media by considering the cross-diffusion effects through numerical simulations. Furthermore, we extended our study by including permeability heterogeneity in our simulations. The analysis of pure CO_2 dissolution reveals a relationship between the Rayleigh number and different quantification parameters of the dissolution process, including the dissolution flux and transition time. We proposed some correlations to predict the onset of convection, the onset of a quasi-steady state, the onset of a shut-down regime, and the dissolution flux of pure cases. The key takeaway point is that, despite the pure CO_2 in which the dissolution flux could be estimated based on the Rayleigh number, more complexity arises from the cross-diffusion in the CO₂–N₂–water system. It seems that at lower temperatures, the N₂ impurity highly impacts and lowers the CO₂ dissolution; however, at higher temperatures, sequestrating the CO₂–N₂ mixture could be a more reasonable choice, either because of being an economically more feasible option or enhancing the CO₂ dissolution behavior. We also proposed some relations based on the Rayleigh number to predict the onset of convection, the onset of the quasi-steady state, and the onset of the shut-down regime for CO₂–N₂ cases. The interpretation of the heterogeneous cases implies that heterogeneity, in most cases, decreases the averaged dissolved CO₂, weakens the convective flow, and lowers the dissolution flux. Moreover, a stronger influence on the dissolution process at lower pressures is possible. The outcomes of this study declare that ignoring the changes in the diffusion matrix and cross-diffusion effects can cause major errors in predicting CO₂–N₂ mixture dissolution behavior. We hope that the results of this study pave the way for future studies regarding impure CO₂ sequestration in saline aquifers.

Author Contributions: Conceptualization, S.M., M.S., R.M., S.O. and I.S.; Methodology, S.M., M.S., R.M. and S.O.; Software, S.M. and M.S.; Validation, S.M., M.S., R.M. and S.O.; Formal analysis, S.M., M.S., R.M. and S.O.; Investigation, S.M., M.S., R.M., S.O. and I.S.; Resources, I.S.; Data curation, S.M., M.S. and R.M.; Writing—original draft, S.M., M.S., R.M. and S.O.; Writing—review & editing, S.M., M.S., R.M. and S.O.; Viriting—treview & editing, S.M., M.S., R.M. and S.O.; Viriting—treview & editing, S.M., M.S., R.M. and S.O.; Writing—treview & editing, S.M., M.S., R.M. and S.O.; Viriting—treview & editing, S.M., M.S., R.M. and S.O.; Writing—treview & editing, S.M., M.S., R.M. and

Funding: The work has received funding from the FiF with project number 40101383. Authors have received support from the Group of Geothermal Science and Technology, Institute of Applied Geosciences, Technische Universität Darmstadt.

Acknowledgments: Authors have received support from the Group of Geothermal Science and Technology, Institute of Applied Geosciences, Technische Universität Darmstadt. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Open Access Publishing Fund of Technical University of Darmstadt.

Conflicts of Interest: On behalf of all authors, the corresponding authors states that there is no conflict of interest.

References

- 1. Rubin, E.; De Coninck, H. *IPCC Special Report on Carbon Dioxide Capture and Storage*; Cambridge University Press: Cambridge, UK, 2005; p. 14.
- Wang, K.; Xu, T.; Wang, F.; Tian, H. Experimental study of CO₂-brine-rock interaction during CO₂ sequestration in deep coal seams. Int. J. Coal Geol. 2016, 54, 265–274. [CrossRef]
- Ajayi, T.; Awolayo, A.; Gomes, J.; Parra, H.; Hu, J. Large scale modeling and assessment of the feasibility of CO₂ storage onshore abu dhabi. *Energy* 2019, 185, 653–670. [CrossRef]
- 4. Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO₂ storage capacity estimation: Issues and development of standards. *Int. J. Greenh. Gas Control.* **2007**, *1*, 62–68. [CrossRef]
- Talebian, M.; Al-Khoury, R.; Sluys, L. A computational model for coupled multiphysics processes of CO₂ sequestration in fractured porous media. *Adv. Water Resour.* 2013, 59, 238–255. [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Dai, Z.; Cole, D.; Moortgat, J. Critical dynamics of gravito-convective mixing in geological carbon sequestration. *Sci. Rep.* 2016, 6, 1–13. [CrossRef]
- Du, S.; Su, X.; Xu, W. Assessment of CO₂ geological storage capacity in the oilfields of the Songliao Basin, North Eastern China. *Geosci. J.* 2016, 20, 247–257. [CrossRef]
- Singh, M.; Chaudhuri, A.; Chu, S.; Stauffer, P.; Pawar, R. Analysis of evolving capillary transition, gravitational fingering, and dissolution trapping of CO₂ in deep saline aquifers during continuous injection of supercritical CO₂. *Int. J. Greenh. Gas Control* 2019, 82, 281–297. [CrossRef]
- 9. Singh, M.; Chaudhuri, A.; Stauffer, P.; Pawar, R. Simulation of gravitational instability and thermo-solutal convection during the dissolution of CO₂ in deep storage reservoirs. *Water Resour. Res.* **2020**, *56*, e2019WR026126. [CrossRef]
- Amarasinghe, W.; Fjelde, I.; Rydland, J.-A.; Guo, Y. Effects of permeability on CO₂ dissolution and convection at reservoir temperature and pressure conditions: A visualization study. *Int. J. Greenh. Gas Control* 2020, 99, 103082. [CrossRef]
- 11. Amarasinghe, W.; Fjelde, I.; Giske, N.; Guo, Y. CO₂ convective dissolution in oil-saturated unconsolidated porous media at reservoir conditions. *Energies* **2021**, *14*, 233. [CrossRef]

- 12. Riaz, A.; Cinar, Y. Carbon dioxide sequestration in saline formations: Part 1—Review of the modeling of solubility trapping. *J. Pet. Sci. Eng.* **2014**, *124*, 367–380. [CrossRef]
- Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.; Ennis-King, J. Convective dissolution of CO₂ in saline aquifers: Progress in modeling and experiments. *Int. J. Greenh. Gas Control* 2015, 40, 238–266. [CrossRef]
- 14. Mahmoodpour, S.; Rostami, B. Design-of-experiment-based proxy models for the estimation of the amount of dissolved CO₂ in brine: A tool for screening of candidate aquifers in geo-sequestration. *Int. J. Greenh. Gas Control* **2017**, *56*, 261–277. [CrossRef]
- 15. Soltanian, M.; Amooie, M.; Cole, D.; Darrah, T.; Graham, D.; Pfiffner, S.; Phelps, T.; Moortgat, J. Impacts of methane on carbon dioxide storage in brine formations. *Groundwater* **2018**, *56*, 176–186. [CrossRef] [PubMed]
- Jun, Y.-S.; Giammar, D.; Werth, C. Impacts of Geochemical Reactions on Geologic Carbon Sequestration. *Environ. Sci. Technol.* 2013, 47, 3–8. [CrossRef]
- 17. Soltanian, M.R.; Hajirezaie, S.; Hosseini, S.A.; Dashtian, H.; Amooie, M.A.; Meyal, A.; Ershadnia, R.; Ampomah, W.; Islam, A.; Zhang, X. Multicomponent reactive transport of carbon dioxide in fluvial heterogeneous aquifers. J. Nat. Gas Sci. Eng. 2019, 65, 212–223. [CrossRef]
- Zhang, W.; Xu, T.; Li, Y. Modeling of fate and transport of coinjection of H₂S with CO₂ in deep saline formations. *J. Geophys. Res. Solid Earth* 2011, 116. [CrossRef]
- 19. Davison, J.; Thambimuthu, K. An overview of technologies and costs of carbon dioxide capture in power generation. *Proc. Inst. Mech. Eng. Part A J. Power Energy* **2009**, 223, 201–212. [CrossRef]
- Jacquemet, N.; Picot-Colbeaux, G.; Vong, C.Q.; Lions, J.; Bouc, O.; Jérémy, R. Intrusion of CO₂ and impurities in a freshwater aquifer—Impact evaluation by reactive transport modelling. *Energy Procedia* 2011, 4, 3202–3209. [CrossRef]
- Bachu, S. CO₂ storage in geological media: Role, means, status and barriers to deployment. *Prog. Energy Combust. Sci.* 2008, 34, 254–273. [CrossRef]
 Jiang, X. A review of physical modelling and numerical simulation of long-term geological storage of CO₂. *Appl. Energy* 2011, 88, 3557–3566. [CrossRef]
- Li, D.; Jiang, X.; Meng, Q.; Xie, Q. Numerical analyses of the effects of nitrogen on the dissolution trapping mechanism of carbon dioxide geological storage. *Comput. Fluids* 2015, 114, 1–11. [CrossRef]
- 24. Wilkinson, M.; Boden, J.; Panesar, R.; Allam, R. CO₂ capture via oxyfuel firing: Optimisation of a retrofit design concept for a refinery power station boiler. In Proceedings of the First National Conference on Carbon Sequestration, Washington DC, USA, 15–17 May 2001; Volume 5, pp. 15–17.
- 25. Pipitone, G.; Bolland, O. Power generation with CO₂ capture: Technology for CO₂ purification. *Int. J. Greenh. Gas Control* **2009**, *3*, 528–534. [CrossRef]
- Porter, R.T.; Fairweather, M.; Pourkashanian, M.; Woolley, R. The range and level of impurities in CO₂ streams from different carbon capture sources. *Int. J. Greenh. Gas Control* 2015, 36, 161–174. [CrossRef]
- 27. Bachu, S.; Bennion, B. Chromatographic partitioning of impurities contained in a CO₂ stream injected into a deep saline aquifer: Part 1. effects of gas composition and in situ conditions. *Int. J. Greenh. Gas Control* **2009**, *3*, 458–467. [CrossRef]
- Wei, N.; Li, X.; Wang, Y.; Wang, Y.; Kong, W. Numerical study on the field-scale aquifer storage of CO₂ containing N₂. *Energy Procedia* 2013, 37, 3952–3959. [CrossRef]
- Ziabakhsh-Ganji, Z.; Kooi, H. Sensitivity of joule–Thomson cooling to impure CO₂ injection in depleted gas reservoirs. *Appl. Energy* 2014, 113, 434–451. [CrossRef]
- 30. Wu, B.; Jiang, L.; Liu, Y.; Yang, M.; Wang, D.; Lv, P.; Song, Y. Experimental study of two-phase flow properties of CO₂ containing N₂ in porous media. *RSC Adv.* **2016**, *6*, 59360–59369. [CrossRef]
- 31. Li, D.; Jiang, X. Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline aquifers. *Appl. Energy* **2017**, *185*, 1411–1423. [CrossRef]
- 32. Wu, B.; Jiang, L.; Liu, Y.; Lyu, P.; Wang, D.; Li, X.; Song, Y. An experimental study on the influence of co2 containing N₂ on CO₂ sequestration by x-ray CT scanning. *Energy Procedia* **2017**, *114*, 4119–4128. [CrossRef]
- Mahmoodpour, S.; Rostami, B.; Emami-Meybodi, H. Onset of convection controlled by N₂ impurity during CO₂ storage in saline aquifers. *Int. J. Greenh. Gas Control* 2018, 79, 234–247. [CrossRef]
- Mahmoodpour, S.; Amooie, M.A.; Rostami, B.; Bahrami, F. Effect of gas impurity on the convective dissolution of CO₂ in porous media. *Energy* 2020, 199, 117397. [CrossRef]
- 35. Lei, H.; Li, J.; Li, X.; Jiang, Z. Numerical modeling of co-injection of N₂ and O₂ with CO₂ into aquifers at the tongliao ccs site. *Int. J. Greenh. Gas Control* **2016**, *54*, 228–241. [CrossRef]
- Li, D.; Zhang, H.; Li, Y.; Xu, W.; Jiang, X. Effects of N₂ and H₂S binary impurities on CO₂ geological storage in stratified formation—A sensitivity study. *Appl. Energy* 2018, 229, 482–492. [CrossRef]
- 37. Talman, S. Subsurface geochemical fate and effects of impurities contained in a CO₂ stream injected into a deep saline aquifer: What is known. *Int. J. Greenh. Gas Control* **2015**, *40*, 267–291. [CrossRef]
- Wang, J.; Wang, Z.; Ryan, D.; Lan, C. A study of the effect of impurities on CO₂ storage capacity in geological formations. *Int. J. Greenh. Gas Control* 2015, 42, 132–137. [CrossRef]
- Ershadnia, R.; Hajirezaei, S.; Gershenzon, N.; Ritzi, R., Jr.; Soltanian, M.R. Impact of methane on carbon dioxide sequestration within multiscale and hierarchical fluvial architecture. In Proceedings of the 2019 AAPG Eastern Section Meeting: Energy from the Heartland, Columbus, OH, USA, 12–16 October 2019.
- 40. Neufeld, J.; Hesse, M.; Riaz, A.; Hallworth, M.; Tchelepi, H.; Huppert, H. Convective dissolution of carbon dioxide in saline aquifers. *Geophys. Res. Lett.* 2010, 37. [CrossRef]

- 41. Taheri, A.; Torsaeter, O.; Wessel-Berg, D.; Soroush, M. Experimental and simulation studies of density-driven-convection mixing in a Hele-Shaw geometry with application for CO₂ sequestration in brine aquifers. In Proceedings of the SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, 4–7 June 2012; Society of Petroleum Engineers: Richardson, TX, USA, 2012.
- 42. MacMinn, C.; Neufeld, J.; Hesse, M.; Huppert, H. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. *Water Resour. Res.* 2012, 48. [CrossRef]
- 43. Mahmoodpour, S.; Rostami, B.; Soltanian, M.R.; Amooie, M.A. Convective dissolution of carbon dioxide in deep saline aquifers: Insights from engineering a high-pressure porous visual cell. *Phys. Rev. Appl.* **2019**, *12*, 034016. [CrossRef]
- 44. Mahmoodpour, S.; Rostami, B.; Soltanian, M.R.; Amooie, M.A. Effect of brine composition on the onset of convection during co2 dissolution in brine. *Comput. Geosci.* 2019, 124, 1–13. [CrossRef]
- 45. Tang, Y.; Li, Z.; Wang, R.; Cui, M.; Wang, X.; Lun, Z.; Lu, Y. Experimental study on the density-driven carbon dioxide convective diffusion in formation water at reservoir conditions. *ACS Omega* **2019**, *4*, 11082–11092. [CrossRef] [PubMed]
- Fu, B.; Zhang, R.; Liu, J.; Cui, L.; Zhu, X.; Hao, D. Simulation of CO₂ rayleigh convection in aqueous solutions of NaCl, KCl, MgCl₂ and CaCl₂ using lattice boltzmann method. *Int. J. Greenh. Gas Control* 2020, *98*, 103066. [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Gershenzon, N.; Dai, Z.; Ritzi, R.; Xiong, F.; Cole, D.; Moortgat, J. Dissolution trapping of carbon dioxide in heterogeneous aquifers. *Environ. Sci. Technol.* 2017, *51*, 7732–7741. [CrossRef] [PubMed]
- Raad, S.M.J.; Hassanzadeh, H. Does impure CO₂ impede or accelerate the onset of convective mixing in geological storage? *Int. J. Greenh. Gas Control* 2016, 54, 250–257. [CrossRef]
- 49. Kim, M.C.; Song, K.H. Effect of impurities on the onset and growth of gravitational instabilities in a geological CO₂ storage process: Linear and nonlinear analyses. *Chem. Eng. Sci.* **2017**, 174, 426–444. [CrossRef]
- 50. Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO₂ storage capacity estimation: Methodology and gaps. *Int. J. Greenh. Gas Control.* **2007**, *1*, 430–443. [CrossRef]
- 51. Raad, S.M.J.; Hassanzadeh, H. Prospect for storage of impure carbon dioxide streams in deep saline aquifers—A convective dissolution perspective. *Int. J. Greenh. Gas Control* **2017**, *63*, 350–355. [CrossRef]
- Omrani, S.; Mahmoodpour, S.; Rostami, B.; Sedeh, M.S.; Sass, I. Diffusion coefficients of CO₂–SO₂–water and CO₂–N₂–water systems and their impact on the CO₂ sequestration process: Molecular dynamics and dissolution process simulations. *Greenh. Gases: Sci. Technol.* 2021, 11, 764–779. [CrossRef]
- Rives, R.; Mialdun, A.; Yasnou, V.; Shevtsova, V.; Coronas, A. Experimental determination and predictive modelling of the mutual diffusion coefficients of water and ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. *J. Mol. Liq.* 2019, 296, 111931. [CrossRef]
- 54. Mialdun, A.; Bataller, H.; Bou-Ali, M.M.; Braibanti, M.; Croccolo, F.; Errarte, A.; Ezquerro, J.M.; Fernández, J.J.; Gaponenko, Y.; García-Fernández, L.; et al. Preliminary analysis of diffusion coefficient measurements in ternary mixtures 4 (dcmix4) experiment on board the international space station. *Eur. Phys. J. E* **2019**, *42*, 1–9. [CrossRef]
- Mialdun, A.; Bou-Ali, M.M.; Braibanti, M.; Croccolo, F.; Errarte, A.; Ezquerro, J.M.; Fernandez, J.J.; García-Fernández, L.; Galand, Q.; Gaponenko, Y.; et al. Data quality assessment of diffusion coefficient measurements in ternary mixtures 4 (dcmix4) experiment. *Acta Astronaut.* 2020, 176, 204–215. [CrossRef]
- 56. Lengler, U.; De Lucia, M.; Kühn, M. The impact of heterogeneity on the distribution of CO₂: Numerical simulation of CO₂ storage at Ketzin. *Int. J. Greenh. Gas Control* **2010**, *4*, 1016–1025. [CrossRef]
- 57. Delbari, M.; Afrasiab, P.; Loiskandl, W. Using sequential gaussian simulation to assess the field-scale spatial uncertainty of soil water content. *Catena* **2009**, *79*, 163–169. [CrossRef]
- Safikhani, M.; Asghari, O.; Emery, X. Assessing the accuracy of sequential gaussian simulation through statistical testing. *Stoch. Environ. Res. Risk Assess.* 2017, *31*, 523–533. [CrossRef]
- Jia, W.; McPherson, B.; Pan, F.; Dai, Z.; Moodie, N.; Xiao, T. Impact of three-phase relative permeability and hysteresis models on forecasts of storage associated with CO₂-EOR. *Water Resour. Res.* 2018, 54, 1109–1126. [CrossRef]
- 60. Bachu, S.; Nordbotten, J.; Celia, M. Evaluation of the spread of acid-gas plumes injected in deep saline aquifers in western canada as an analogue for CO₂ injection into continental sedimentary basins. In *Greenhouse Gas Control Technologies 7*; Elsevier: Amsterdam, The Netherlands, 2005; pp. 479–487.
- 61. Ennis-King, J.; Preston, I.; Paterson, L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. *Phys. Fluids* **2005**, *17*, 084107. [CrossRef]
- 62. Islam, A.; Lashgari, H.R.; Sephernoori, K. Double diffusive natural convection of CO₂ in a brine saturated geothermal reservoir: Study of non-modal growth of perturbations and heterogeneity effects. *Geothermics* **2014**, *51*, 325–336. [CrossRef]
- 63. Lapwood, E. Convection of a fluid in a porous medium. In *Mathematical Proceedings of the Cambridge Philosophical Society;* Cambridge University Press: Cambridge, UK, 1948; Volume 44, pp. 508–521.
- 64. Raad, S.M.J.; Hassanzadeh, H. Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile. *Phys. Rev. E* 2015, *92*, 053023. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.