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Abstract: Detuned resonance, that is, resonance with some nonzero frequency mismatch, is a topic
of widespread multidisciplinary interest describing many physical, mechanical, biological, and
other evolutionary dispersive PDE systems. In this paper, we attempt to introduce some systematic
terminology to the field, and we also point out some counter-intuitive features: for instance, that a
resonant mismatch, if nonzero, cannot be arbitrarily small (in some well-defined sense); and that zero-
frequency modes, which may be omitted by studying only exact resonances, should be considered.
We illustrate these points with specific examples of nonlinear wave systems. Our main goal is to
lay down the common language and foundations for a subsequent study of detuned resonances in
various application areas.
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1. Introduction

Detuned resonances play an important role in many physical areas of research, from
fluid mechanics to geophysics to engineering. Unlike exact resonances, which are com-
paratively rare and hard to find, detuned resonances are ubiquitous, which makes them
very attractive for use in basic models. We list just a few examples. (i) A special form of
detuned resonance is introduced in [1] as a new paradigm generalizing the wave kinetic
equation approach for modelling nonlinear random wave fields in nature; these detuned
resonances are used for numerical simulations with Zakharov’s equation. (ii) A common
mechanism based on the quasi-resonant amplification of planetary waves is proposed
in [2], for the generation of persistent longitudinal planetary-scale high-amplitude pat-
terns of the atmospheric circulation in the Northern Hemisphere midlatitudes. (iii) The
study of detuned resonances in the numerical simulation of the Euler equations allows
one to explain in which cases a discretization of a continuous problem, necessary for any
numerical simulation, still reproduces the nonlinear energy transfer deduced theoretically
for a continuous spectrum of water waves [3]. (iv) Finally, a fundamental drawback of
vibration-based energy harvesters is that they typically feature a resonant mass-spring
mechanical system to amplify the small source vibrations, and the limited bandwidth of
the mechanical amplifier restricts the effectiveness of the energy harvester considerably.
This problem can be solved by adaptive tuning of the input frequencies, i.e., taking into
account detuned resonances [4]. The terms detuned and exact resonances both refer here to
the interactions of dispersive waves. The fundamental role of dispersive wave propagation
is emphasized by the fact that partial differential equations (PDEs) are often classified in
physics as dispersive or non-dispersive (as distinct from their mathematical classification
as elliptic, parabolic, or hyperbolic). A dispersive PDE may be linear or nonlinear; it is
allowed to have an arbitrary order and number of variables. Its main characteristic is that
the linear part of the dispersive PDE has solutions in the form of Fourier modes,

ϕk = AkPk(x)exp[−iωkt], Ak = const , (1)
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where Pk

(→
x
)

represents the spatial dependence labelled by wavevector k, and the fre-
quency ωk = ω(k) [5]. Here, x and t are space and time variables, respectively, and Ak
is called the wave amplitude. The class of nonlinear dispersive PDEs includes, though
is not exhausted by, such notable equations as the nonlinear Schrödinger equation, the
Korteweg–de Vries equation, and the Charney–Hasegawa–Mima equation. Dispersive
waves are met in various physical systems appearing in fluid dynamics, astronomy, plasma
physics, mechanical systems, medicine, and elsewhere. If the nonlinearity is small in some
sense (that can be defined more precisely in a specific physical setting), the initial PDE may
be written as

L(ϕ) = εN(ϕ) (2)

where L is a linear operator, N is a nonlinear operator, and 0 < ε� 1 is a small parameter. In
this case, resonances play the major role in the energy transport in the system; the resonance
conditions in their simplest form for three-wave interactions with Pk(x) = exp[ik · x] read

ω1 + ω2 = ω3, k1 + k2 = k3 (3)

with notation ωj = ω
(
kj
)
; their solution is called a resonant triad. In the standard case of

periodic boundary conditions, the wavevectors, after suitable renormalization, have integer
wave numbers (components).

A most interesting property of the resonant triads, first discovered in the early
1990s [6–8], is that they form clusters (via joint modes belonging to different triads) that
are independent in the sense that there is no energy transport between different clusters
at the slow time scale T = t/ε. Moreover, most modes are not resonant and do not take
part in the energy transfer over the resonant spectrum. The set of resonant triads can
be computed by specially developed methods (this is a nontrivial problem of number
theory) and represented by a planar graph with marked vertices called an NR-diagram [9].
An NR-diagram allows one to represent uniquely the dynamical system on Ak(T) which
describes the time evolution of each cluster at the slow time scale T. In this context, t
is often referred to as the linear (or fast) time. All polynomial conservation laws can be
written out explicitly for an arbitrary cluster [10]. An important example of geophysical
application of this theoretical approach can be found in [11].

This clear and understandable picture will change if we wait long enough. Detuned
resonances will appear with resonance conditions differing from (3):

ω1 + ω2 = ω3 + δ, k1 + k2 = k3 (4)

with nonzero resonance detuning δ 6= 0. They take place at the new time scale τ = cT,
with some constant c > 1 depending on the wave system [12]. It has been demonstrated
analytically that an isolated detuned triad can also be regarded as an energy conserving
system (though its energy is oscillating with the frequency δ) and an explicit solution for
wave amplitudes can be written out in terms of Jacobian elliptic functions [13]. This means
that the behavior of an isolated detuned triad is similar to that of the exact resonance
triad. In the last few years, an interest has arisen in the study of clusters of detuned
triads. By varying the magnitude of the detuning, one can change the form of energy
transport in the system from a few isolated clusters (detuning is very small) to the case
when all modes in the system are connected and no isolated cluster survives (detuning
is big enough). Some questions to answer are: How to estimate the minimal detuning
threshold allowing for the formation of a new cluster? How does the density of clusters
depend on the magnitude of the detuning and on the size of the computation domain?
How to construct new conservation laws for detuned clusters? These problems are studied
in many recent publications, e.g., [14–16]. They are not of purely theoretical interest: the
answers will be of importance in many physical systems. A celebrated example of a
system in which detuned resonances play a major role can be found in plasma physics
and in planetary atmospheric physics where so-called quasilinear models are used to solve
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the Charney–Hasegawa–Mima or barotropic vorticity equation, e.g., [17–19]. The main
characteristic of this approach is that (at a suitable time scale) all exact resonances can
be omitted and the complete wave field evolution can be described in terms of detuned
resonances of a special type. All the studies of detuned triad clusters mentioned above have
one common feature: they are performed at the kinematic level and no study of cluster
dynamics is included. The basic object underlying these studies is not an NR- diagram
(which provides a one-to-one correspondence between a cluster and its dynamical system)
but a topological presentation of a cluster [9]. The topological presentation of a cluster has
been introduced for constructing all the isolated components of a given set of triads. It
gives no information about cluster dynamics; the dynamical system describing a cluster
cannot be derived from its topological presentation. This drawback is of course known to
researchers in the area [14]: “In order to better understand these issues, we believe that it is
important to move beyond the kinematic picture of resonance broadening and attempt to
devise methods of studying these effects dynamically”. A first step in this direction has
been taken in [15], where the dynamics of a particular cluster formed by two triads with
two joint modes is studied while investigating the case “the linear wave time scales are
comparable to the time scales of nonlinear oscillations”. In the pioneering work of [20],
the study of dynamic equations for resonances in the famous Fermi–Pasta–Ulam problem
made it possible to establish that the first nontrivial resonances correspond to six-wave
interactions and thus to determine the time scale for establishing equipartition.

In this paper, we aim to present a feasible platform for studying the dynamical prop-
erties of arbitrary clusters formed by detuned triads. The notion of “a detuned triad” is
chosen to be used as a shorter name instead of “a resonance with non-zero frequency
mismatch” and is regarded as generic. The notions of quasi-resonance, near-resonance,
approximate resonance, etc., describe particular cases of the detuned resonance; their inter-
relations will be described in Section 2. In Section 3, we demonstrate that detuning cannot
be chosen arbitrarily, and that the notion of a characteristic detuning may be misleading.
In Section 4, we demonstrate that zero-frequency modes, which usually are not regarded
while studying exact resonances, should be taken into account while investigating clusters
of detuned resonances. In Section 5, we demonstrate why the construction of a cluster of
detuned triads is much more complicated than in the case of exact resonances, and we
consider which minimal detuned clusters are important to study first. A brief discussion
and a list of open questions concludes the paper.

2. Notion of a Detuned Triad

Any equation of mathematical physics is applicable only in some specific context: for
given ranges of the parameters and variables. In particular, wave resonances may be studied
for long waves with discrete spectra, so after a suitable renormalization, the wavenumbers,
that is, the components of the wave vectors, can be regarded as integers. Below in this
presentation, we restrict ourselves to the PDEs (2) with two space dimensions; in this
case, each wavevector k =

(
kx, ky

)
can be envisioned as a node of the two-dimensional

lattice with coordinates
(
kx, ky

)
and to each node, we can prescribe a unique frequency

ω = ω
(
kx, ky

)
. Re-normalized coordinates are usually depicted as integers m and n. The

small nonlinearity in (2) allows one to reduce the study of the complete wave evolution
in the frame of a weakly nonlinear PDE to the study of only exactly resonant modes, i.e.,
modes with wavevectors and frequencies satisfying (3) (at the corresponding time scale,
of course). This reduction can be performed by any multiscale method and as a result, a
dynamical system can be deduced:

dA1

dT
= V1

23 A∗2 A3,
dA2

dT
= V2

31 A∗1 A3,
dA3

dT
= −V3

12 A1 A2 (5)
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which is energy conserving, integrable, and describes the envelope evolution in the slow
time T of the amplitudes of each triple of resonantly interacting modes

ϕk = Ak exp{i[k · x−ωkt]}, Ak = Ak(T) 6= const. (6)

It may happen that a specific system has no three-wave resonances; then, we have
to check whether four-wave resonances do occur, and so on. Note that the general form
of (5) is the same for all evolutionary dispersive weakly nonlinear PDEs possessing three-
wave resonances: all the differences between the equations are hidden in the form of the
interaction coefficients V1

23, which are deduced from the PDE and are a function of wave
numbers and parameters included in the PDE.

Any solution of (3) may thus be presented as a unique triangle on the integer lattice
(shown as the bold black triangle in Figure 1), and the corresponding dynamical system
has the form (5).
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Figure 1. Color online. Triads on an integer lattice. Each mode has an integer length in both directions,
k =

(
kx, ky

)
= (m, n). Each triad satisfies k1 + k2 = k3 and therefore forms a triangle (the location

of the triangle on this grid has no significance). The triads shown represent a resonant triad (black,
solid) and a quasi-resonant triad (blue, dashed) in its one-vicinity (also called a near-resonance); a
general detuned triad (red, dashed); and a zonal triad (teal, dot-dashed), which is a (detuned) triad
that includes a zonal mode (has kx = m = 0 and is therefore vertical).

Now, let us see what happens when we regard a detuned resonance, satisfying the
conditions (4), in the same way. Obviously, for any three nodes of the two-dimensional
lattice, the condition k1 + k2 = k3 is satisfied so that only the condition ω1 + ω2 = ω3 + δ
has to be verified and studied. Intuitively, it looks reasonable that among all detuned
resonances, those are most important which are in some sense closest to exact resonances.

Accordingly, the first subclass of the class of detuned resonances that we consider is
called quasi-resonances, and is defined by the closeness on the integer lattice. The simplest
way to construct a quasi-resonance is to take two of the three nodes constituting an exact
resonance (depicted as the bold black triangle) and one node neighboring with it. As a
result, we get a quasi-resonance (depicted by the blue dotted lines) lying in the one-vicinity
of the exact resonance. The one-vicinity of an exact three-wave resonance may consist of a
few dozen quasi-resonances. Similarly, one can compute the two-vicinity, three-vicinity,
etc. This type of construction (or what can be reduced to it) is used where possible ways of
energy transfer within a cluster of detuned resonances were looked at. The one-vicinity of
an exact resonance is sometimes called a near-resonance.
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Another subclass of detuned resonances is called approximate resonances, defined as
follows (e.g., [1]—actually used for a four-wave system therein). In some finite domain
of wavevectors, the resonance mismatch should not be too big, that is, δ < ωmin · λω with
ωmin being the minimal wave frequency in the chosen finite domain and λω a detuning
parameter, allowing one to manipulate the number of approximate triads in the domain.
For some choice of a detuning parameter, the set of approximate resonances might coincide
with a specific s-vicinity of an exact resonance, s = 1, 2, . . .. This approach is then used
for a statistical description of systems possessing exact resonances and many approximate
triads simultaneously: the initial PDE is transformed into a simpler wave kinetic equation
considering these specifically chosen detuned resonances.

Obviously, in any finite spectral domain, taking a big enough s-vicinity of a resonance
(i.e., quasi-resonances) or, similarly, a big enough detuning parameter λω (i.e., approximate
resonances), one comes to the same result—the finite set will contain all modes as well as
the resonant ones, i.e., all detuned resonances.

The main question now is how to choose, if possible, a reasonably small set of detuned
resonances which plays the major role in the wavefield evolution on the corresponding time
scale τ = cT, c > 1, similar to exact resonances at the time scale T = t/ε? The magnitude
of detuning δ is a relevant parameter to look at.

3. The Choice of Detuning
3.1. Detuning on a Lattice

Let us consider a finite N× N lattice, as in Figure 1 compute the value of ω = ω(m, n),
and then compute the finite list of all possible detunings for a given dispersion function
ω and N. We get altogether

(
N2)!/3!

(
N2 − 2

)
!, some of them being equal to zero (exact

resonances). The number of zeros depends on the number of exact resonance triads in
the domain and on the form of resonance clusters. Let us denote the set of all non-zero
detunings δj as

∆lattice =
{

δ1, . . . , δp
}

;p ∈ N. (7)

The dynamical system describing an isolated detuned triad reads

dA1

dT
= V1

23 A∗2 A3e−iδ̃T ,
dA2

dT
= V2

31 A∗1 A3e−iδ̃T ,
dA3

dT
= −V3

12 A1 A2e+iδ̃T (8)

with δ̃ = δ/ε, and it can be turned into (5) by putting δ̃ = 0. Moreover, as demonstrated
in [13] on page 136, in some well-defined sense, the system (8) can be regarded as an
energy-conserving system where the total energy E1 + E2 + E3 of the detuned system (8)
oscillates periodically with frequency δ̃, again at the specified time scale. Here, E1, E2, E3
are energies of each distinct mode of the triad, Ei ∼ A2

i , i = 1, 2, 3.
The first and most important consequence of the existence of the set of allowed

detunings ∆lattice is the following: the detuning cannot be made arbitrarily small. Given a
dispersion function, one can obtain a lower boundary δmin for this set. For instance, if
ω ∼= m/n(n + 1) (spherical Rossby waves [11]), then δmin = O

(
N−6). This lower estimate

is “local” in that it depends on N. One can argue that as the size N of the spectral domain
tends to infinity, δmin therefore tends to zero. However, this would bring us outside the
applicability domain of the barotropic vorticity equation and spherical Rossby waves. The
spectral domain usually studied in the problems of weather prediction is rather small, e.g.,
N = 21 and sometimes even smaller, while the characteristic length of the Rossby wave in
the Earth’s atmosphere is of an order of 1000 km. Such a “local” lower boundary exists for
arbitrary wave systems.

For some forms of dispersion function, there exists a global lower boundary, which
does not depend on any finite domain. For instance, surface water waves have a dispersion
function ω ∼= (m2 + n2)

1/4 and four-wave exact resonances. It can be shown that if
ω1 ± ω2 ± ω3 ± ω4 6= 0, then, ω1 ± ω2 ± ω3 ± ω4 > 1, i.e., δmin = 1. More examples
and explanations can be found in [9,21]. This means that the idea of making the detuning
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smaller and smaller in order to get back to the case of exact resonances does not work. The
question now is why look for the detuned triads in a vicinity of an exact resonance at all? Is
it possible that the triads with smallest achievable detuning do not lie in the close vicinity
of an exact resonance triad?

To answer this question, we need to quantify the idea of closeness, which we do here
by defining a Euclidean distance d between the triad {(m1, n1)(m2, n2)(m3, n3)} and the
triad

{(
m′1, n′1

)
(m′2, n′2)(m

′
3, n′3)

}
. This is given by

d = min
p

√
3
Σ

i=1
(mi −m′j)

2 + (ni − n′j)
2 (9)

where the indices {j} represent a permutation P of {i = 1, 2, 3} and the permutation giving
the minimum distance is taken. For each detuned triad, we can compute the distance d
to each resonant triad, and hence find the closest resonant triad(s) (with the least d) for
that detuned triad. Figure 2 shows how this closeness varies with detuning for all detuned
resonances in the N = 21 domain. Two key features are immediately apparent. First, as
perhaps expected, the top-left and bottom-right corners of the figure are empty; so, the
smallest detunings do not occur with the largest distances, and the largest detunings do
not occur with the smallest distances. Second, however, and perhaps less expected, the rest
of the figure is quite broadly filled out: in particular, the smallest detunings are not limited
to the smallest distances, nor are the smallest distances limited to the smallest detunings.
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Figure 2. Color online. Scatter plot showing, for each detuned triad, the detuning δ versus the
distance d to the closest resonant triad. The color of each point indicates nmax, the largest n found
amongst all the six modes in the detuned triad and its closest resonant triad. The plot can be thought
of as a layer of each color, with layers corresponding to low nmax, appearing in front of layers
corresponding to high nmax. The number of layers is limited by the domain size N = 21.

One may argue that the search for quasi-resonances in some small vicinity of an
exact resonance might work for a special initial distribution of the energy in the wave
field—energy should be initially distributed only among exact resonant modes, and at least
in some triads, high-frequency modes have to be excited—but this should be explicitly
discussed as is done, e.g., in [8,22].

3.2. Detuning Outside the Lattice

One of the main facts established in the previous section—the allowed detuning cannot
be too small—is somewhat counter-intuitive. What would prevent us from taking a very
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small detuning δ < δmin ∈ ∆lattice and performing a numerical simulation? However,
because the dynamical system is a reduction obtained from the initial PDE, some properties
of the PDE may be lost; in particular, the existence of allowed and non-allowed detunings
cannot be detected at the level of the dynamical system. It is easy to check numerically
whether at least some “memory” about the discreteness of ∆lattice survives and in what
form, by performing simulations with the system (8) for different values of δ regarding it
as a continuous parameter.

Before proceeding this way, let us try to understand what it would mean if the detuning
does not belong to the set ∆lattice. A geometric interpretation of this case is shown in
Figure 3 and gives us an immediate insight: as all eigenmodes of the initial PDEs are
depicted as nodes of the lattice, we have to change the initial PDE by adding a new term, say,
D. Accordingly, triads with allowed and forbidden detunings are obtained from different
initial PDEs:

L(ϕ) = εN(ϕ) versus L(ϕ) = εN(ϕ) + D. (10)
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Figure 3. Color online. A resonant triad (black, solid) is shown, as in Figure 1, and an off-grid
near-triad (violet, dashed) in its δ—neighborhood (yellow disc, hatched); the two labelled modes do
not lie on the lattice, i.e., do not satisfy the original system of PDE and boundary conditions.

Here D 6= 0 can be interpreted as a forcing or a dissipation. It follows that for δ 6= 0,
the wave amplitudes might become larger for the case of exact resonance described by (5):
a detuned resonance in the first system may become an exact resonance in the latter and
have a larger amplitude.

In order to establish whether or not this effect can be observed at the level of the
dynamical system, numerical simulations have been performed with the dynamical system
(8) for specific resonant triads of spherical Rossby waves, taken from [11]. More details of
similar computations can be found in [23]. A typical result is shown in Figure 4.

A certain overall symmetry with respect to δ can be seen in Figure 4a—inverting the
sign of δ whilst changing φ. by π. However, for a fixed φ(0), the fluctuation range is not in
general symmetric about δ = 0, nor does it peak there, as it is demonstrated in Figure 4b.
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Figure 4. Color online. The fluctuation range of the energy E3 for the triad (4, 12)(5, 14)(9, 13) which
is an isolated resonant train in the truncation N = 21, [11]: (a) as a function of (artificial) detuning
δ and initial phase φ (at time t = 0; two 2π periods in φ(0) are shown); (b) as a function of δ at
φ(0) = 0. The initial energies are E1(0) = 0.4, E2(0) = 0.4, E3(0) = 0.2, which is case (b) of [16].

4. Zero-Frequency Mode

Often, zero-frequency modes are not taken into account while studying exact reso-
nances, because they do not satisfy the exact resonance condition. For example, for spherical
Rossby waves, the dispersion function has the form ω(m, n) = −2m

n (n +1) . and corresponding
resonance conditions read

m1
n1 (n1 +1) +

m2
n2 (n2 +1) =

m3
n3 (n3 +1) , |n1 − n2| < n3 < |n1 + n2| ,

mj ≤ nj ∀ j = 1, 2, 3,
n1 + n2 + n3 is odd, ni 6= nj ∀ i, j = 1, 2, 3.

If ω3 = −2m3
n3 (n3 +1) = 0 ⇐⇒ m3 = 0, then the selection rule m1 + m2 = m3 implies

m1 = −m2 . However, the selection rule n1 6= n2 then implies ω1 + ω2 = 2m1
n1 (n1 +1) +

2m2
n2 (n2 +1) 6= 0 and so

ω1 + ω2 6= ω3.

However, zero-frequency (or zonal) modes can participate in detuned resonances (an
example is shown in Figure 5). An example in the case of spherical Rossby waves is the
triad between the following three (m; n) modes: (0; 2); (1; 3)→(1; 4). This triad satisfies all of
the kinematic selection rules for the mode numbers, just not the exact dynamical resonance
condition for the ω′s. Furthermore, since the three n′s are all different, the interaction
coefficients in Equation (8) do not vanish, and the dynamical system is of the same form
as for a general detuned resonance: the dependence of the dynamics on the specific triad
enters only through the interaction coefficients and the detuning.

In the next section, we illustrate the dynamics of a detuned resonance, both in isolation
and when coupled to another (exact) resonance (Figure 6). A particular case of the isolated
zonal triad (0; 2); (1; 3)→(1; 4) will also be shown (Figure 7).
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Figure 5. Color online. Triads on an integer lattice 2. Here, each lattice point represents a particular
mode (kx, ky) = (m, n) . The resonant triad (black, solid) and the zonal triad (teal, dot-dashed) from
Figure 1 are shown. The zonal mode has kx = m = 0 and therefore lies on the ky axis.
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Figure 6. Color online. Each panel shows the time evolution of (top) the amplitude of the modes in
the resonant triad; (middle) the amplitude of the modes in the detuned triad; (bottom) the energy
E of the resonant triad, the energy F of the detuned triad and the total energy. The panels are as
follows: (a) uncoupled with physical detuning δ = 0.000396825; (b) coupled with physical detuning;
(c) uncoupled with zero detuning; (d) coupled with zero detuning.
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5. Clusters of Detuned Triads

The examples shown below all involve a single resonant triad and a single detuned
triad. The dynamical equations are modelled on an actual example taken from the spherical
Rossby system, namely the resonant (δ = 0) triad (2,6), (3,8)→(5,7) and the detuned
(δ = 0.0004) triad (1,5), (1,8) → (2,6). At the truncation N = 8, the former is the only
resonant triad, and the latter is the detuned triad with the smallest detuning. In reality,
these two triads are coupled via their common mode (2,6). In some of the simulations
shown, this coupling is artificially disconnected; in others, the detuning is artificially set to
zero. This is done without changing anything else about the dynamical system, so that the
difference made by the coupling and the detuning may be seen in isolation.

The form of the coupling coefficients V1
23 in the dynamical equations for three resonantly

interacting spherical Rossby waves are of the form Z
[
ni (ni + 1)− nj

(
nj + 1

)]
/ns (ns + 1),

where Z is a property of the triad and the indices i, j, s are a permutation of 1,2,3. Here,
for illustrative purposes, we allow ourselves to vary Z for the resonant triad and Z1 for
the detuned triad, keeping the initial conditions fixed. As a period of energy exchange
within a triad depends on the initial energy distribution within the triad and on the
coefficient Z, this allows us to vary the relative time scales in dynamics. Figure 6 depicts
characteristic dynamics of the modes’ energies in four different cases: uncoupled resonant
and detuned triads (physical detuning), panel (a); coupled triads (physical detuning),
panel (b); uncoupled triads (artificial zero detuning), panel (c); coupled triads (artificial
zero detuning), panel (d). The resonant triad has Z = 7.82, and the detuned triad has
Z1 = 2Z. This allows us to adjust the relative time scales in the uncoupled dynamics with
zero detuning, as seen in the top and middle rows of Figure 6c. The slowest oscillation
time scale, seen in the middle row of Figure 6a, is given by the detuning period 2π/δ. It is
evident in the top row of Figure 6b that both the fast and the slow dynamics of the detuned
resonance are communicated to the exact resonance when coupled.

We demonstrate in Figure 7 how the amplitudes and energies of modes in the isolated
zonal triad (0; 2); (1; 3)→(1; 4) evolve in time. The coefficient Z = 7.82 as above but
the physical detuning δ = 0.033333333 is much larger than for the detuned resonance in
Figure 6, and hence affects much shorter time scales (seen in the varying heights of the
peaks in the top panel). The mode amplitudes have been increased correspondingly so
that the triad dynamics also take place on a shorter time scale (seen as the underlying
oscillations in both panels).
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6. Brief Discussion and Conclusions

Exact and detuned resonances represent a subject of widespread multidisciplinary
interest describing many physical, mechanical, biological, and other systems. While the
theory of exact resonances and their standard description in the form of resonance clusters,
NR-diagrams, etc., is quite developed, the theory of approximate resonances is only in its
infancy. To the best of our knowledge, this is the first attempt to introduce some system-
atic terminology to the field and give illustrative examples confirming the importance of
understanding what resonance detuning is, why it cannot be arbitrary, what properties of
a dynamic system cannot be attributed to the original PDE, etc. Both exact and detuned
resonances play important roles—at different time scales—in energy transport in (weakly)
nonlinear dispersive wave systems. They may be studied within at least three different
mathematical frameworks: (a) the initial PDE (full evolution equation), with chosen bound-
ary conditions; (b) wavenumber resonance conditions (kinematics); (c) a dynamical system
deduced as a reduction of the initial PDE (dynamics).

Any combination of these approaches is very useful and provides new insights into
understanding the temporal evolution of the systems under consideration. Thus, in [7],
a combination of kinematic results and a numerical study of the initial PDE allows us
to establish through which modes the energy flows into the wave field from the exact
resonant triad. The combination of kinematics and dynamic description of large resonant
clusters of complex structure makes possible the use of stochastic methods of analysis for
describing the temporal dynamics of a cluster [23]. Using the form of a dynamic system
for resonantly interacting waves to transform the original nonlinear PDE allows you to
convert it into a more convenient form for further research, and in some cases, linearize the
original equation [24].

The main conclusions of our study can be formulated as follows.

1 Detuning cannot be arbitrary small.

The study of detuned resonances at the level of kinematics operates with the notion of
characteristic detuning, which may make the results obtained by this approach nonphysical.
Before studying detuned resonances in a specific problem, one has to compute the set of
its physical detunings according to the set of eigenfunctions of the initial PDE. The set
of physical detunings is discrete and finite in a fixed spectral domain. Other choices of
detuning correspond to changing the initial energy-conserving PDE to a different PDE with
additional forcing or dissipation terms included.

2 Detuned and exact resonances are not necessarily close in the Fourier space.

The intuitive belief that detuned resonances should be studied in a small neighborhood
of an exact resonance is erroneous: the detuned resonances with a very small detuning can
exist far away in the spectral domain from the exact resonance. However, there may be a
special choice of initial energy distribution in a wave system, e.g., as in [8], for which the
study of detuned resonances in the vicinity of exact resonances is appropriate.

3 Zero-frequency modes participate in detuned resonances.

The study of detuned resonances should take into account the existence of zero-
frequency modes which are of no importance while studying three-wave exact resonances.
As can be seen from Figures 6 and 7, zero-frequency modes not only have their own
complex dynamics, but also change the dynamics of the exact resonant triad, being coupled
with it.

As already said, in this paper, we aim to lay down the common language and founda-
tions for a subsequent study of detuned resonances. Our choice of examples is in no way
exhaustive or complete but it serves its purpose: it draws the attention of the researcher to
three main mistakes in the study of detuned resonances which should be avoided.
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