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Abstract: In this paper, the hybrid Lagrangian–Eulerian solver HoPFlow is presented and evaluated
against wind tunnel measurements from the New MEXICO experiment. In the paper, the distinct
solvers that assemble the HoPFlow solver are presented, alongside with details on their mutual
coupling and interaction. The Eulerian solver, MaPFlow, solves the compressible Navier–Stokes
equations under a cell-centered finite-volume discretization scheme, while the Lagrangian solver
uses numerical particles that carry mass, pressure, dilatation and vorticity as flow markers in order
to represent the flow-field by following their trajectories. The velocity field is calculated with the use
of the decomposition theorem introduced by Helmholtz. Computational performance is enhanced
by utilizing the particle mesh (PM) methodology in order to solve the Poisson equations for the
scalar potential φ and the stream function ~ψ. The hybrid solver is tested in 3-D unsteady simulations
concerning the axial flow around the wind turbine (WT) model rotor tested in the New MEXICO
experimental campaign. Simulation results are presented as integrated rotor loads, radial distribution
of aerodynamic forces and moments and pressure distributions at various span-wise positions along
the rotor blades. Comparison is made against experimental data and computational results produced
by the pure Eulerian solver. A total of 5 PM nodes per chord length of the blade section at 75% have
been found to be sufficient to predict the loading at the tip region of the blade with great accuracy.
Discrepancies with respect to measurements, observed at the root and middle sections of the blade,
are attributed to the omission of the spinner geometry in the simulations.

Keywords: turbine aerodynamics modelling; hybrid CFD solvers; vortex particles; particle mesh;
New MEXICO

1. Introduction

Wind energy is a substantial paradigm of human technology in which atmospheric
air flows are leveraged for environmentally neutral energy generation. In the effort to
reduce wind energy costs, the wind energy sector is directed towards increasing the size
and flexibility of modern wind turbine (WT) rotors. To that end, rotor blades are becoming
larger and more slender, leading to high complexity regarding the analysis of their loading
and the description of the flow field in their wake. In connection to the above need for
highly flexible designs, rotor analysis is today directed towards high fidelity numerical
tools, applying elaborated, physically motivated models for the accurate prediction of the
response of the rotor blades. This requires the use of highly accurate computational models
both for the elasto–dynamic and the aerodynamic analysis of the blades, which, combined
together, comprise the field of aeroelasticity.

In terms of aerodynamic analysis, computational fluid dynamics (CFD) methodologies
are considered to be the most common option among several numerical approaches in terms
of accuracy. The advantage of employing CFD in rotor analysis is related to its capability
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to account in maximum detail for viscous and turbulence effects. These are dominant in
wind farm simulations, where rotor wake evolution has an impact on the performance
of downwind turbines. Furthermore, viscous effects are important when studying the
rotor wake interaction with the boundary layer developed on surrounding bodies, such as
the WT tower or even the ground. Such interactions affect the rotor performance and the
blades’ loading.

Despite being accurate and reliable, the increased computational cost of conventional
Eulerian CFD methodologies renders them prohibitive for aeroelastic design simulations.
As a remedy, research is today directed towards the development of novel CFD method-
ologies that share the same level of accuracy as the conventional methodologies under
reduced computational requirements. In this direction, domain decomposition seems to
be an attractive technique provided that the best performing formulation in terms of cost
and accuracy is employed in each sub-domain. The proposed hybrid CFD methodology
combines a standard finite volume Eulerian CFD approach close to the solid boundaries
with a Lagrangian CFD approach in vorticity formulation for the rest of the domain [1–3].

The flow–field may be discretised in two different ways, thus classifying CFD method-
ologies into Eulerian and Lagrangian methodologies. On the one hand, Eulerian approaches
discretise the entire computational domain in “stationary” nodes through which the fluid
moves and on whom the flow properties are recorded. On the other hand, in Lagrangian
methods, the fluid is discretised in “numerical particles”. In this way, the flow-field is
described in a material approach by tracking the motion and following the flow properties
of the fluid particles.

Eulerian methodologies [4–6] have gained much popularity and reliability, thanks
to the accurate consideration of solid-wall boundaries, as no-penetration and no-slip
conditions are both satisfied in maximum detail. However, this is not the case regarding
the far-field boundaries. Truncation of the flow at a finite distance, where the boundary
conditions typically approximate those at infinity, is a numerical approximation that leads
to errors and is considered as significant drawback in external aerodynamics applications.
Furthermore, domain truncation is usually combined with gradual grid coarsening, which
increases numerical diffusion and adds errors as well. This may be catastrophic in wind
farm applications, where a detailed description of the wake of the leading WTs is crucial
for the correct estimation of the total power production. Local grid refinement seems
like an obvious remedy, but it comes with a substantial increase in computational cost.
Moreover, the consideration of the interaction between independently moving bodies
is usually implemented through the application of special methodologies (e.g., overset,
chimera or sliding grids), which penalize computational cost as well.

The alternative would be to solve the Navier–Stokes equations in the Lagrangian
formulation, as particle methods do. They are grid–free, self–adaptive and have (in theory)
zero numerical diffusion. The intuitive option would be to define particles that carry mass,
momentum and energy, as the smooth particle hydrodynamic (SPH) methods do [7–9].
Alternatively, vorticity [10,11] and dilatation [12,13] may be used as the primary flow
variables leading to vortex methodologies (VM). Due to their robustness in pressure varia-
tions, VM are quite popular in external aerodynamics applications [14–16]. Consequently,
they are considered suitable for WT applications [17–21] as well. A major challenge for
particle methods is the treatment of solid-wall boundaries [22,23]. Another drawback is the
fact that the computational cost rises proportionally to N2 (N is the number of particles),
thus rendering long–lasting simulations computationally prohibitive. To overcome this
problem, methodologies such as the particle-mesh (PM) [24] may be adopted in order to
enhance performance.
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To sum up, Lagrangian methodologies are more effective in the far-field region,
whereas Eulerian methodologies are considered to be ideal for the region close to the
solid-wall boundaries. It is therefore reasonable to combine the two methodologies through
a domain decomposition technique in order to enhance accuracy and reduce computational
cost. In general, the sub-domains may either overlap or not. Strong viscous-inviscid inter-
action models [25,26] and RANS-vortex coupled models [27,28] are examples of completely
overlapping hybrid methodologies, while the method presented in [29] is an example of
limited overlapping over a buffer area.

In the current project, an in-house hybrid solver, named HoPFlow, is presented and
assessed in WT applications. A preliminary version of the solver and results concerning
low subsonic turbulent flows around airfoils are presented in [1]. Implementation details
have been presented analytically in [3], where compressibility effects have been also taken
into account. Recently, the hybrid solver has been used in 3D, WT applications where an
axial flow test case of the New MEXICO experimental campaign [30,31] was simulated.
Preliminary results have been presented in [32], focusing on aerodynamic load prediction
and near-wake flow field computations. In this study, the numerical parameters of the
presented solver that affect load predictions (e.g., blade surface mesh, time-step value, PM
discretisation length) are analyzed in detail. The main motivation of the present work is to
validate the flow-field characteristics close to solid boundaries using measured datasets
and thus assess the coupling procedure applied in the hybrid solver. As indicated in the
discussion above, it is noted that the value of the present method lies in applications in
which there are multiple, mutually interacting regions of interest within the computational
space [33] (e.g., multiple-rotor configurations). The Lagrangian domain serves as the
coupling domain between these regions of interest in the same way that overset grids
function in standard Eulerian CFD simulations. Lagrangian methods are advantageous
compared to overset approaches, as they minimize numerical diffusion and therefore
preserve wake structures and flow disturbances.

The test case is the run no. 266, which is a 14.7 m/s axial flow case at 425 rpm of
the New MEXICO experimental campaign [30,31] that corresponds to a tip speed ratio
of λ = 6.81 and a pitch angle of 2.3◦ nose down. The New MEXICO WT model rotor is
a 4.5 m diameter 3–bladed rotor. It consists of three different airfoil shapes at the root
(DU91-W2-250), mid-span (RISØ A1-21) and tip (NACA 64418) region of the blade accord-
ing to Table 1. The twist and chord distribution of the blade is shown in Table 2. Turbulent
transition is triggered with trip tapes of 5 mm width and 0.2 mm thickness placed at 10%
chord of both pressure and suction sides of the blade. A thorough comparison of blade
loads is performed against experimental measurements and computational results from
the Eulerian counterpart (MaPFlow) of the hybrid solver. Blade loads are depicted as inte-
grated rotor loads, span–wise distribution of aerodynamic loads and pressure distribution
at specific span–wise positions. More results from numerical investigations concerning
test cases from the MEXICO and the New MEXICO experimental campaigns can be found
in [34–40].

Table 1. Mexico rotor blade airfoils.

Radius [m] r/R Airfoil

0.45–1.025 20–45% DU91-W2-250
1.225–1.475 55–65% RISØ A1-21
1.675–2.25 75–100% NACA 64418
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Table 2. Mexico rotor blade twist and chord distribution.

Radius [m] Twist [◦] Chord [mm]

0.21 0 195
0.23 0 195
0.235 0 90
0.300 0 90
0.375 8.2 165
0.450 16.4 240
0.675 12.1 207
0.900 8.3 178
1.025 7.1 166
1.125 6.1 158
1.225 5.5 150
1.350 4.8 142
1.475 4.0 134
1.575 3.7 129
1.675 3.2 123
1.800 2.6 116
2.025 1.5 102
2.165 0.7 92
2.193 0.469 82
2.232 0.231 56
2.250 0.0 11

2. Methodology

The rationale behind the application of the hybrid CFD solver HoPFlow is to combine
an Eulerian approach close to solid-wall boundaries with a Lagrangian one for the rest of
the domain. In this way, both the solid-wall and the exact far-field boundary conditions
are satisfied in maximum accuracy within the Eulerian and Lagrangian framework, respec-
tively. The Lagrangian particles are distributed over the whole computational domain,
overlapping with the Eulerian computational cells close to solid boundaries (see Figure 1).
The Eulerian part of the hybrid solver solves the compressible Navier–Stokes equations
under a cell-centered finite-volume approach in a confined region (DE) around solid-wall
boundaries (SB). The Lagrangian part solves the compressible flow equations as well,
in their material form, based on particle representation of the essential flow quantities,
e.g., mass, pressure, dilatation and vorticity [12]. Lagrangian particles are distributed over
the entire computational space and, hence, inside the Eulerian domain as well. The cou-
pling procedure consists of two parts: (i) the Lagrangian particles solution is interpolated
to the ghost cells of the Eulerian domain to define the correct boundary conditions on its
far-field SE (see Figure 2); (ii) the Eulerian solution is used in order to correct the solution
of the Lagrangian particles that lie within the Eulerian domain (see Figure 3). The corrected
Lagrangian particles information is then used in order to update the whole Lagrangian
field and thus ensure that it will be a smooth extension of the Eulerian one. More details
concerning the coupling procedure are given in Section 2.3.
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Figure 1. Decomposition of Eulerian (DE) and Lagrangian (DP) computational domains. SB denotes
the solid-wall boundaries, and SE the far-field of the Eulerian domain.

Figure 2. The Lagrangian particle solution is used to define the far-field boundary conditions of the
Eulerian solver. Lagrangian particles are depicted as solid blue circles. Solid and dotted red circles
denote the centers of the Eulerian cells and ghost cells, respectively.
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Figure 3. The Eulerian solution is used in order to correct the Lagrangian particles that are inside the
Eulerian domain. Lagrangian particles are depicted as solid blue circles. Dotted red circles denote the
centers of the Eulerian cells. Small solid red circles illustrate the Eulerian particles that correct the
Lagrangian ones.

2.1. The Eulerian Solver

MaPFlow [41] is an in-house typical Eulerian CFD solver which solves the compress-
ible unsteady Reynolds averaged Navier–Stokes (URANS) equations under a cell-centered
finite volume spatial discretization scheme. MaPFlow can handle both structured and
unstructured grids; it is parallelized under the MPI protocol, and the grid partitioning is
performed using the METIS library [42]. The convective fluxes are evaluated by solving the
preconditioned local Riemann problem between the neighboring cells of each face, using
the Roe’s approximate Riemann solver [43] with the Venkatakrishnan limiter [44]. The
viscous fluxes are discretized using a central 2nd order scheme. For the reconstruction of
variables at the interface, a piecewise linear interpolation scheme is used. The evaluation
of the spatial gradients of the primitive variables is done using the Green–Gauss formula,
with a centered scheme approximation. Multiple options are available for turbulence
modeling, such as the one-equation model of Spalart–Allmaras [45] or the two-equation
model k− w SST of Menter [46]. Regarding laminar to turbulent flow transition modeling,
the γ− Reθ model of Menter [47] is used. A delayed detached eddy simulation (DDES)
approach is also implemented in MaPFlow, following the suggestions of [48]. Unsteady sim-
ulations are performed through an implicit second-order backwards difference scheme [49],
along with a dual time-stepping technique [50] in order to facilitate convergence. Finally,
the implicit operator inversion is accomplished with the use of the Gauss–Seidel iterative
method alongside the reverse Cuthill–Mckee reordering scheme.

2.2. The Lagrangian Solver

In a Lagrangian formulation (material coordinates), the flow-field is represented by
following the evolution of a number of particles along their trajectories. In that sense,
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particles act as flow marker points that are assigned with volume Vp and carry mass
Mp, dilatation Θp, vorticity ~Ωp and pressure Πp, regarded as the volume integrals of the
continuous flow quantities density ρ, dilatation θ, vorticity ~ω and pressure p respectively.
In material coordinates, the flow equations take the form:

d~Zp

dt
= ~Up

dVp

dt
= Vp θp

dMp

dt
= 0

d~Ωp

dt
= Vp

[
(~ω · ∇)~U +

1
ρ2∇ρ×∇p + ν∇2~ω

]
p

dΘp

dt
= Vp

[
2‖∇~U‖ − 1

ρ
∇2 p +

1
ρ2∇ρ · ∇p + ν

4
3
∇2θ

]
p

dΠp

dt
= Vp

[
(1− γ)pθ + (γ− 1)

(
∇ · (←→τ · ~U)− ~U · (∇ ·←→τ )

)]
p

(1)

where d/dt denotes the material time derivative, and (·)p indicates evaluation at the

position of particle p. ∇ ·←→τ = µ
(

4
3∇θ −∇× ~ω

)
denotes the divergence of the viscous

stress tensor, and ν = µ/ρ is the kinematic viscosity, which here is assumed constant.
The flow equations are supplemented with the Helmholtz’s decomposition theorem (2),

which states that every velocity field ~u can be expressed as the sum of a rot-free potential
part ~uφ and a div-free vortical one ~uω, alongside a constant velocity component represent-
ing the undisturbed velocity field at infinity ~U∞. The potential part is defined through a
scalar potential φ

(
~uφ = ∇φ

)
and is associated with the compressibility effects expressed by

the dilatation of the flow θ (θ = ∇ · ~u), whereas the vortical part is defined through a vector
potential (stream-function) ~ψ

(
~u = ∇× ~ψ

)
which is associated with the free vorticity of

the flow ~ω (~ω = ∇× ~u). Consequently, the scalar and vector potential satisfy the Poisson
Equation (3).

~u(~x, t) = ~U∞ + ~uφ(~x, t) + ~uω(~x, t) (2)

∇2φ = ∇ · ~u = θ

∇2~ψ = −∇× ~u = −~ω
(3)

By using Green’s theorem, the velocity field ~u can be expressed in integral form:

~u(~x) = ~U∞ +
∫

D
(θ(~y) + ~ω(~y)×)∇G(~r) dD(~y) +

∫
S
(~n · ~u(~y) +~n× ~u(~y)×)∇G(~r) dS(~y) (4)

where G(~r) is the Green’s function for the Laplace operator, ~r = ~x − ~y and S = ∂D.
Computational cost is dominated by the convolution integral in (4). For N particles,
the associated cost is proportional to N2, which can easily explode as N becomes large
and the intended duration of the simulation is long. To make things even worse, when
boundaries are present, the surface convolutions in (4) must be also evaluated. In order to
reduce computational cost, the PM technique is employed, and the Poisson Equation (3) is
solved for the scalar potential φ and the stream function ~ψ. In such a manner, computational
cost is minimized from N2 to N log N. Computational performance is also enhanced by
using Cartesian grids in order to discretize the Lagrangian domain, thus enabling the
employment of fast Poisson solvers [51]. Particularly, in HoPFlow, the James–Lackner
algorithm is used [52].

The PM framework is also employed in order to evaluate the right-hand side (RHS)
of (1). The Lagrangian particles solution is interpolated to the PM nodes, and the desired
differentiations are easily computed through finite difference schemes. Consequently,
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the RHS terms are first evaluated on the PM nodes, and then they are interpolated back
to the particles positions. Afterwards, time marching is performed through a standard
4th order Runge–Kutta explicit scheme. In every sub-step of Runge–Kutta, intermediate
convection steps are carried out, requiring intermediate evaluations of velocity, which are
also conducted with the usage of the PM technique.

At the end of every time-step, remeshing is applied in order to recover full cov-
erage of the computational domain and ensure a regular distribution of the numerical
particles. Remeshing is a standard procedure in order to prevent excessive concentration
or spreading of particles and, in this way, preserve the consistency and accuracy of the
numerical solution.

For a given number of particles {~Zn
p , Mn

p , Vn
p , ~Ωn

p, Θn
p, Πn

p}, the sub-steps taken in the
nth Lagrangian time-step can be listed as follows:

Step 1: Project {Mn
p , Θn

p, ~Ωn
p, Πn

p} on the PM grid and obtain ρn
ijk, θn

ijk, ~ωn
ijk, pn

ijk;

Step 2: Solve ∇2φ = θ,∇2~ψ = −~ω and obtain φn
ijk, ~ψn

ijk, ~un
ijk;

Step 3: Calculate on the PM grid the RHS terms of (1), e.g., ∇ρn
ijk, ∇pn

ijk, ∇~un
ijk;

Step 4: Interpolate all grid-based data qn
ijk at the particle positions qn

p;
Step 5: Update all particle properties (integrate (1) in time);
Step 6: Re-mesh if needed.

2.3. The Hybrid Solver

The hybrid solver, HoPFlow, couples the two distinct, previously described, Eulerian
and Lagrangian solvers. The Eulerian solution is used only in the regions close to the solid
boundaries, whereas the Lagrangian one needs to be valid on the whole computational
space, overlapping with the Eulerian one (see Figure 1), in order to satisfy the true far-field
boundary conditions.

As mentioned before, the Eulerian and Lagrangian solutions are coupled in two ways.
First of all, the Lagrangian part shall undertake to provide the proper flow conditions
on the outer boundaries of the Eulerian domain SE. In order to do so, the Lagrangian
solution is interpolated from the PM nodes (or, in a more generic approach, from the
Lagrangian particle positions) to the ghost cells of the Eulerian grid (see Figure 2). The fluxes
at the Eulerian boundary SE may now be evaluated from the Riemann invariants by
taking into account the correct flow information on both sides of SE. Using the correct
boundary conditions, MaPFlow shall be capable of describing the flow-field close to the
wall boundaries in the detail that is provided by the Eulerian framework.

The closure of the coupling is achieved by correcting the flow information on the PM
nodes (more generally on the Lagrangian particles) that lie within the Eulerian domain DE
and then by updating the whole Lagrangian field. In order to do so, the Eulerian solution
is transformed into particles that carry mass, dilatation, vorticity, pressure and volume
(ρ, θ, ~ω, p, V)E. The Eulerian particles need to be densely populated and regularly placed
within the Eulerian computational cells, so that full coverage of the PM nodes is ensured.
The flow quantities of the Eulerian particles are interpolated from the cell-centered values
based on a purely geometric approach using iso-parametric finite element approximations.
The presence of solid boundaries is taken into account as surface (singular) particles that
carry dilatation θs and vorticity ~ωs, but no pressure, volume and mass. These particles only
affect the solution of the Poisson Equation (3) as contribution in ~n · ~u(~y) and ~n× ~u(~y) in
the surface convolution related to boundary terms (4) and must not be convected during
time marching.

The steps followed for the coupling between the Lagrangian and the Eulerian solver
are depicted in the flow chart displayed in Figure 4. The corresponding implementation
details have been thoroughly analyzed in [3].
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Initialize HoPFlow

Solve PM

Obtain the correct boundary conditions
on the far-field of the Eulerian domain

Solve MaPFlow

Next dual step

convergence?

Correct the solution of the Lagrangian par-
ticles that lie within the Eulerian domain

Solve PM

Calculate the finite differences of the RHS on the PM
grid and interpolate the values back to the particles

Solve the Lagrange equation using 4th order Runge–Kutta

Last Step of
RK?

Next RK step

Last time
step?

Finalize HoPFlow

Next time step

no

yes

no
yes

yes

no

Figure 4. Flowchart of the hybrid solver.

3. Results

In this section, a detailed overview of the employed numerical parameters is provided.
The blades’ surface mesh, the time–step value and the PM discretization length are the
most significant numerical parameters that can affect the predicted loads. To minimize un-
certainties of the produced results, a thorough investigation of these numerical parameters
is needed.
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3.1. Eulerian Solver Results

First, the blades’ surface mesh and the time-step value used for the unsteady simu-
lations will be investigated in the Eulerian solver framework. The domain is a cylinder
of 20 rotor diameters (20D) length, (5D upstream and 15D downstream) and 10D radius
(see Figure 5). In order to take into account the near-wake effect on the aerodynamic loads,
the region close to the rotor blades was kept fine. This (blue rectangle in Figure 5) is a
cylindrical region that extends up to 1D upstream, 3D downstream, and 1D radially from
the rotor hub center, so that the wake expansion is properly accounted for. Furthermore,
it needs to be stressed that all these simulations were performed by considering that the
whole grid is rotating about the rotor hub center.

Figure 5. Lateral view of the purely Eulerian grid.

3.1.1. Blade Surface Mesh Dependency Analysis

Three different blade meshes were tested, employing 5280, 20,350 and 56,260 surface
cells for the blade discretization. In the coarse mesh, 66 cells were used to describe the
airfoil shape and 80 cells were used in the spanwise direction, whilst in the medium and
fine meshes, the corresponding number of cells were 110× 185 and 194× 290, respectively.
The corresponding total amount of grid cells are 1.4, 4.8 and 11 million cells, respectively.
The integrated rotor loads produced by the three meshes are presented in Table 3. The coarse
blade discretization underestimates the thrust value by ≈3.8% and the torque by ≈13.9%
with respect to the finest mesh, whereas the corresponding differences for the medium
blade discretization are 2.3% and 3.9%, respectively. Based on the above, it is clear that the
medium blade discretization (110× 185 blade surface cells and 4.8 million total amount of
cells) provides the best trade-off between accuracy and computational cost. For this reason,
this is the set-up that has been used in the following simulations.
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Table 3. Thrust and torque estimation with respect to different blade surface meshes. Reference
values correspond to finest grid results.

Thrust Torque

66× 80 (1.4 million cells) −3.8% −13.9%
110× 185 (4.8 million cells) −2.3% −3.9%
194× 290 (11 million cells) 1875.2 [N] 317.55 [Nm]

3.1.2. Time-Step Dependency Analysis

In order to investigate how the selected time-step affects the aerodynamic loads,
a number of different time-step values (dt) have been tested. As one may see in Table 4,
the time-step values have been defined with reference to the rotor rotation period (T)
(certain number of time steps per revolution). It is obvious that all the listed time-step values
provide acceptable results as the greatest differences listed are a ≈2% under-estimation of
the thrust value at dt = T/360 and a ≈1.8% over-estimation of the torque at dt = T/720.
The final choice of the time-step value for the hybrid solver simulations is also dependent
on the grid discretization because of the CFL condition, as pointed out in the following
Section 3.2.1.

Table 4. Thrust (N) and Torque (Nm) estimation with respect to different time-step values. Reference
values correspond to the finest time-step value results.

Thrust Torque

dt = T/360 −2.0% +0.3%
dt = T/720 −0.1% +1.8%
dt = T/1440 −0.9% +1.1%
dt = T/2880 −0.2% +1.4%
dt = T/5760 1846.6 [N] 301.79 [Nm]

3.2. Hybrid Solver Results

In the hybrid solver simulations, the Eulerian sub-domain is restricted to a narrow
region around the rotor blades. In particular, it consists of cylinders that surround the
rotor blades and extend at least up to 1 local chord away from the largest section of the
blade, as is recommended in [3] and illustrated in Figure 6. The greatest chord length
of the specific blade is approximately 240 mm at 20% of its radius. The Eulerian mesh
consists of hexahedral cells (structured-type) close to the blade surface in order to better
represent the boundary layer properties, whilst it is unstructured at the rest of the domain.
Another numerical parameter that needs to be considered is that the largest dimension of
the Eulerian cells should not exceed the PM discretization length. Otherwise, the density
of Eulerian particles (particles generated within the Eulerian grid) may not be sufficient
to ensure full coverage of the PM nodes. Typically, this restriction concerns the surface
discretization of the Eulerian sub-domain far-field (SE); however, care needs to be taken of
the span-wise discretization of the blade as well. This justifies the great number of cells
used in the span-wise direction of the blade surface meshes that were tested in Section 3.1.1.
The Eulerian sub-domain that is used in the hybrid solver simulations consists of 4.1 millon
computational cells.

The Lagrangian sub-domain is defined as a box that covers the entire computational
domain, extending from 1D upstream up to 2.5D downstream and 1D radially about the
rotor hub center. In Figure 7, the placement and the extent of the two sub–domains is
depicted. As stated in Section 2.2, the Lagrangian sub–domain is discretised with the use
of the PM technique and by employing uniform Cartesian grids. The different values of the
PM discretisation length (DXpm) that are tested have been chosen to vary proportionally
to the local chord length at 75% of the blade radius, which is approximately 120 mm and
from now on will be denoted by c.
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Figure 6. Eulerian sub-domain used in hybrid solver simulations.

Figure 7. Visualization of the Lagrangian and the Eulerian sub-domains in the hybrid solver simula-
tions.

3.2.1. PM Grid Dependency

In Table 5, the integrated rotor loads predicted for different values of DXpm are
listed. Five different values of DXpm have been tested, DXpm = 1c, DXpm = 0.5c,
DXpm = 0.35c, DXpm = 0.25c and DXpm = 0.20c, which correspond to 2, 3 , ≈4, 5 and 6
PM nodes per chord, respectively. It needs to be stressed that the time-step values employed
in these simulations correspond to more than 360 steps per rotor revolution, complying
with the results in Section 3.1.2. Nevertheless, for the hybrid solver simulations, there
is one extra restriction. Since the time-marching scheme is explicit, the time-step values
need to respect the CFL condition. Consequently, dt = T/540, dt = T/900, dt = T/1440,
dt = T/1800 and dt = T/2160 have been utilized for the DXpm = 1c, DXpm = 0.5c,
DXpm = 0.35c, DXpm = 0.25c and DXpm = 0.20c simulations, respectively.

It is clearly shown in Figure 8 that the differences in predicted rotor loads decrease
as DXpm gets smaller, with values less than DXpm = 0.35c (at least 4 points per chord
length) providing a PM grid independent solution. Apart from the integrated rotor loads,
the detailed description of the radial distribution of the aerodynamic loads is also of great
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importance. Table 6 shows the normalized forces and moments at 60% of the blade,
predicted by the different values of DXpm. The loads of the specific radial position
experience the highest sensitivity with respect to numerical parameters (which will be also
shown in Section 3.2.2). For this reason, the rest of the available span-wise positions are
neglected in this table. It is obvious that in order to obtain the blade radial distribution
of aerodynamic loads in detail, at least 5 PM nodes per chord length (DXpm ≤ 0.25c)
need to be used. However, it also needs to be highlighted (see Table 5) that as DXpm gets
smaller, the total number of PM nodes increases dramatically, thus substantially penalizing
computational cost. Based on all the above remarks, DXpm = 0.25c seems to provide the
best compromise between accuracy and computational cost.

Table 5. Thrust (N) and Torque (Nm) estimation of different PM discretisation lengths. Reference
values correspond to minimum value DXpm = 0.20c.

DXpm dt PM Nodes PM Nodes per c Thrust Torque

1c T/540 1.1 million 2 +17.7% +53.8%
0.50c T/900 7.3 million 3 +4.1% −1.3%
0.35c T/1440 23.3 million 4 +0.5% +0.7%
0.25c T/1800 52.2 million 5 +0.03% +0.25%
0.20c T/2160 123.2 million 6 1796.3 [N] 293.6 [Nm]

Figure 8. Thrust (N) and Torque (Nm) estimation with respect to the number of PM nodes per
chord length.

Table 6. Normalized aerodynamic load estimation at 60%R provided by different PM discretisation
lengths. Reference values correspond to minimum value DXpm = 0.20c.

DX pm FN /dr (60%R) FT /dr (60%R) Mtw/dr (60%R)

1c +16.06% +50.42% +18.44%
0.50c +4.15% −4.57% +8.29%
0.35c +0.98% +5.81% +1.03%
0.25c +0.42% +1.24% −1.27%
0.20c 356.8 [N/m] 35.44 [N/m] 4.876 [Nm/m]

3.2.2. Comparison against Measurements

In this Section, the simulation results by the Eulerian solver, MaPFlow, and the hybrid
solver, HoPFlow (by using DXpm = 0.25c), are compared against available experimental
data. It needs to be stressed that the total amount of computational elements (PM nodes
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and cells of the Eulerian sub–domain) used in the hybrid solver simulations are about an
order of magnitude more than the computational cells used in the Eulerian simulation. In
Table 7, the measured and computationally predicted rotor loads are listed. The hybrid
solver seems to predict a thrust value that is closer to the measured value (overestimated by
≈9%), as compared with the Eulerian solver (overestimated by ≈13%). Better agreement
with measurements is achieved in torque prediction by both computational tools (HoPFlow
under-predicts the torque value by ≈7% and MaPFlow by ≈4%). In Table 8 and Figure 9,
the normal and tangential forces distribution along the blade span are depicted. Over-
all, simulations predict higher values of the aerodynamic forces on most radial positions,
with the hybrid solver results being closer to measurements than its Eulerian counter-
part. This is attributed to the increased numerical diffusion of the Eulerian methodology
resulting from the gradual coarsening of the computational grid towards the far-field. Con-
sequently, the wake is dissipated when convected downstream, and its upstream induced
effect (downwash) is not properly resolved, yielding in over-estimation of aerodynamic
loads. On the other hand, the Lagrangian formulation of the Navier–Stokes equations
and the usage of vorticity as the primary flow quantity of the particles reduces numerical
diffusion. Consequently, the near-wake deficit is effectively preserved, yielding a more
physical representation of the flow-field [32]. This results in the prediction of increased
axial induction and thus reduced loads. The maximum discrepancies with respect to the ex-
perimental values are observed about the mid-span of the blade (60%), where a ≈22% and
≈18% higher normal force is predicted by the Eulerian and the hybrid solver, respectively.
The corresponding differences in the tangential force are ≈28% and ≈21%. Even though
the percentage differences concerning normal forces at the root of the blade (25% and 35%)
are slightly bigger, they are not considered that important. The high percentage difference
comes from the small reference value, whereas the absolute error in the loads estimation is
quite smaller. Much better agreement is achieved at the tip region (82% and 92%), where
again the hybrid solver results are closer to the measured values as compared with those of
its Eulerian counterpart.

In Figure 10, the gauge pressure distribution of the Eulerian and hybrid solvers at
various radial positions is compared against experimental measurements. Discrepancies
with respect to measured data are observed in both computational tools results at the
root region, which, however, seem to agree well with each other. A minor level shift
towards higher pressure is predicted by the hybrid solver on the pressure side of the blade.
Nevertheless, the predicted pressure difference between the pressure and suction side seem
to be comparable (area under the pressure plots of the two sides), which explains the small
differences in the corresponding loads, shown in Table 8 and Figure 9. On the contrary,
the pressure side predictions of the computations agree very well with each other and with
the experimental values at 60% of the blade. However, the suction side pressure close to
the leading edge is over-predicted by both MaPFlow and HoPFlow, with the latter being
slightly closer to the measured data. This explains why the maximum differences between
predicted and measured forces are observed in the mid-span of the blade, as stated before.
On the other hand, very good agreement is observed at the tip region. Both the pressure
and suction side distributions are very close to each other, which is in line with the very
well-predicted normal forces at 82% and 92% of the blade.

To sum up, predictions and measurements agree very well with each other closer to the
tip region. The tip region loading dictates the overall loading and performance of the rotor.
This explains why the differences in the integrated rotor loads are not substantial, as shown
in Table 7. The slightly smaller values of aerodynamic forces (closer to the experimental
ones) predicted by the hybrid solver are attributed to the reduced numerical diffusion and
thus the increased wake induction. Small discrepancies are shown in the root region that
seem to be more pronounced in the middle part of the blade. This may be explained by
the fact that the spinner geometry is not included in the computations. As a result, root
vortices are emitted in the simulations that tend to have a significant effect on the local flow
of the root sections [32].
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Table 7. Thrust (N) and Torque (Nm) estimation. Comparison between computational predictions
and experimental measurements. Reference values correspond to measured values.

Thrust Torque

MaPFlow +13% −4%
HoPFlow +9% −7%

measurements 1620.1 [N] 319.33 [Nm]

Table 8. Radial distribution of normal and tangential forces. Comparison between experimen-
tal measurements and computational predictions. Reference values correspond to experimental
measured values.

FN [N/m] FT [N/m]

Radius Measurements MaPFlow HoPFlow Measurements MaPFlow HoPFlow

25% 119.0 +29% +25% 31.98 −11% −14%
35% 198.1 +8% +7% 27.23 +21% +14%
60% 303.4 +22% +18% 29.76 +28% +21%
82% 421.9 +6% +3% 44.22 +7% +2%
92% 452.9 +1% −1% 43.37 +7% +4%

Figure 9. Radial distribution of normal and tangential forces. Comparison between experimental
measurements and computational predictions.

Figure 10. Cont.
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Figure 10. Pressure distribution. Comparison between experimental measurements and predictions
by different computational tools.

3.2.3. Computational Requirements

In Table 9, a comparison concerning the computational cost of the Eulerian and two
hybrid solver simulations is made. In the former, a coarse PM grid (DXpm = 0.50c) has
been used, whereas in the latter, the fine PM grid (DXpm = 0.25c) has been used, in which
the grid dependency analaysis (Section 3.2.1) resulted. It is noted that the PM grids for
which computational costs are presented result in similar forces predictions, within a 5%
margin (see Table 6). Due to the usage of uniform PM grids, even the coarse discretization
length ends up in approximately 2 times more computational elements than the ones used
in the Eulerian solver simulation, which rises to 12 times if the fine discretization length is
employed. Nevertheless, the Eulerian solver simulation needs more rotor revolutions in
order to achieve convergence of aerodynamic loads. This is because the Lagrangian method
exactly satisfies the boundary conditions at infinity, and therefore, the required number of
revolutions for the convergence of the loads depends only on the distance that the wake
has travelled away from the rotor disk plane. On the other hand, in the Eulerian simulation,
the convergence rate depends on the extent of the domain, which dictates the reflection
of the numerical errors and the coarsening of the grid in the far-field, which regulates
their decay rate. The differences in the utilized time-step values (expressed as steps per
rotor revolution) come from the fact the CFL condition needs to be respected in the hybrid
simulations, as no preconditioning has been applied to the Lagrangian formulation of
the flow Equation (1). This explains the greater number of steps per revolution required
by the fine grid simulation. Even though the amount of PM nodes used in the fine grid
simulation is an order of magnitude greater than the ones used in the coarse grid simulation,
the computational time-lengths of the time-steps are comparable. This is due to the fact that
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in the coarse grid simulation, more sub-iterations are needed to accomplish a converged
time-step solution. Furthermore, fewer processors have been used in the specific simulation.
Overall, the computational cost of the coarse PM grid hybrid simulation is 1.4 times higher
than that of the Eulerian solver simulation, whereas the fine PM grid hybrid simulation
costs 5.7 times more than the Eulerian one.

In Figure 11, the normal force distribution computed by the three different simula-
tions is depicted. The distributions predicted by the Eulerian and the coarse grid hybrid
simulation are close to each other, whereas the distribution predicted by the fine grid
hybrid simulation is slightly closer to the experimental values. In Figure 12, the pressure
distribution at 60% of the blade is depicted. The coarse grid hybrid simulation results
exhibit a small shift towards lower pressure with respect to measured data–sets and other
predictions, which results from the insufficient density of the PM grid used. However, these
deviations in pressure do not significantly affect the overall aerodynamic force prediction.

Table 9. Computational cost comparison between Eulerian and hybrid solver simulations.

Solver Computational
Elements

Revolutions
Steps

Revolution
Sec

Step

Sub-Iterations
Step

Processors Corehours

MaPFlow 4.8M a 10 1440 3.5 9 480 6720
HoPFlowcoarse 7.3M b + 4.1M a 6 900 76.75 17 80 9210
HoPFlowfine 52.2M b + 4.1M a 6 1800 81 9 120 38,800

a Number of computational cells. b Number of PM nodes.

Figure 11. Radial distribution of normal forces. Comparison between experimental measurements
and computational predictions.
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Figure 12. Pressure distribution at 60% of the blade. Comparison between experimental measure-
ments and computational predictions.

4. Conclusions

In this paper, the hybrid Lagrangian–Eulerian solver HoPFlow has been presented,
along with details about its distinct solvers and the coupling between them. The Eulerian
solver, MaPFlow, solves the compressible Navier–Stokes equations under a cell-centered
finite-volume discretization scheme, while the Lagrangian solver uses numerical particles
that carry mass, pressure, dilatation and vorticity as flow markers in order to represent the
flow-field by following their trajectories. The calculation of the velocity field is performed
by utilizing the decomposition theorem introduced by Helmholtz. Computational perfor-
mance is enhanced by utilizing the particle mesh (PM) methodology in order to solve the
Poisson equations for the scalar potential φ and the stream function ~ψ.

The hybrid solver is tested in 3-D unsteady simulations concerning the axial flow
around the wind turbine model rotor used in the New MEXICO experimental campaign.
Simulation results are presented as integrated rotor loads, span-wise distribution of aero-
dynamic loads and gauge pressure distribution at various span-wise positions along the
rotor blades. Comparison is made against experimental measured data and computational
results produced with the Eulerian solver.

Under a PM discretisation with 5 nodes per chord length (in this analysis the char-
acteristic chord length is assumed to be the on at 75% of the blade), the hybrid solver
predicts the loading close to the blade tip with great accuracy. This is regarded to be very
important, as the aerodynamic loads close to the blade tip tend to dominate the whole
rotor performance and the dynamic excitation of the blades in aeroelastic simulations.
Deviations from the experimentally measured values are observed close to the blade root,
which become more pronounced in the middle region of the blade. However, very good
agreement is shown with the corresponding Eulerian solver results. These discrepancies
are attributed to the absence of the spinner geometry in both hybrid and Eulerian solver
simulations. Furthermore, it needs to be highlighted that the Lagrangian formulation used
for the wake description, alongside with employment of vorticity as the primary flow
quantity of the particles, reduces numerical diffusion significantly compared to the Eulerian
solver. For this reason, the wake is resolved much more efficiently in the hybrid solver
simulations, thus resulting in greater wake-induced velocities. Consequently the hybrid
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solver ends up with a better estimation of the aerodynamic loads along the whole blade
span that is closer to the experimental values.

Summarizing the above, the results presented in this work indicate that the accuracy
of the boundary layer solution (near-body flow-field) of the hybrid solver is comparable
with that produced by a standard Eulerian CFD code. This confirms that the coupling
method that determines the boundary conditions for the confined Eulerian grid is adequate
and consistent. Nevertheless, the cost of the hybrid approach is overwelming for a single
rotor simulation. A remedy for moderating the computational cost is the application of
multi-level/telescopic PM grids [15], finer in the vicinity of the body and coarser in the far-
domain. The benefit for paying this increased computational cost (using fine PM grids in the
entire computational domain) lies in unsteady applications where interaction phenomena
(e.g. rotor-rotor interactions) are prominent or in cases where the accurate characterization
of the far-wake dynamics is required. It is also attractive for aeroelastic analyses in which a
standard Eulerian methodology relies on the use of overset grids and the corresponding
coupling between different sub-domains, which penalizes computational cost.
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