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Abstract: We present large eddy simulations of a midlatitude open ocean front using a modified state-
of-the-art computational fluid dynamics code. We investigate the energy and information fluxes at
the submesoscale/small-scale range in the absence of any atmospheric forcing. We find submesoscale
conditions (Ro∼1, Ri∼1) near the surface within baroclinic structures, related to partially imbalanced
frontogenetic activity. Near the surface, the simulations show a significant scale coupling on scales
larger than ∼103 (m). This is manifested as a strong direct energy cascade and intense mutual
communication between scales, where the latter is evaluated using an estimator based on Mutual
Information Theory. At scales smaller than∼103 (m), the results show near-zero energy flux; however,
at this scale range, the estimator of mutual communication still shows values corresponding with a
significant level of communication between them. This fact motivates investigation into the nature
of the self-organized turbulent motion at this scale range with weak energetic coupling but where
communication between scales is still significant and to inquire into the existence of synchronization or
functional relationships between scales, with emphasis on the eventual underlying nonlocal processes.

Keywords: submesoscale; turbulence; frontogenesis; energy cascade; mutual communication; ocean
density fronts

1. Introduction

In the past two decades, numerical predictions and observations have revealed a
richness of turbulent submesocale processes in the upper ocean. Within these interesting
turbulent upper ocean processes, there has been special interest in the study of density fronts
to strengthen the understanding of the processes that catalyze smaller-scale motion in order
to parameterize them. Such processes include frontogenesis [1,2], frontal instabilities, and
the breakdown of balanced flow [3–6] and their role in promoting the collapse of baroclinical
waves and the generation of submesoscale eddies, the mixed-layer restratification [7],
the flattening of the spectra in the submesoscale range [8], the development of the direct
energy cascade [9,10], and the development of high vertical velocities [4,6,11], as well as
their important implications for primary productivity and climate [11].

Density fronts are ubiquitous in the ocean. They tilt the isopycnals and, hence, restrat-
ify the mixed layer, causing a secondary circulation with high vertical velocities [12,13].
The main departure from balance occurs in the vicinity of fronts, where the flow is strongly
affected by the secondary circulation, which involves frontogenesis [8] and which can also
be promoted by alongfront winds [14]. Fronts have also been identified as regions with
high energy dissipation, high turbulent mixing [2] and where the direct energy cascade can
take place given the high vertical shear due to frontogenesis [15].

Recent research on complex systems and turbulence has investigated the characteristics
of communication [16–18] and information flows [19,20] between the scales of motion,
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giving an alternative standpoint that allows for building a more complex picture of the
phenomenon of turbulence by complementing the current purely dynamic view based on
classical mechanics with features from information theory.

The aim of the present manuscript is to investigate the energy and information fluxes
at the submesoscale/small-scale range in a midlatitude upper ocean front using results from
a highly resolved LES model allowing simulation of the submesoscale–small scale range
directly in order to analyze the characteristics of information flow in the context of current
knowledge of this widely studied turbulent system. A state-of-the-art computational
fluid dynamics (CFD) code is used to adapt the large eddy simulation (LES) model for
geophysical flows. This configuration and detailed descriptions of hydrodynamics and
turbulence modeling were previously reported by [21].

2. Computational Model

Simulations were performed using a periodic nonhydrostatic LES model [21]. The state-
of-the-art CFD code ANSYS-FLUENT was modified to include the Earth’s rotation and
water column stratification in order to describe the geophysical fluid flows. For the cal-
culation of subgrid stresses, the well-known Smagorinsky model [22] was modified to
employ a nonisotropic computational grid introducing the correction proposed by [23]
into the calculation of the mixing length. This modification allowed us to use nonisotropic
grids when the usage of an isotropic grid was prohibitive due to limitations regarding
the computational capacity. The size of the model domain was 10 km in the crossfront
direction, 5 km in the alongfront direction, and 500 m in depth (Figure 1a). The domain
was discretized with 2.2× 106 cells, with a hexahedral grid of 24 m for the horizontal
resolution, a constant 3 m vertical resolution within the first 50 m of depth, a stretched
vertical resolution between the depths of 50 m (dz = 3 m) and 250 m (dz = 24 m), and a
constant 24 m vertical resolution between the depths of 50 m and 500 m. The model time
step was 120 s.

The domain alongfront direction was periodic, and the crossfront direction as well
as the top and bottom were taken to be stress-free boundaries. We used Second Order
Discretization Schemes and the Least Squares Cell-Based Method to calculate the gradients.
For the pressure–velocity coupling the SIMPLE (semi-implicit method for pressure-linked
equations) algorithm was adopted.

The model was initialized with a 50 m deep mixed layer and stable stratification
between 50 m and 500 m. Within the first 50 m, the density distribution in the crossfront
direction was given by

ρ(y, 0) =
1
2

∆ρ

(
1− exp

( y
2
))(

1 + exp
( y

2
)) , (1)

with ∆ρ = 0.1 kg/m3, where y represented the horizontal coordinate in the acrossfront
direction, as shown in Figure 1b. Below the mixed layer, the horizontal density gradient
extended up to a depth of 250 m. In this zone,

∆ρ = 0.1
(250 + z)

200
, (2)

where z was the vertical coordinate. The velocity field was initialized with a baroclinic jet
in thermal wind balance

u = − 1
ρ f

∂p
∂y

, (3)

where u was the velocity in the alongfront direction and the pressure p was estimated from
the hydrostatic balance

∂p
∂z

= −ρg, (4)
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with g as the acceleration due to gravity. The model was set up using a midlatitude Coriolis
parameter f = 0.86× 10−4 s−1. This simulation did not consider any atmospheric forcing
(winds, heating, cooling, etc.).

Under these conditions, Stone’s fastest-growing rate length scale and growth time [24,25]
reached 3 km and 1 day, and both were well resolved with the domain size, grid resolution,
and time step.

Figure 1. The computational model. The grid and dimensions (top) and the initial density distribution
(bottom).

3. Energy Transfer, Hydrodynamics, and Information Processes
3.1. Energy Transfer and Hydrodynamics Processes

A spectral representation of the kinetic energy balance is presented below (Equation (5)),
where the local variation of kinetic energy in the wave number space was estimated by the
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sum of the right-side terms, which described, from left to right, the advection of kinetic
energy, pressure work, the buoyancy term, and dissipation.

1
2

∂û · û∗
∂t

= −û · (û · ∇)u∗ + û · ∇̂p
∗
+ ŵ · b̂∗ + û · D̂∗ (5)

Here, u is the velocity vector, p is the pressure, w denotes the vertical velocity compo-
nent, b is the buoyancy, and D is the dissipative term. The operators (̂·) and (·)∗ denote the
Fourier transform and conjugate, respectively. Through the integration of the advective
term of Equation (5) over an appropriate k shell [k = 0 to kh], it is possible to estimate the
spectral kinetic energy flux and to express the kinetic energy cascade explicitly as

Π(k) = −
∫ k=kh

k=0
û ·
(

û · ∇
)

u∗dk (6)

where kh is the maximum wavelength allowed by the domain dimensions.
The intensity of the frontogenesis can be addressed by the calculation of the frontoge-

nesis parameter (Fs), which is a measure of the modification of the horizontal buoyancy
gradient magnitude due to the straining by the geostrophic flow [6,8,13], where

Fs = Qs · ∇hρ. (7)

∇hρ is the horizontal density gradient, and the Q vector is given by

Qs = −
(

∂u
∂x

∂ρ

∂x
+

∂v
∂x

∂ρ

∂y
,

∂u
∂y

∂ρ

∂x
+

∂v
∂y

∂ρ

∂y

)
. (8)

Here, u, v are the horizontal velocity components in the x, y directions, and ρ is
the density.

We were interested in determining whether the processes promoting the direct energy
cascade were related to a balanced or unbalanced dynamics. The balance of pressure,
Coriolis, and centrifugal forces is expressed as in [26]:

−∇h · (uh · ∇huh) + f ζz − 1
ρ
∇2

h p = 0. (9)

The degree of imbalance is assessed by the normalized error in the gradient wind
balance:

εgw =
| − ∇h · (uh · ∇huh) + f ζz − 1

ρ∇2
h p|

|∇h · (uh · ∇huh)|+ f |ζz| − | 1ρ∇2
h p|+ µ

. (10)

Here,

µ = f ζz
RMS + |

1
ρ
∇2

h p|RMS (11)

was added to avoid the appearance of strong imbalance in regions of the flow, where the
circulation was weak [8,27]. The magnitude of εgw near 0 indicated balanced dynamics,
whereas values near 1 indicated the presence of fully unbalanced processes.

3.2. Information-Related Processes

Shannon’s entropy is a quantity associated with the information content in a complex
system, interpreted in a statistical sense. If the probability of an event is 1, then it does not
give us information; we know that the event will always happen. The same thing happens
when the probability is 0; we do not obtain information about those events since they never
happen. Due to these properties, entropy is a concave functional in the probability density
function; it reaches a maximum between probability 0 and 1. Therefore, entropy can be
interpreted as the information content or predictability of a system; the higher the entropy,
the less predictable the system. On the other hand, the mutual information measures
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the amount of information shared between two systems; this can be interpreted as the
information contained in the correlations or interactions of two systems. If the systems
are independent, then the mutual information is zero, and their joint probability can be
broken down as a product. Note how the mutual information and entropy complement
each other. If the mutual information between two systems is zero, then the (joint) entropy
of both is simply the sum of their individual entropy, while when they interact, there is a
contribution to the entropy that is only due to the interactions.

If we have a system with a (marginal) probability density ρ(X) and another with a
density ρ(Y), their joint density will be ρ(X, Y). The entropy of a single system is defined
by

S(x) =
∫

ρ(X) log(ρ(X))dX, (12)

while their mutual information is

I(X, Y) =
∫ ∫

ρ(X, Y) log
(

ρ(X, Y)
ρ(X)ρ(Y)

)
dXdY. (13)

The relationship between both quantities can be summarized in a diagram shown in
Figure 2.

Figure 2. The relationship between entropy and mutual information.

One of the problems we face in calculating these quantities is that they depend on
density functions; this complicates things, especially when they have long probability tails,
as in the case of turbulence. Due to this, the theory proposes the use of estimators; one of
the best known and applied is the ’nearest neighbors’ type, which we used in this study to
calculate the entropy and mutual information.

In this work, we used the Kozachenko–Leonenko estimator for the entropy [28],

S = ψ(N)− ψ(k) + log cd +
d
N ∑ log(εi). (14)

In the case of mutual information, we used the Kraskov–Stögbauer–Grassberger estimator
(KSG) [29]

I(X, Y) ≈ ψ(N) + ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉. (15)

In both equations,ψ(x) represents the digamma function, N is the number of data, εi is a
distance dependent on the value of k, (nx, ny) are the number of points that are less than εi
apart, and 〈·〉 represents the average. In both estimators, we have a free parameter k, which
is the number of nearest neighbors to consider. This was used to determine the value of nx
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and ny in the KSG algorithm and εi in the KL algorithm. In this study, k = 4 was set for the
estimation of both quantities (the value recommended in previous studies for turbulent
systems [17]). The algorithm used for the mutual information was the one first proposed
by [30], which partitions the X−Y space into a square grid. Finally, we mention that the
distance selected to apply the estimators was the Euclidean distance.

4. Simulation

Using the model described above, we simulated the time evolution of the density
front for 20 days. The front began meandering and developing instabilities within the
mixed layer two days after initialization. These instabilities became increasingly large in
amplitude, resulting in its collapse and the subsequent emergence of coherent structures
around the fourth day. Near the seventh day, the turbulence was fully developed. We show
the results from nine days after the model’s initialization.

The results showed a strongly unstable shear flow within the first 50 m of depth.
In Figure 3, we plot an isosurface of Ro = ζ

f = 1, and the plane colored green is located at a
depth of 50 m. This 3D representation of the submesoscale structures has been overlaid in
all snapshots considered in the present analysis; thus, one can directly observe the spatial
correlation between the variable under consideration and the submesoscale structure.

Figure 3. The submesoscale structures (Ro = 1 iso-surface) within the mixed layer. The planes at the
depths of 25 m (red), 50 m (green), and 75 m (blue).

Figure 4 shows the velocity field. In contrast to the flow characteristics found within
the mixed layer, below 50 m in depth, the flow was marginally unstable, thereby indicating
that even in the unforced case considered here, ocean fronts promote turbulent mixing
in the upper ocean, which is consistent with the observations [14]. The Rossby number
distribution was estimated from the vertical relative vorticity through Ro = ζz

f . Regions
of Ro∼1 were found only in the first 50 m of depth within the mixed layer. Inside the
submesoscale structures, the Rossby number took even higher values as shown in the left
panel of Figure 5.
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Figure 4. The velocity field at the depths of 25 m (left), 75 m (middle), and 300 m (right). The struc-
tures in grey are the projections of the Ro = 1 isosurface.

Figure 5. The Rossby number distribution at the depths of 25 m (left), 75 m (middle), and 300 m
(right).

At 75 m deep, there were only few regions where the Rossby number reached a
maximum value of Ro∼0.4, and Ro∼0.1 was found in the deeper waters at 300 m (right
panel of Figure 5). Through the inspection of the kinetic energy spectra, one can indirectly
infer some characteristics of the kinetic energy cascade of turbulent flows. The interior
quasi-geostrophic theory [31] predicted for the balanced mesoscale flow a kinetic energy
spectrum slope of −3, indicating an inverse energy cascade. The submesoscale dynamics
have been shown to flatten the spectral kinetic energy distribution to a −2 slope [4],
and although the surface quasi-geostrophic theory [32] predicted the same spectrum shape,
this theory, as a model for submesoscale dynamics, poorly described the direct kinetic
energy cascade present in simulations including nongeostrophic processes [33]. In this
case, the surface quasigeostrophic theory, including nongestrophic processes predicted a
spectrum with a slope of −5/3 [34].

We computed the 1D kinetic and potential energy spectra, using the transects of
the horizontal velocity and density variation at different depths, as shown in Figure 6.
The turbulent structures were found to be more energetic within the top 50 m of the mixed
layer. In this region, the spectrum was flatter than the spectrum computed at 75 m deep
in the range of length scale between 0 m and 125 m, which was in agreement with the
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previous work [4,11]. The calculations of the spectral kinetic energy flux plotted in Figure 7
indicated that in the near ocean surface region, at 25 m deep, a strong direct kinetic energy
flux occurred for the horizontal scales larger than 1 km. At the same depth, for scales
somewhat smaller than 1 km, the results showed an inverse kinetic energy flux of similar
magnitude to the inverse kinetic energy flux that took place at 75 m deep for horizontal
scales larger than 2.5 km. In deeper waters, the spectral kinetic energy flux was weak.

Figure 6. The 1D kinetic energy and available potential energy wave number spectra along the front.

Figure 7. The kinetic energy flux.
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In the LES models, the subgrid momentum diffusion is also a measure of the turbulent
kinetic energy dissipation at the subgrid scale [35]. Figure 8 shows the subgrid momentum
diffusion at the depths of 25 m, 75 m, and 300 m. The near surface results showed large
zones of high subgrid momentum diffusion, while at higher depths, these zones became
smaller in extension and intensity. These findings were not surprising and were in the same
direction as the predictions of the direct kinetic energy flux; in the absence of atmospheric
forcing and due to the frontal processes, the upper ocean is subject to direct kinetic energy
flux and high subgrid momentum diffusion.

Figure 8. The subgrid momentum diffusion distribution at the depths of 25 m (left), 75 m (middle),
and 300 m (right).The Ro = 1 isosurface projection is shown as a grey region.

The difference from the gradient wind balance was computed and plotted in Figure 9.
In agreement with [8], the unbalanced pattern was found to be affected by the frontogenetic
activity (Figure 10). The processes within the mixed layer were found to be partially
imbalanced, where only a few small regions adjacent to the submesoscale structures reached
values near 0.8. However, apart from these limited small regions, εgw reached values
between 0.4 and 0.6; hence, it was not possible to assess the predominance of the balanced
or unbalanced processes in the promotion of the direct kinetic energy flux.

Figure 9. The error in the wind gradient balance at the depths of 25 m (left), 75 m (middle), and 300
m (right). The Ro = 1 isosurface projection is shown as a grey region.
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Figure 10. The frontogenesis factor at the depths of 25 m (left), 75 m (middle), and 300 m (right).
The Ro = 1 isosurface projection is shown as a grey region.

Given turbulence is a scaling phenomenon, we studied the entropy distribution in
Fourier space. We used the same 1D velocity transects employed to calculate kinetic energy
fluxes to perform entropy calculations. The velocity field was filtered according to

uk< =
∫

q≤k
uqeiqxdq uk> =

∫
q≥k

uqeiqxdq. (16)

Therefore, we can decompose the velocity field into two parts u = uk< + uk> asso-
ciated with the large scale (u = uk<) and the small scale (u = uk>), where both ranges
interact; the evolution of the small scale is not independent from the large scale. Therefore,
to complement the entropy, we calculated the mutual information between both parts
I(uk<, uk>).

The results for the entropy are shown in Figure 11. We observed a decrease in the
entropy for the small scales (black line), while for the large scales, the entropy quickly
saturated (red line).

Figure 12 shows the mutual information between the filtered velocity fields. The appar-
ent sharp increase in mutual information near the maximum wave number was probably
due to the fact that we were approaching the minimum resolution of the simulation; so,
this part of the result should not be considered reliable.



Fluids 2023, 8, 17 11 of 14

Figure 11. The entropy distribution.

Figure 12. The mutual communication between scales.
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We observed a logarithmic decrease in entropy (note that the scale of the k axis is
logarithmic); this behavior was previously observed in the inertial range ([17]). In this case,
we observed that the decrease in information was characterized by a slope of approx. −1.4,
as shown in Figure 11. In the mutual information, we observed that a decoupling between
the scales occurred at k ≈ 2× 10−2, which corresponded to a spatial scale of ∼ 102(m)
(remember that if the mutual information is in the order of 0, then the joint pdf of the
system can be decomposed into a product ρ(uk<, uk>) = ρ(uk<)ρ(uk>)).

Previously, Shannon’s entropy has been interpreted as a system’s predictability [36]; in
this sense, the largest scales are the least predictable. However, when complementing this
interpretation with the mutual information, we see that at the large scales, more information
was contained in the interactions, until the decoupling of the pdf occurred at small scales.

5. Summary and Conclusions

A modified state-of-the-art computational fluid dynamics code [21] was used as a
framework to implement a highly resolved LES model of a midlatitude upper ocean
front. Through numerical simulations, we investigated the spectral energy flux at the
submesoscale/small-scale range in order to assess the inverse and forward kinetic energy
fluxes at these scales and to inquire into the processes that drive them in the absence of any
atmospheric forcing. At the surface, we found a strong direct kinetic energy flux. In this
upper ocean region, the subgrid momentum diffusion was also intense. The computed
deviation from the gradient wind balance showed that these processes were partially
imbalanced, with some frontogenetic regions even exhibiting mostly balanced dynamics.

In deeper waters, the calculations predicted mostly an inverse kinetic energy flux.
Deeper than 50 m, we did not observe submesoscale conditions, as Ro < 0.4, and the
frontogenesis was almost imperceptible; at 75 m deep, there were only a few small regions
with frontogenetic activity.

At the surface, the front showed significant coupling at scales larger than ∼103 (m).
This was manifested as a strong direct energy cascade and intense communication between
scales. At scales smaller than ∼103 (m), the results showed near-zero energy flux, associ-
ated with weakly energetic coupled scales of motion; however, at the same scale range,
the estimator of the mutual information flow still showed values that evidenced a signifi-
cant level of communication between them. This motivates us to investigate the nature of
the self-organized turbulent motion at this scale range with weak energetic coupling but
where communication between scales is still significant and to inquire into the existence
of synchronization or functional relationships between scales, with an emphasis on the
eventual underlying nonlocal processes. This would enable creation of a more complex
picture of the mechanics of turbulence as a property of self-organizing complex systems,
the behavior of which would be characterized by processes involving the transfer of energy
and information.
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Abbreviations
The following abbreviations are used in this manuscript:

LES Large Eddy Simulation
CFD Computational Fluid Dynamics
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
KSG Kraskov–Stögbauer–Grassberger
KL Kozachenko–Leonenko
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