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Abstract: We derive the anti dissipative Serre-Green-Naghdi (SGN) equations in the context of
nonlinear dynamics of surface water waves under wind forcing, in finite depth. The anti-dissipation
occurs du to the continuos transfer of wind energy to water surface wave. We find the solitary wave
solution of the system, with an increasing amplitude under the wind action. This leads to the blow-up
of surface wave in finite time for infinitely large asymptotic space . This dispersive, anti-dissipative
and fully nonlinear phenomenon is equivalent to the linear instability at infinite time. The theoretical
blow-up time is calculated based on real experimental data. Naturally, the wave breaking takes
place before the blow-up time. However, the amplitude’s growth resulting in the blow-up could
be observed. Our results show that, based on the particular type of wind-wave tank data used in
this paper, for h = 0.14 m, the amplitude growth rate is of order 0.1 which experimentally, is at the
measurability limit. But we think that by gradually increasing the wind speed U10, up to 10 m/s, it is
possible to have the experimental confirmation of the present theory in existing experimental facilities.

Keywords: wind-generated waves; wind–wave growth rates; Jeffreys’ theory; finite depth; Serre-
Green-Naghdi dynamics

1. Introduction

Euler equations which describe both water and air flow dynamics provide the frame-
work for studying wind-generated surface waves. Airflow and surface waves are in mutual
interaction. Indeed, surface waves are generated by the airflow, and the generated surface
waves modify the profile of air pressure on the water surface. Wave growth occurs due to
the continuous energy and momentum transfer from air to the surface wave, the so-called
anti dissipation mechanism. To be more specific, local air pressure oscillations due to surface
waves are in quadrature with surface waves’ elevation slope. Therefore, surface waves and
air pressure oscillations result in anti-phase which causes momentum transfer from airflow
to water surface waves. Consequently, according to water depth and wind speed, the
monochromatic waves’ amplitude grows exponentially in time. However, several assump-
tions and approximations must be carried out in order to describe the problem. The first
theoretical work on surface wind–waves interaction was published almost a century ago by
Jeffreys (Jeffreys [1,2]). In this approach, Jeffreys disregards the viscosity and linearizes the
equations of motion in a two dimensional deep-water model. In this theory, by denoting
both wind and water surface waves using normal Fourier modes of wave-number k, the
linear wave growth γJ can be computed. As a result, the wave amplitude η(x, t, k), where
x and t are spatial and temporal coordinates, respectively, has a time exponential growth of
η(x, t, k) ∼ exp (γJt). Hence, the wave amplitude evolution depends on the value of the
coefficient γJ , which itself depends on wind speed. Recently, this work was extended to
finite depth, Manna et al. [3], and it was that in this context, the coefficient γJ depends not
only on wind speed, but also on the water depth h.

However, dispersionless and linear approximations are valid within certain limits.
Outside the validity of these approximations, dispersive and non-linear processes start to

Fluids 2022, 7, 266. https://doi.org/10.3390/fluids7080266 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7080266
https://doi.org/10.3390/fluids7080266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-0147-7858
https://doi.org/10.3390/fluids7080266
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7080266?type=check_update&version=2


Fluids 2022, 7, 266 2 of 13

become relevant. Here, we studied the time evolution of a normal mode k, under the simultaneous
actions of weak dispersion and anti-dissipation, in a fully nonlinear approach. Nonlinearity
tends to counterpoise dispersion as well as thwart time exponential growth or decay
due to anti-dissipation or dissipation, respectively. Solitary waves are the result of the
balance between dispersion and nonlinearity, as it occurs in the Korteweg-de Vries equation
(Korteweg and de Vries [4]), Boussinesq equation (Whitham [5]) or Serre-Green-Naghdi
equation (Green et al. [6], Green and Naghdi [7]). If balance occurs between dissipation
or anti-dissipation and nonlinearity, this can result in shock structures as in the Burgers
equation (Whitham [5]), while competition between dispersion, dissipation and weak
non-linearity, is found in the Korteweg-de Vries–Burgers equation (KdV–B). The KdV–B
equation arises from many and various physical contexts (see f.i. Benney [8], Johnson [9],
Grad and Hu [10], Hu [11], Wadati [12], Karahara [13]).

In recent years, due to their fully nonlinear nature, SGN equations have aroused great
interest in the field of fluid dynamics for the following reasons: their potential applications
to describe and study surface waves in shallow water (Jalali and Borthwick [14], Le [15]);
to develop various methods for solving these equations (Dehghan and Abbaszadeh [16],
Sharifian et al. [17]); and to study the mathematical properties of SGN equations (Lannes
and Métivier [18]) or their properties or solutions (Tkachenko et al. [19]).

In this work, we derived a Serre-Green-Naghdi type equation with anti-dissipation
due to the Jeffreys mechanism, taking into account the simultaneous competing effects of
dispersion, anti-dissipation and full nonlinearity.

The paper is organized as follows. In Section 2.2, the fully nonlinear SGN equations,
describing the propagation of surface waves in shallow water, are derived. In Section 3,
the wind action is taken into account through Jeffreys’ hypothesis. The result is a new
two-phase water/airflow system in which the constant atmospheric pressure is replaced
by variable pressure, depending on x and t, resulting in a flux of energy from the wind
to waves. In Section 2.2, we present and justify the application of Green’s theorem in
one dimension to the matrix form of SGN equations and study the soliton solution of the
SGN system as well as the associated blow-up in finite time. In Section 3, the blow up
time is evaluated on the basis of experimental data. Finally, in Section 4 conclusions and
perspectives are drawn. Appendix A, provides a direct proof of the application of Green’s
theorem in one dimension to the matrix form of SGN equations.

2. Materials and Methods
2.1. The Water Domain in the Nonlinear Serre-Green-Naghdi Approximation

We associated water particles, in a system of two-dimensional Cartesian coordinates
(x, z) with origin 0, where z is the upward vertical direction. We let z = 0 at the water–air
interface. Hence, the positive values of z, z ∈ ]0, ∞[, correspond to the (unperturbed) air
domain, while negative values of z, z ∈ [−h, 0] correspond to the (unperturbed) water
domain. Consequently, for the bottom of the water domain of depth h, we obtain z = −h.
The bottom is considered to be impermeable, and both water and air, are taken to be
inviscid and incompressible. Moreover, the surface tension effects, at the interface, are not
taken into account. The governing equations are the well known Euler equations, with the
mass conservation equations used in (x, z, t) frame, where t accounts for the time. Namely,

ux + wz = 0, (1a)

ρw(ut + uux + wuz) = −Px, (1b)

ρw(wt + uwx + wwz) = −Pz − gρw, (1c)

where u(x, z, t) and w(x, z, t) are the fluid’s horizontal and vertical velocities, respectively.
P(x, z, t) is the Archimedean pressure, g the gravitational acceleration, ρw is the water
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density and subscripts x, z and t denote partial derivatives with respect to x, z and t,
respectively. The set of Equations (1) are completed by the following boundary conditions:

w = 0, at z = −h, (2a)

ηt + uηx − w = 0, at z = η, (2b)

P = Pa, at z = η, (2c)

where Pa(x, z, t) is the air pressure, and Equation (2c) expresses the pressure’s continuity
across the air/water interface. Notice that z = η(x, t) is the perturbed water surface. For
convenience, we introduced a reduced pressure P, such that P(x, z, t) = P(x, z, t) + ρwgz−
P0, where P0 denotes the atmospheric pressure. Using the reduced pressure P(x, z, t), the
set of Equations (1) can be written as follows:

ρw(ut + uux + wuz) = −Px, (3a)

ρw(wt + uwx + wwz) = −Pz, (3b)

P(x, η, t)− ρwgη + P0 = Pa(x, η, t). (3c)

Shallow water model equations, such as the Korteweg-Vries, modified Korteweg-Vries,
and Boussinesq equations and many others, are usually derived by performing an asymp-
totic analysis directly from the equations of continuity (1a), the motion Equations (3a,b)
and the boundary conditions (2a,b) and (3c) (see Latifi et al. [20] and references therein). In
this work, our approach was somewhat different, in the sense that instead of applying a
perturbation theory to the entire problem, we first considered the nonlinear evolution of
a given velocity field profile. Indeed, we assumed the horizontal velocity u(x, z, t) to be
independent of z, i.e.,

u = u(x, t). (4)

The choice of Equation (4), is known as the columnar flow hypothesis, which was
introduced by Su and Gardner [21], and Serre [22]. Using Equations (1a), (2a) and (4)
we obtain

w(x, z, t) = −(z + h)ux(x, t). (5)

Hence, Equations (2b) and (3a,b) read

ηt + [u(η + h)]x = 0, (6a)

ρw(ut + uux) = −Px, (6b)

ρw(z + h)(uxt + uuxx − u2
x) = Pz. (6c)

The integration of Equation (6c), using Equation (3c), yields the pressure P(x, z, t) :

P(x, z, t) =
1
2

ρw[(z + h)2 − (η + h)2](uxt + uuxx − u2
x) + Pa(x, η, t) + ρwgη − P0. (7)

The next step consists of substituting Equation (7) in Equation (6b), and taking the
z-average of Equation (6b) for −h ≤ z ≤ η. Finally, using Equation (3c) we obtained the
following system:

ηt + [u(η + h)]x = 0, (8a)

ut + uux + gηx −
1

3(η + h)
{(η + h)3(uxt + uuxx − u2

x)}x = − 1
ρw

[Pa(x, η, t]x. (8b)

If Pa = P0, Equations (8a,b) are reduced to the usual Serre-Green-Naghdi equations.
However, in our approach, Pa was not taken as equal to P0, and the expression of Pa(x, z, t)
was found using the sheltering mechanism.
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2.2. Jeffreys’ Sheltering Mechanism of Wind Waves Generation Applied to
Serre-Green-Nagdhi Equations

The physical sheltering mechanism assumes that the energy transfer is caused by
pressure drag (also known as “form drag”). The air pressure on the windward face of the
wave is larger than the leeward face, which is the origin of continuous energy transfer from
wind to wave. Using dimensional arguments, Jeffreys [1,2] showed that the air pressure
perturbation Pa(x, z, t) evaluated on the surface can be represented by

Pa(x, z = η, t) = ρaε(U10 − c)2ηx(x, t), (9)

where ε is the sheltering coefficient, ρa is the air density and U10 is the wind velocity at a 10
m height. The sheltering coefficient is less than 1 (ε < 1). By substituting Equation (9) in
Equation (8b), we obtained

ηt + [u(η + h)]x = 0, (10a)

ut + uux + gηx −
1

3(η + h)
{(η + h)3(uxt + uuxx − u2

x)}x = −εs∆2ηxx, (10b)

where s = ρa
ρw
∼ 10−3 and ∆ = (U10− c). Thus, Equation (10) constitutes the fully nonlinear

Serre-Green-Naghdi system describing surface wave propagation in shallow water under
the action of the wind sheltering mechanism.

For convenience, we introduced new variables S(x, t), U(x, t) and α, defined as follows:

S(x, t) = η(x, t) + h, (11a)

U(x, t) = u(x, t), (11b)

α = ε∆2. (11c)

Using the variables (11), the system of Equation (10a,b) can be written as follows:

St + UxS + USx = 0, (12a)

Ut + UUx + gSx −
1

3S

{
S3[Uxt + UUxx − (Ux)

2]}
x
= −αsSxx. (12b)

Considering the following frame σ, and the slow time τ:

σ = x− vt, (13a)

τ = st, (13b)

and applying Leibniz’s chain rules by considering the change of variables (13), the x and t
derivatives can be expressed as follows:

∂x = ∂σ, ∂t = −v∂σ + s∂τ , ∂2
xt = −v∂2

σσ + s∂2
τσ, ∂xx = ∂σσ, ∂xxx = ∂σσσ. (14)

With the parameter s being small (s ∼ 10−3), Equation (12a,b) can be expanded in
terms of s, as follows:

U = U0 + sU1 + O(s2), (15a)

S = S0 + sS1 + O(s2). (15b)

Notice that the expansion should not be continued beyond the first order, because
Equation (12b) is an s1-order equation. Using the expansions (15), the partial derivate chain
rules (14) in the Serre-Green-Naghdi Equation (12) yields the following:
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At order 0

− vS0,σ + U0,σS0 + U0S0,σ = 0, (16a)

− vU0,σ + U0U0,σ + gS0,σ + S0S0,σ
[
vU0,σσ −U0U0,σσ + (U0,σ)

2]
+

1
3
(S0)

2[vU0,σσσ −U0U0,σσσ + U0,σU0,σσ

]
= 0. (16b)

At order 1

− vS1,σ + U0,σS1 + U1,σS0 + U0S1,σ + U1S0,σ = −S0,τ , (17a)

−vU1,σ + U0U1,σ + U1U0,σ + gS1,σ + (S0S1,σ + S1S0,σ)
[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
+ S0S0,σ[vU1,σσ −U0U1,σσ −U1U0,σσ + 2U0,σU1,σ]

+
1
3
(S0)

2[vU1,σσσ −U0U1,σσσ −U1U0,σσσ + U0,σU1,σσ + U1,σU0,σσ

]
+

2
3

S1S0[vU0,σσσ + U0,σU0,σσ −U0U0,σσσ]

= −αS0,σσ −U0,τ −
1
3
(S0)

2U0,τσσ + S0S0,σU0,τσ. (17b)

The set of Equations (16) and (17) can be reformulated in a matrix. Indeed, Equa-
tion (16) can be written equivalently as follows:(

Â0 B̂0
Ĉ0 D̂0

)(
U0
S0

)
=

(
0
0

)
, (18)

where

Â0 = S0∂σ, (19a)

B̂0 = −v∂σ + U0∂σ, (19b)

Ĉ0 = −v∂σ + U0∂σ +
1
3
(S0)

2[v∂σσσ −U0∂σσσ + U0,σ∂σσ], (19c)

D̂0 = g∂σ +
[
vU0,σσ −U0U0,σσ + (U0,σ)

2]S0∂σ. (19d)

Similarly, Equation (17) can be expressed as follows:(
Â1 B̂1
Ĉ1 D̂1

)(
U1
S1

)
=

(
E1
E2

)
, (20)

where

Â1 =S0∂σ + S0,σ, (21a)

B̂1 =− v∂σ + U0∂σ + U0,σ, (21b)

Ĉ1 =− v∂σ + U0∂σ + U0,σ + S0S0,σ[v∂σσ −U0∂σσ −U0,σσ + 2U0,σ∂σ]

+
1
3
(S0)

2[v∂σσσ −U0∂σσσ −U0,σσσ + U0,σ∂σσ + U0,σσ∂σ], (21c)

D̂1 =g∂σ +
[
vU0,σσ −U0U0,σσ + (U0,σ)

2](S0∂σ + S0,σ)

+
2
3

S0[vU0,σσσ −U0U0,σσσ + U0,σU0,σσ], (21d)

E1 =− S0,τ , (21e)

E2 =− αS0,σσ −U0,τ +
1
3
(S0)

2U0,τσσ + S0S0,σU0,τσ. (21f)
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2.3. Application of Green’s Theorem in One Dimension

Green’s theorem in one dimension has been proved and applied to linear differential
operators (Dunkel [23], Svendsen [24], Chiang [25]). Here, by extension, we applied this
theorem to matrix differential operators. To do so, we briefly recalled the following theorem:

∫ b

a
[zP(y)− yP̄(z)]dx = [P(y, z)]ba, (22)

where P is a linear differential operator and y and z, any two functions of x and, P̄(z)
and P(y, z), are the adjoint and the bilinear differential expressions of P(y), respectively
(Darboux [26]). This theorem, in its usual form, as it is shown in (22), was previously used
to show the damping of solitary waves (Ott and Sudan [27,28]).

In our case, we considered operators L̂0 and L̂1, defined as follows:

L̂0 =

(
Â0 B̂0
Ĉ0 D̂0

)
, L̂1 =

(
Â1 B̂1
Ĉ1 D̂1

)
.

Using L̂0 and L̂1, Equations (18) and (20) become

L̂0V0 = 0 and L̂1V1 = E, (23)

where

V0 =

(
U0
S0

)
, V1 =

(
U1
S1

)
, E =

(
E1
E2

)
.

Taking into account the symmetric behaviour of S(x, t) and U(x; t) at x = ±∞, the ex-
tension of Green’s theorem in one dimension to linear differential matrix operator L̂1 yields∫ +∞

−∞

(
V†

0 L̂1V1 −V†
1 L̂1V0

)
dσ = 0, (24)

where V†
0 and V†

1 are V0 and V1 transposed, respectively. This extension can easily be
proved following the procedure proposed in the original work of Dunkel [23]. However,
direct proof of Equation (24) is presented in (Appendix A).

2.4. Blow-Up in Finite Time of the Serre-Green-Naghdi Soliton Solution

Using Equations (23) and (24), we have:

∫ +∞

−∞

[
−U0S0,τ + S0

(
−αS0,σσ −U0,τ +

1
3
(S0)

2U0,τσσ + S0S0,σU0,τσ

)]
dσ = 0, (25)

which can be written as follows:

−
∫ +∞

−∞

[
∂

∂τ
(U0S0,)

]
dσ + α

∫ +∞

−∞
(S0,σ)

2dσ− α

[
S0S0,σ

]+∞

−∞
+

[
1
3
(S0)

3U0,τσ

]+∞

−∞
= 0, (26)

where U0 and S0 are the unperturbed solutions with a time-dependent amplitude, namely,

U0 =c0

(
1 +

a(τ)
h

)1/2(
1− h

S0

)
, (27)

S0 =
a(τ)

[cosh(β)]2
, β =

√
3
4

(
1
h

)(
a(τ)

a(τ) + h

)1/2
[

x− c0t
(

1 +
a(τ)

h

)1/2
]

. (28)
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After inserting (28) and (27) into Equation (26), alongside Equation (13) it can be

noticed that the limit of
1

cosh(σ)
tends to zero, while σ → ±∞. The Equation (26) yields

the following: ∫ a(τ)

a(0)

(a + h)1/2(2a + h)
a3 da =

4α

5c0

(
1
h

)3/2
τ. (29)

The integral in the left-hand side of Equation (29) can be calculated, and produces:

−7a2
√

a+h
h tanh−1

(√
a+h

h

)
+ 9a2 + 11ah + 2h2

4a2
√

a + h


a(τ)

a(0)

=
4α

5c0

(
1
h

)3/2
τ. (30)

By introducing the variable r =
a
h

, where h can be considered as a parameter of the
problem, Equation (30) becomes:[

−
7r2
√

1 + r tanh−1(√1 + r
)
+ 9r2 + 11r + 2

r2
√

1 + r

]r(τ)

r(0)

=
16α

5c0h
τ. (31)

It worth noting that although Equations (30) and (31) are formally correct, they will not
lead to acceptable solutions. Indeed, tanh−1 is defined in the interval [−1;+1]. Therefore,
due to the presence of tanh−1(√1 + r

)
in Equation (31), r must satisfy −1 < r < 0. How-

ever, since a and h are both positive, r is a positive value too. To overcome this difficulty,

we have to take into account that 0 <
a
h
< 1 before performing the integration in Equa-

tion (29). In other words, he have to impose physical constraints before the integration of
Equation (29). Hence, the solution is consistent with the physical conditions of the problem.
Using the variable r, Equation (29) yields:

∫ r(τ)

r(0)

(1 + r)1/2(1 + 2r)
r3 dr =

4α

5c0h
τ. (32)

The series expansion for a small value of r in the Equation yields:

∫ r(τ)

r(0)

(
1
r3 +

5
2r2 +

7
8r
− 3

16
+ o(r)

)
dr =

4α

5c0h
τ. (33)

After integration, Equation (33) becomes[
− 3r

16
+

7 ln(r)
8
− 5

2r
− 1

2r2 + o(r2)

]r(τ)

r(0)
=

4α

5c0h
τ, (34)

and by keeping the leading term for r small, Equation (34) becomes[
− 1

2r2

]r(τ)

r(0)
=

4α

5c0h
τ. (35)

Hence, the time dependent amplitude reads as follows:

a(τ) =
A0√

1−
8αA2

0τ

5c0h3

, (36)
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where A0 = a(0). From Equation (36), it can be seen that the amplitude a(τ) tends to
infinity, when the slow time τ approaches a certain value τb, which we call the “slow”
blow-up time. Replacing α = ε∆2, and τ = st, the blow-up time can be written as follows:

tb =
5c0h3

8ε∆2 A2
0s

, (37)

where ∆2 = (U10 − CGN)
2, and the dispersion relation of the SGN solitary wave CGN , can

be written (Green and Naghdi [7], Manna et al. [29]) as follows:

CGN =
c0√

1 + 1
3 (kh)2

. (38)

3. Results

In order to effectively evaluate the blow-up time tb and the growth rate of wind waves
in finite depth, we used detailed measurements of shallow water parameters in finite depth
experiments conducted in the IRPHÉ/Pythéas wind–wave tank (Branger et al. [30]). These
measurements were carried out for non-dimensional depth kh and non-dimensional initial
waves’ peak value kA0. This led us to consider the non-dimensional soliton solution kS0,
instead of S0, as well as the non-dimensional amplitude ka that we denoted as a function of
non dimensional time t, as follows:

ka(t) =
kA0√

1− 8ε(kA0)
2s

5(kh)2 t

, (39)

where

t =
∆2

c0h
t. (40)

Notice that the values of c0 as well as U10 were also measured experimentally. For
this reason, in what follows, the values of c0 differ slightly from the theoretical values
c0 =

√
gh.

3.1. For a Depth of 0.14 m

We utilized the experimental data of IRPHÉ/Pythéas facilities (Branger et al. [30]):

kh = 1.54, kA0 = 0.114, c0 = 0.92 m/s, U10 = 4.82 m/s, (41)

for the sheltering coefficient, we used ε = 0.5, and for the small parameter we used
s = 0.001. Using experimental data (41) and Equations (37) and (38) assisted in calculating
the value of the blow-up time:

tb ≈ 1721 s. (42)

Using experimental data (41), the non dimensional expression (kS0) of the soliton
solution of the SNG Equation (28), was plotted for different times (Figure 1), and revealed
the continuous growth of (kS0). Notice that the x-axis was not scaled. Indeed, during the
first 500 s, the growth rate was almost insignificant. Therefore, in order to show the growth
of the soliton solution in time, (kS0) was plotted at different times on an unscaled x-axis.

The x-position of the SGN soliton solution as a function of time is found using

x(t) = c0t
(

1 +
a(τ)

h

)1/2

. (43)

The length of the IRPHÉ/Pythéas wind–wave tank facility was 40 m. The growing
solitary wave reaches the tank’s end after 40–45 s. Consequently, the soliton amplitude
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is not nearly that of the blow-up. The growth rate of the soliton at different times and
positions, for h = 0.14 m, and U10 = 4.48 m/s, is given in (Table 1). In these conditions,
when the wave reaches the tunnel’s end, the growth rate is approximately 0.1. Hence, it is
at the measurability limit of the IRPHÉ/Pythéas wind–wave tank facility.

Figure 1. The non dimensional SGN soliton solution on a water surface at finite depth h = 0.14 m, with
a wind speed of 10 m U10 = 4.82 m/s, is plotted on an unscaled x-axis at times t = 750 s, t = 1000 s,
t = 1250 s and t = 1400 s.

Table 1. The growth rate of the SNG solitary wave at different times and positions, for depth
h = 0.14 m, and wind speed of 10 m U10 = 4.82 m/s.

t (s) 0 40 ... 750 1000 1250 1400

x (m) 0 35 ... 722 972 1229 1329

growth rate 0.09 ... 0.15 0.55 1 1.36

3.2. For a Depth of 0.26 m

Again, we utilized the experimental data of IRPHÉ/Pythéas facilities (Branger et al. [30]),
namely,

kh = 2.57, kA0 = 0.146, c0 = 1.0 m/s, U10 = 4.35 m/s. (44)

with a sheltering coefficient ε = 0.5 and small parameter s = 0.001. Similarly, experimental
data (44) and Equations (37) and (38) led to the corresponding blow-up time:

tb ≈ 7008 s. (45)

Using experimental data (44), the non dimensional expression (kS0) of the soliton
solution of the SNG Equation (28), was plotted on an unscaled x-axis, for different times
(Figure 2), and demonstrated an extremely slow continuous growth of (kS0). The growth
rate was almost insignificant for a long period. It becomes observable after more than
1500 s.

The continuous growth of (kS0), leads to blow-up at finite time, tb ≈ 7008 s, which of
course, is out of reach. Therefore, in this case, a significant growth in the soliton’s amplitude
was not observable in experimental facilities, but it could be in situ. The growth rate of the
soliton at different times and positions, for h = 0.26 m, and U10 = 4.35 m/s, is given in
(Table 2).
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Figure 2. The non dimensional SGN soliton solution on a water surface at finite depth h = 0.26 m, and
the wind speed at 10 m U10 = 4.35 m/s, is plotted on an unscaled x-axis at times t = 750 s, t = 1000 s,
t = 1250 s and t = 1500 s.

Table 2. The growth rate of the SNG solitary wave at different times and positions, for depth
h = 0.26 m, and wind speed at 10 m U10 = 4.35 m/s.

t (s) 0 40 ... 750 1000 1250 15,000

x (m) 0 41 ... 772 1030 1288 1547

growth rate 0.02 ... 0.06 0.08 0.1 0.12

4. Conclusions

We derived a Serre-Green-Naghdi fully nonlinear, dispersive and antidissipative
system of equations, in the context of the nonlinear dynamics of surface water waves under
wind forcing, in finite depth. We found its soliton solution with amplitude, velocity and
effective wave length increasing with time. Antidissipation due to wind action through the
sheltering Jeffreys’ mechanism increases the amplitude of the solitary wave and leads to
blow-up which occurs in finite time for infinitely large asymptotic space. This dispersive,
anti-dissipative and fully nonlinear phenomenon is equivalent to the linear instability at
infinite time. The blow-up time is not directly testable in existing experimental facilities.
Indeed, soliton breaking must occur in finite space in a period prior to the blow-up.
Focusing on experimental conditions and experimental data of IRPHÉ/Pythéas facilities
(Branger et al. [30]), we established that for depth h = 0.14 m, and wind speed at 10 m
U10 = 4.82 m/s, the solitary wave travels 35 m in 40 s; hence, at the tunnel’s end, its
growth rate reaches 0.09. Likewise, for a depth of h = 0.26 m, and wind speed of 10 m
U10 = 4.35 m/s, the solitary wave travels 41 m in 40 s, which means that at the tunnel’s
end, the growth rate is 0.02 only. It is clear that these growth rates are not measurable
in IRPHÉ/Pythéas facilities. Nevertheless, in the case of h = 0.14 m, we believe that by
gradually increasing the wind speed U10 by up to 10 m/s, experimental confirmation of
the present theory in existing experimental facilities could be obtained.

As noticed before, due to soliton blow-up being clearly impossible to probe exper-
imentally, another interesting approach is to evaluate the solitary waves’ breaking time
td under specific wind forcing, and more generally during breaking conditions. There
exist several breaking criteria among which the most widely known were introduced by
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(McCowan [31], Miche [32], Shemer [33]). It is of major importance to conduct further
investigations in this direction.
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Appendix A

In this section, we prove Equation (24) by direct calculation.
We shall show that each of the constituent integrals of Equation (24), namely,∫ +∞

−∞ V†
0 L̂1V1dσ and

∫ +∞
−∞ V†

1 L̂1V0dσ, is null. The nullity of the first of these integrals is
shown explicitly. The nullity of the second one, can be obtained following the same
procedure. ∫ +∞

−∞
V†

0 L̂1V1dσ =
∫ +∞

−∞
U0

(
Â1U1 + B̂1S1

)
+ S0

(
Ĉ1U1 + D̂1S1

)
dσ. (A1)

By expanding and slightly rearranging Equation (A1), the right hand side of
Equation (A1) can be written as follows:∫ +∞

−∞ [−vS0U1,σ + U0U1,σS0]dσ +
∫ +∞
−∞

[
−U0vS1,σ + (U0)

2S1,σ + gS0S1,σ
]
dσ

+
∫ +∞
−∞ U0U0,σS1dσ +

∫ +∞
−∞ S1S0S0,σ[vU0,σσ + (U0,σ)

2 −U0U0,σσ])dσ

+
∫ +∞
−∞

S1(S0)2

3 [vU0,σσσ + U0,σU0,σσ −U0U0,σσσ]dσ

+
∫ +∞
−∞

[
U0U1S0,σ + S0U0U1,σ + S0U1U0,σ + (S0)

2S1,σ
[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
+(S2

0)S0,σ[vU1,σσ −U0U1,σσ −U1U0,σσ + 2U0,σU1,σ]

+
1
3
(S0)

3[vU1,σσσ −U0U1,σσσ −U1U0,σσσ + U0,σU1,σσ + U1,σU0,σσ

]
+

1
3

S1(S0)
2[vU0,σσσ + U0,σU0,σσ −U0U0,σσσ]

]
dσ.

(A2)

It is clear to see that the first integral on the right hand side of the Equation (A2) is
equal to zero. Indeed, it is sufficient to integrate in part using Equation (16a) and take into
account the symmetric behaviour of S(x, t) and U(x; t) at x = ±∞. The second integral
on the right-hand side of the Equation (A2) can also be easily integrated in part. Using
Equation (16b) and rearranging the terms, the remaining integrals in (A2) are:∫ +∞

−∞ −2S1[−vU0,σ + U0U0,σ + gS0,σ]dσ

+
∫ +∞
−∞

[
1
3

S1(S0)
2[vU0,σσσ + 2U0,σU0,σσ −U0,σU0,σσ −U0U0,σσσ]

]
dσ

+
∫ +∞
−∞

[
U0U1S0,σ + S0U0U1,σ + S0U1U0,σ + (S0)

2S1,σ
[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
+(S0)

2S0,σ[vU1,σσ −U0U1,σσ −U1U0,σσ + 2U0,σU1,σ]

+
1
3
(S0)

3[vU1,σσσ −U0U1,σσσ −U1U0,σσσ + U0,σU1,σσ + U1,σU0,σσ

]]
dσ,

(A3)

Integrating part the second integral of Equation (A3) and regrouping some of the
terms, Equation (A3) becomes:
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∫ +∞
−∞ −2S1[−vU0,σ + U0U0,σ + gS0,σ]dσ

+
∫ +∞
−∞

(
2
3

S1,σ(S0)
2 − 2

3
S1S0S0,σ

)[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
dσ

+
∫ +∞
−∞

[
U0U1S0,σ + S0U0U1,σ + S0U1U0,σ+

+(S0)
2S0,σ[vU1,σσ −U0U1,σσ −U1U0,σσ + 2U0,σU1,σ]

+
1
3
(S0)

3[vU1,σσσ −U0U1,σσσ −U1U0,σσσ + U0,σU1,σσ + U1,σU0,σσ

]]
dσ

(A4)

The third integral of Equation (A4) is a total differential and can be directly integrated.
Using Equation (16b), the remaining integrals of Equation (A4) can be rearranged as follows:∫ +∞

−∞ −S1[−vU0,σ + U0U0,σ + gS0,σ]dσ

+
∫ +∞
−∞

1
3

∂

∂σ

(
S1(S0)

2(vU0,σσ + (U0,σ)
2 −U0U0,σσ

))
dσ

−
∫ +∞
−∞

1
3

S1S0S0,σ
[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
dσ

+
∫ +∞
−∞

1
3

S1,σ(S0)
2[vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
dσ.

(A5)

The second integral in Equation (A5) can be directly integrated. Furthermore, we
integrate, in part, the last integral in Equation (A5). After regrouping similar terms, we
obtained:∫ +∞

−∞ −S1[−vU0,σ + U0U0,σ + gS0,σ]dσ−
∫ +∞
−∞ S1S0S0,σ

[
vU0,σσ + (U0,σ)

2 −U0U0,σσ

]
dσ

+
∫ +∞
−∞

1
3

S1(S0)
2[vU0,σσσ + U0,σU0,σσ −U0U0,σσσ]dσ.

(A6)

Equation (16b) implies the nullity of the sum of the three remaining integrals in
Equation (A6). Hence, Equation (A1) becomes

∫ +∞
−∞ V†

0 L̂1V1dσ =

[
U0U1S0 +

1
3
(S0)

3[vU1,σσ −U0U1,σσ −U1U0,σσ + 2U0,σU1,σ]

]+∞

−∞

+

[
U1(−vS0 + U0S0)

]+∞

−∞
+

[
S1
(
−vU0 + (U0)

2 + gS0
)]+∞

−∞

+

[
S1(S0)

2[vU0,σσ + (U0,σ)
2 −U0U0,σσ

]]+∞

−∞
.

(A7)

Finally, by taking into account the symmetric behaviour of S(x, t) and U(x; t) at
x = ±∞, and using Equations (16a,b), we obtained:∫ +∞

−∞
V†

0 L̂1V1dσ = 0. (A8)
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