
����������
�������

Citation: Schuech, R.; Cortez, R.;

Fauci, L. Performance of a Helical

Microswimmer Traversing a Discrete

Viscoelastic Network with Dynamic

Remodeling. Fluids 2022, 7, 257.

https://doi.org/10.3390/

fluids7080257

Academic Editor: Iman Borazjani

Received: 28 June 2022

Accepted: 26 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Performance of a Helical Microswimmer Traversing a Discrete
Viscoelastic Network with Dynamic Remodeling
Rudi Schuech * , Ricardo Cortez * and Lisa Fauci *

Department of Mathematics and Center for Computational Science, Tulane University, New Orleans, LA 70118, USA
* Correspondence: rudi.schuech@gmail.com (R.S.); rcortez@tulane.edu (R.C.); fauci@tulane.edu (L.F.)

Abstract: Microorganisms often navigate a complex environment composed of a viscous fluid with
suspended microstructures such as elastic polymers and filamentous networks. These microstructures
can have similar length scales to the microorganisms, leading to complex swimming dynamics. Some
microorganisms secrete enzymes that dynamically change the elastic properties of the viscoelastic
networks through which they move. In addition to biological organisms, microrobots have been
engineered with the goals of mucin gel penetration or dissolving blood clots. In order to gain insight
into the coupling between swimming performance and network remodeling, we used a regularized
Stokeslet boundary element method to compute the motion of a microswimmer consisting of a
rotating spherical body and counter-rotating helical flagellum. The viscoelastic network is represented
by a network of points connected by virtual elastic linkages immersed in a viscous fluid. Here, we
model the enzymatic dissolution of the network by bacteria or microrobots by dynamically breaking
elastic linkages when the cell body of the swimmer falls within a given distance from the link. We
investigate the swimming performance of the microbes as they penetrate and move through networks
of different material properties, and also examine the effect of network remodeling.

Keywords: low Reynolds number flows; Stokes flow; microorganism motility; viscoelasticity

1. Introduction

The study of the fluid dynamics of microswimmers, both natural and engineered, has
enjoyed great success in recent decades, through advances in imaging technologies, computa-
tional methods, microfluidic devices, and material science (e.g., [1–7]). In biological systems,
flagella often beat or rotate in close proximity to (or through) passive elastic structures such
as as mucosal strands embedded in the fluid environment. For example, mammalian fer-
tilization requires a sperm to penetrate two layers surrounding the egg—an outer layer of
cumulus cells and the zona pellucida, a thick extracellular matrix [8,9]. Scanning electron
microscopic images in Schwartz et. al. [10] show that voids in the net-like, porous structure
of the zona pellucida are of the same length as the diameter of the (human) sperm’s cell
body. Another example is the Lyme disease spirochete B. burgdorferi that traverses epithelial
cells, fluid environments, and polymeric networks—first within the tick and then through
the skin of its mammalian host, causing infection [11]. It has been shown that spirochetes
persist in both treated and untreated Lyme-disease-infected rhesus macaques in multiple
tissues [12]. In both of these examples, the microswimmer must penetrate and navigate
through a complex, heterogeneous polymeric network embedded in a viscous fluid.

Recent experiments were performed with Bacillus subtilis moving through shallow
mucus films [13] with network pore sizes comparable to bacteria size. It was demonstrated
that the anisotropic organization of the mucus filaments affected swimming performance,
with velocity decreasing dramatically as the bacteria penetrated and moved through the
mucus. Moreover, the bacteria altered the compliant environment, displacing polymeric
strands in the mucus network as they progressed through it. In some cases, when a
bacterium reversed direction, it was able to move backwards with an increased velocity

Fluids 2022, 7, 257. https://doi.org/10.3390/fluids7080257 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7080257
https://doi.org/10.3390/fluids7080257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-3533-0582
https://doi.org/10.3390/fluids7080257
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7080257?type=check_update&version=1


Fluids 2022, 7, 257 2 of 20

through the self-created transient tunnel. This is an illustration of the elastohydrodynamic
coupling in the system—not only is the performance of the microswimmer affected by the
complex environment, the microswimmer’s motion also affects the polymeric network.

In addition to mechanical remodeling, bacteria can alter polymeric network rheological
properties and connectivity through enzymatic activity. For instance, both E. coli and
Vibrio cholerae secrete mucinase to help them penetrate the mucus barrier of the human
gastrointestinal tract, and other Vibrio species are similarly able to traverse the mucus
barriers of coral polyps in the marine environment [14]. Another well-studied example
is that of Helicobacter pylori, which colonizes the harsh enviroment of the human stomach
by producing urease, thus elevating the pH of its environment and locally de-gelling the
gastric mucus layer [15,16]. Rheological measurements show that the viscoelasticity of
samples of porcine gastric mucin decreases dramatically when incubated with H. pylori.
These bacteria overcome “elastic confinement” by altering the material properties of their
environment [15].

Recently, the use of helical nanorobots, driven by an external source, has emerged as
an exciting possibility in biotechnology, with potential applications including targeted drug
delivery [7] and lysis of blood clots [17]. In such applications, the microswimmer needs
to be guided through complex viscoelastic environments, with added control challenges
such as real-time imaging. Experiments have shown that helical nanopropellers that are
magnetically actuated in a gel with a comparable mesh size to the size of the robot can be
steered to progress effectively, while larger nanopropellers are unable to move through
the gel [18]. Motivated by the enzymatic activity of H. pylori, Walker et al. [19] developed
reactive micropropellers with immobilized urease on their surface. This strategy enabled
the magntically driven synthetic swimmers to be propelled in acidified mucin gels that
contain urea [19]. In fact, the propellers that were not coated with urease became entangled
in the polymer chains of the mucin, and could not swim.

Each of the examples discussed above demonstrate the need to understand microswim-
ming in complex, polymeric environments. Recently, there has been much progress in
modeling the hydrodynamics of microorganisms swimming in a non-Newtonian fluid
using continuum descriptions of a viscoelastic fluid (e.g., [20–26]). Instead, we advance our
viscoelastic model of a non-Newtonian fluid environment [27] and use a discrete network
to capture the length scale of voids in the fibrous environment. This approach allows for us
to probe the dynamics of a swimmer as it moves from a Stokesian fluid into a polymeric
region, and to measure both the progression of the swimmer and the deformations in the
network. The discrete network can more easily represent heterogeneous environments, and
its topology and material properties can be dynamically altered.

Motivated by biological and engineered helical propellers, here, we focus on the
motility of a model bacteria-inspired organism composed of a helical flagellum and a cell
body. The swimmer is driven by an applied torque between the cell body (a sphere for
simplicity) and the flagellum (a helix), such that the two structures counter-rotate as in
real bacteria [4]. Both the body and flagellum are assumed to be rigid structures and the
swimmer’s shape does not deviate from this prescription, no matter what forces are felt
from the viscous load or nearby polymeric boundaries. This is a good assumption for
many artificial microswimmers (e.g., those discussed above), as well as for most bacterial
cell bodies [28] and flagella not undergoing active reorientation behaviors [4]. As with
other swimmers in this class of models (e.g., [22,29–32]), the force-free and torque-free
constraints give rise to a translation and rotation of the swimmer. These models may be
used to analyze the fluid flow generated by the given motion and the forces required to
achieve the prescribed shape.

The viscoelastic network is modeled using a regularized Stokeslet framework that
applies forces due to connections between network nodes and the surrounding fluid. The
connections are assigned individual constitutive laws, and material properties can vary
in space and evolve over time. Within the context of an immersed boundary method, a
similar modeling approach was used by Bottino [33] to capture cytoskeletal structure, and,
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more recently, by Fai et al. [34]. While more complex stress–strain relationships may be
used, here a connection is taken to be either a spring element or a spring and dashpot in
series (Maxwell element). In [27], we demonstrated that when forces from these elements
are coupled to the Stokes equations, the surrounding viscous fluid acts as a dashpot in
parallel with the element. In addition, computational rheometry tests that characterized
the viscoelastic structures, such as computing their frequency-dependent loss and storage
moduli, showed that using Maxwell elements resulted in moduli that reflected many
viscoelastic materials in biological structures [27].

In [35], we conducted computational studies of an undulating planar flagellum with
prescribed kinematics swimming through discrete networks with different constitutive prop-
erties and connectivities. The work presented here extends this model in three important
directions. Firstly, the swimmer considered here is driven by a prescribed constant torque
between a cell body and a helical flagellum so that the relative rotational frequency be-
tween the two emerges from the simulation, consistent with experimental observations of
bacterial flagellar motors [4]. Secondly, we capture network remodeling by dynamically
dissolving links between nodes based upon the swimmer’s evolving position. Finally, here
we choose a hybrid boundary integral-regularized Stokeslet method with high-resolution
discretization of the cell body and flagellum. The numerical method and simulation results
are presented below.

2. Methods
2.1. The Computational Framework

We assume that the viscoelastic network and the microswimmer are suspended in a
Newtonian solvent. At these small scales, the fluid motion can be modeled by the Stokes
equations. A regularized Stokeslet is the exact solution of the incompressible Stokes equations

0 = −∇p + µ∆u + f φε(x− x0), ∇ · u = 0 (1)

where p is the pressure, u is the fluid velocity, µ is the viscosity, and fφε is external force per vol-
ume. The regularizing function, or blob, φε(r) is a smooth approximation to a delta distribution.
A commonly used function has radial symmetry and is given by φε(r) = 15ε4/(8π(r2 + ε2)7/2),
where ε is a small parameter which controls the width, or spreading [36,37]. For this function,
the exact solution of Equation (1) is the regularized Stokeslet

u(x) = S(x, x0, ε) f =
f (R2 + ε2) + ( f · (x− x0))(x− x0)

8πµR3 . (2)

where we use the notation R2 = r2 + ε2 with r = |x− x0|. Due to the linearity of the Stokes
equations, the flow induced by N forces is the superposition of regularized Stokeslets. In
the model presented below, such forces will be supported both at nodes of the viscoelastic
network and at surface points of the microswimmer’s helical flagellum and cell body. We
describe the computational framework used in the simulations presented below. Here, we
focus on the new elements of this computational framework and provide a brief description
of the elements that have been introduced elsewhere.

2.2. The Network

We model the interactions between a microswimmer and a polymeric network embed-
ded in a viscous fluid by creating a discrete network of viscoelastic linkages occupying a
portion of the fluid domain (Figure 1). These virtual links between nodes are not material
fibers, but are viewed as viscoelastic elements whose compression or extension exert forces
on the nodes. As such, the network, introduced in [27], is a set of nodes yi, some of which
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are connected to others by Maxwell elements (a spring and a dashpot in series). As the
nodes yi and yj are advected by the flow, they develop forces given by

g̃(yi, yj) = −g̃(yj, yi) = `2
0,ijEij


∥∥∥yj − yi

∥∥∥
`ij(t)

− 1

 yj − yi∥∥∥yj − yi

∥∥∥
where `ij(t) is the time-dependent resting length of the element, Eij is the spring stiffness
constant, and `0,ij is the initial resting length. The action of the viscous dashpot within each
link is modeled using

d`ij(t)
dt

=
Eij`0,ij

ηij


∥∥∥yj − yi

∥∥∥
`ij(t)

− 1

 (3)

where ηij is the dashpot constant, which affects how fast the spring resting length adjusts
to stretching and compression. In a network of interconnected Maxwell elements, the total
force on node yi(t) due to its links to other nodes is given by

g(yi) = ∑
j∈Li

g̃(yi, yj)

where yj : j ∈ Li are all the neighbor nodes connected to yi.
The elastic potential energy contained in a network of NN nodes depends on how

stretched or compressed each link is and is given by

PE(t) = ∑
j>i

NN

∑
i=1

`3
0,ijEij


∥∥∥yj − yi

∥∥∥
`ij(t)

− 1

2

(4)

2.3. The Swimmer

The bacterium-inspired microswimmer is modeled as a rigid spherical body of radius
RS coupled to a rigid helical flagellum that is modeled as a uniform cylinder of diameter
d f built around the centerline (see [30]) given by:

x f
1 (ζ) = ζ

x f
2 (ζ) = a

(
1− e−K2

Eζ2
)

cos(kζ) (5)

x f
3 (ζ) = a

(
1− e−K2

Eζ2
)

sin(kζ)

The helix amplitude a
(

1− e−K2
Eζ2
)

is approximately constant throughout the length
of the flagellum except in a small region nearest the cell body, where it tapers to zero
amplitude based on the parameter KE. There is a small gap of 1/2d f between the body and
base of the flagellum, as in [38,39], to avoid numerical problems due to the counter-rotation
of the two surfaces. A discretization of the spherical cell body and of the surface of the
cylindrical flagellum is used to compute surface forces that produce a prescribed velocity
of the flagellum and cell body, as in [38,39]. Geometric parameter values of the model
bacterium are given in Table 1.
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Figure 1. Snapshot of a model swimmer as it enters a viscoelastic network. Here, we choose a network
that, in equilibrium, is a regular lattice where each interior node is connected to its six neighbors in
the coordinate directions, as well as its twelve nearest diagonal neighbors.
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Table 1. Physical and numerical parameter values used in this work.

Type Parameter Value

Swimmer
Body radius, RS 0.6204 µm

Flagellum diameter d f 0.16 µm
amplitude, a 0.4 µm

wavelength, 2π/k 2.9 µm
# wavelengths 1.5

exponential decay constant, KE 1.543 µm−1

Network
length, width, height 6.2 µm, 13.6 µm, 13.6 µm

# layers in swimming direction 6

connectivity 18 links per node (6 along x, y,
z, 12 diagonal)

spacing between layers, min `0,ij 0.6204 µm
spring stiffness, E 0–100 mPa

dashpot constant, η 0.1–10, ∞ mPa s
fluid viscosity, µ 1 mPa s

Numerical
Swimmer total number of nodes, NS 1780

Body
regularization parameter, εS 4× 10−5 µm

number of nodes and triangular elements 454 and 226
Flagellum

regularization parameter, εS 4× 10−5 µm
number of nodes and triangular elements 1326 and 662

applied motor torque, τ 1000 fN µm
Network

regularization parameter, εN 0.0796 µm
total number of nodes (NN) and links 864 and 6396

number of anchored nodes, NA 264
dissolution distance δrRS 0.1241 µm

Since the body (B) and flagellum (F) are assumed to be rigid, the velocity u(x) at any
point on the swimmer is given by a translational velocity U, a rotational velocity ΩB, and a
rotational speed of the flagellum relative to the body ΩF:

u(x) =

{
U + ΩB × x̃ x ∈ B

U +
(

ΩB −ΩF êF
)
× x̃ x ∈ F

(6)

where x̃ = x− X, with reference point X chosen as the center of the spherical body, and êF

is a unit vector along the flagellar axis.
As in [39], we used the SALOME Platform software [40] with the Netgen 1D-2D

meshing algorithm [41] to discretize the swimmer body and flagellum with second-order
triangular surface meshes. Each curved triangular element has three corner vertex nodes
and three nodes at the midpoints of each side. Figure 2 shows the nodes on the surface of
the cell body and flagellum.

2.4. Repulsion and Anchoring Forces

In our discretization of the model swimmer, the no-slip, no-penetration boundary
condition is enforced at the surface mesh nodes on the body and flagellum. To prevent
network nodes from entering the swimmer body, we introduce an exponentially decaying
repulsion force similar to that employed in previous studies [42–45]. Of particular impor-
tance are the forces at the network nodes near the swimmer. The force g̃(yi, yj) at node
yi along a link of the network is decomposed into a component normal to the surface of
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the spherical body and a transverse component. Only when the normal component of the
network node force points toward the center of the cell body do we introduce a repulsive
force on network node yi and an equal and opposite force on the surface of the spherical
cell body, at the point closest to yi. The force is given by

f R(yi) = −e−(‖pi‖−RS)/δ

∑
j∈Li

min
[

g̃(yi, yj) ·
pi
‖pi‖

, 0
] pi
‖pi‖

(7)

where RS is the spherical body radius, δ is a small length scale, and pi = yi−X is the vector
from the center of the cell body to the network node. Hence, when a network node is on the
cell body surface, the repulsion strength is equal to the total normal force, rapidly decreases
in magnitude moving away from the surface, and increases in magnitude if a node manages
to get inside. This repulsion method introduces no additional net force or torque on the
system. Here, we chose δ such that the exponential scale factor e−(‖pi‖−RS)/δ ≈ 5 · 10−4 at a
distance from the surface ‖pi‖ − RS ≈ 0.1RS. We found this model and choice of δ to be a
good tradeoff between minimally altering the solution and keeping network nodes out of
the swimmer body.

Figure 2. Schematic of the swimming organism used in all examples. It consists of a spherical body
and a helical cylindrical flagellum. Note the surface discretization points, which are used in the
boundary integration.

To prevent bulk movement of the entire network through the surrounding fluid due
to the action of the swimmer, we also introduced additional anchoring forces f A(yi) to all
the nodes along four of the outer faces of the rectangular network (in the xy and xz planes
where x is the swimming direction). These forces were chosen such that the velocities of
these nodes were always zero (see below).

The total force of each network node i on the fluid is, therefore,{
f N(yi) = g(yi) + f R(yi) i /∈ Q
f N(yi) = g(yi) + f R(yi) + f A(yi) i ∈ Q

(8)

where yi : i ∈ Q are the NA network nodes on the aforementioned outer faces.

2.5. Regularized Stokeslet Solution

Given the distribution of forces on the viscoelastic network nodes and the swimmer,
the velocity at any point x in the fluid (including on the swimmer), due to these forces is:

u(x) =
1

8πµ

∫
B∪F

S(x, ξ, εS) f S(ξ)dSξ +
1

8πµ∑
i

S(x, yi, εN) f N(yi) (9)

The boundaries B ∪ F consist of the swimmer body B and helical flagellum F, µ is the
fluid viscosity, fS(ξ) is the force per area, or traction, of the microswimmer on the fluid,
and S(x, ξ, ε) is the regularized Stokeslet kernel with parameter ε as in (2) above.

Here, εS is chosen as a small numerical parameter in the computation of the boundary
integral, while εN is chosen as a geometric parameter related to the size of the viscoelastic
network elements as in [27].
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2.6. Instantaneous Kinematics

The state of the system at any instant in time is given by the configuration of the
network nodes and the position of the swimmer. At the start of a simulation, the links
between the network nodes are taken to be at their equilibrium lengths, so initially there are
no elastic forces supported by the network. The motion is immediately driven by an applied
motor torque at the base of the flagellum. This applied torque results in a translation of
the entire swimmer and different rotations of the flagellum and cell body—all of which
have to be computed. Moreover, the distribution of forces on the free swimmer that allow
this rigid translation and rotation also need to be computed. These forces instantaneously
result in fluid velocities at the network nodes (which move with the local fluid velocity),
causing compression or extension of linkages, and, hence, a distribution of elastic forces on
the network nodes which are no longer in equilibrium. Below, we describe the procedure
for evolving this system.

To solve the instantaneous kinematics of the freely swimming organism traversing a
viscoelastic network, we must solve a linear system of equations involving the unknown
rigid-body velocities of the swimmer (vectors U, ΩB, and scalar ΩF), as well as the traction
f S,j at each of the NS collocation points that are chosen to be the mesh nodes on the body
and flagellum, and finally the external force f A,m required to keep each of the NA anchored
network nodes fixed in space. We describe this in three parts. First, we can evaluate (9)
at each of the NS collocation points. Substituting (6) for u(x) on the swimmer and (8) for
f N(yi) yields 3NS scalar equations. Note that, given the geometric configuration of the
network and swimmer, we can directly compute g(yi) and f R(yi).

− 1
8πµ

NN

∑
i=1

S
(

xj, yi , εN
)
(g(yi) + f R(yi)) =

1
8πµ

∑
i∈Q

S
(
xj, yi , εN

)
f A(yi) +

∫
B∪F

S(xj, ξ, εS) f S(ξ)dSξ


−


[
U + ΩB × x̃j

]
xj ∈ B[

U +
(

ΩB −ΩF êF
)
× x̃j

]
xj ∈ F

j = 1, 2, ..., NS

(10)

An additional 3NA equations are needed to solve the NA unknown vectors f A(ym),
so we use the linear relationship between velocity and forces in (9) again, now specifying
zero velocity at each anchored network node: u(ym) = 0 : m ∈ Q.

− 1
8πµ

NN

∑
i=1

S(ym, yi, εN)(g(yi) + f R(yi)) =

1
8πµ

∑
i∈Q

S(ym, yi, εN) f A(yi) +
∫

B∪F

S(ym, ξ, εS) f S(ξ)dSξ

 m ∈ Q (11)

To approximate
∫

B∪F
S(xj, ξ, εS) f S(ξ)dSξ and

∫
B∪F

S(ym, ξ, εS) f S(ξ)dSξ in (10) and (11)

respectively, we use an existing adaptive quadrature algorithm for simplices, ADSIMP [46].
The algorithm subdivides each triangular element until the desired error estimate is reached;
we obtained the highest efficiency with the 5th order integration rule. The integrations
are performed by mapping each curved element to a standard (flat) reference triangle
according to standard methodology [47].

To close the linear system, seven additional scalar equations are included that enforce
the conservation of linear and angular momentum, as well as the specified torque τ imposed
between the body and the flagellum. Note that the constraint on force-free swimming
includes the contributions of repulsive forces on the cell body. The equations are:

0 = ∑NN
i=1 f R(yi) +

∫
B∪F f S(ξ)dSξ

0 =
∫

B∪F (ξ − X)× f S(ξ)dSξ

τ = êF ·
∫

F (ξ − X)× f S(ξ)dSξ

(12)
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As the reference point X is the center of the spherical body, the repulsive force, which
points in the normal direction to the sphere, does not contribute to the total torque on
the system.

We directly solve the 3NS + 3NA + 7 by 3NS + 3NA + 7 dense linear system given
by (10)–(12). The solution of this system yields the traction over the swimmer surface, the
anchoring forces at the frame of the network, the swimmer’s translational and rotational
velocities, and the relative rotational velocity of the flagellum. Once the above linear system
is solved for f S,j, f A,m, U, ΩB, and ΩF, we directly compute the velocities at the network
nodes with

u(ym) =
1

8πµ

∫
B∪F

S(ym, ξ, εS) f S(ξ)dSξ +
1

8πµ

NN

∑
i=1

S(ym, yi, εN)(g(yi) + f R(yi)) m = 1, 2, ..., NN (13)

2.7. Temporal Evolution

To obtain the trajectory of the swimmer and evolution of the viscoelastic network,
we evolve a system of ordinary differential equations for the center of the body X(t),
orientation θB(t) using Tait–Bryan angles as in [39], and flagellar phase angle θF(t) in
addition to the locations of each network node ym(t) and rest length of each link `ij(t). The
former are related to the kinematic vectors U, ΩB, and scalar ΩF by the ODEs

Ẋ(t) = U(t)

θ̇
B
(t) =


sin(θB

2 (t)) cos(θB
1 (t))

cos(θB
2 (t))

sin(θB
2 (t)) sin(θB

1 (t))
cos(θB

2 (t))
1

− sin
(
θB

1 (t)
)

cos
(
θB

1 (t)
)

0
cos(θB

1 (t))
cos(θB

2 (t))
sin(θB

1 (t))
cos(θB

2 (t))
0

ΩB(t) (14)

θ̇F(t) = ΩF(t)

Note that U, ΩB, and f S are defined in the fixed frame (but ΩF is the same in either
frame). The network nodes move with the velocity given by Equation (13) and the network
link rest lengths change according to Equation (3). The system of differential equations for
the evolution of the swimmer and the network was numerically solved using MATLAB’s
ode113. While this algorithm uses adaptive time-stepping, in the simulations presented
below; usually, 80 time steps were used to resolve one flagellar rotation.

The swimming efficiency of the microswimmer is defined as

ψ(t) =
6πµRS

∥∥U(t)
∥∥2

τ ΩF
(t)

where the moving averages U(t) and ΩF
(t) are taken over the approximate period of a

swimmer body rotation.

2.8. Remodeling

We chose a simple model of chemical degradation of the network due to teh com-
pounds released by the swimmer assuming an envelope around the swimmer cell body, in
which such compounds are sufficiently concentrated. Since our swimmer body is spherical,
this envelope is a sphere of radius (1 + δr)RS. Note that in the simulations presented
below, we chose δr = 0.2. If the line segment representing a link intersects this sphere, the
link is considered to be permanently destroyed. In practice, when such an event occurs,
the stiffness Eij of that destroyed link is set to zero for the remainder of the simulation,
effectively converting the two nodes of the link to passive tracer particles.
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3. Simulation Results

In all simulations presented here, we fix the swimmer geometry and lattice network
geometry depicted in Figure 1, with geometric and numerical parameters listed in Table 1.
For simplicity, we consider a network geometry that is a uniform lattice of 6× 12× 12 nodes
with all initial link rest lengths `0,ij at equilibrium. Each interior node is connected to its six
neighbors in the coordinate directions, as well as its twelve nearest diagonal neighbors. A
simulation begins with the leading edge of the microswimmer a short distance ahead of the
leftmost face of the network, with the flagellar axis perpendicular to that face. As described
above, the motion of the microswimmer is driven by an imposed torque τ. Here, we chose all
links in the network to be virtual Maxwell elements, with uniform stiffness constants Ei,j = E
and uniform dashpot constants ηi,j = η. We now investigate the swimming performance as
a function of these material parameters, E and η, both with and without network dissolution.
Note that the case of E = 0 results in a purely Newtonian fluid with network nodes acting as
passive tracers only. In addition, the case of η = ∞ results in purely Hookean spring elements,
with no relaxation of the element’s rest length due to a dashpot.

3.1. No Remodeling of Network

To begin to understand the interactions between the microswimmer and surrounding
viscoelastic network, we first illustrate the effects of the network link dashpot parameter η,
keeping stiffness E = 25 mPa fixed.

Figure 3 shows a sequence of snapshots of the microswimmer as it penetrates and moves
through the network of nodes connected by elastic Hookean springs (η = ∞). Note that we
are depicting two-dimensional side views in panels (A)–(D), as well as two-dimensional front
views in panels (E)–(H), of this three-dimensional system. Figure 3I shows a timeseries of the
swimming speed of the organism, normalized by its swimming speed in a Newtonian Stokes
fluid, as well as motor frequency and power efficiency (also normalized by the Newtonian
values). The swimmer is initialized with its cell body just outside the network, so even when it
has not yet entered the network, the presence of this obstacle causes its normalized swimming
speed to be slightly less than one. The swimmer then penetrates and traverses the network at a
reduced swimming speed, at times even lower than 25% of the Newtonian speed. Moreover,
driven by the prescribed motor torque, the resulting motor frequency in the network is less
than the achieved motor frequency in the Newtonian case, but by only about 2%. As such, the
reduction in swimming efficiency, at times less than 10% of the Newtonian case, is due to the
retarded swimming speed and not to the hydrodynamic power needed to rotate the flagellum.
Figure 3J shows a timeseries of the potential energy in the network as well as the maximal
relative stretch of the springs. These timeseries illustrate that the swimmer slows down each
time it encounters a successive discrete layer in the network, stretches the links attached to the
nodes in front of it, and eventually pushes past, allowing for those links to contract back to
rest. We do see a slight boost in swimming speed as the cell body exits the network, with a
boost in efficiency of almost 20%, since the increase in swimming speed was accompanied by a
reduction in motor frequency compared to the Newtonian case.

Figure 4 shows the swimming progression through a network with a moderate dash-
pot parameter η = 10 mPa-s. Again, the swimmer is able to penetrate and traverse the
network, but at a significantly reduced speed, swimming at around 30% of the network-free
Newtonian case over much of this distance. The potential energy stored in the stretched
links rapidly increases during initial penetration of the network, then stays roughly con-
stant, and finally decreases back to zero when the swimmer leaves and each link returns to
its new rest length—the latter is illustrated by the maximum relative stretch parameter `/`0
reaching a steady state value above 1. In this example, as well as the previous Hookean
case, the swimmer is effectively held back by a single network node as it exits the network
(see t = 1.5 s in Figure 4) but does escape. Once the body is completely free and the tail is
mostly free, the swimmer again experiences a small increase in speed and efficiency versus
the Newtonian case.
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Figure 3. Summary of results for E = 25 mPa, η = ∞ (Hookean elements). Panels (A–H): side views
and frontal views at four selected times, zoomed in to highlight the dynamics near the microswimmer.
A white equitorial band is depicted around the cell body to demonstrate rotation. Panel (I): timeseries
of swimming speed, motor frequency, and power efficiency, all averaged over a body rotation and
normalized to the Newtonian case (E = 0 mPa). Panel (J): timeseries of potential energy of the
network (PE) and the maximum relative strain `/`0. Vertical dashed lines correspond to when each
snapshot was taken. Leftmost light gray shading corresponds to when any part of the spherical
body but none of the flagellum is inside the rectangular volume initially occupied by the network.
Dark shading corresponds to when both the body and flagellum are each at least partially inside.
Rightmost light shading corresponds to when part of the flagellum but none of the body is inside.
Unshaded sections correspond to when the swimmer is completely outside this rectangular volume.
See Supplementary Materials Video S1 for an animated version.



Fluids 2022, 7, 257 12 of 20

Figure 4. Summary of results for E = 25 mPa, η = 10 mPa-s. See Figure 3 for panel descriptions. See
in Supplementary Materials Video S2 for an animated version.

We now consider the case of E = 25 mPa with the dashpot constant further reduced
to η = 1 mPa-s. In this case, link rest lengths quickly adapt upon being stretched or
compressed (Figure 5). The ‘pusher’ velocity field induced by the swimmer draws net-
work nodes toward it, deforming the network considerably and resulting in the swimmer
becoming entangled in many nodes. Compared to the Hookean (η = ∞) and moderate
η = 10 mPa-s cases above, the swimmer takes much longer to fully escape the network
(not shown in Figure 5). Despite this, the swimmer travels further by t = 2 s than in either
of these cases because the elastic forces exerted by the rapidly adapting network on the
swimmer are relatively small.
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Figure 5. Summary of results for E = 25 mPa, η = 1 mPa-s. See Figure 3 for panel descriptions. See
in Supplementary Materials Video S3 for an animated version.

We further explore the effect of the varying the dashpot parameter η while fixing
the spring stiffness E = 25 mPa. Figure 6 shows the trajectory of the cell centroid in the
swimming direction through the network for E = 25 mPa and various values of η. In
each case, the swimmer starts near the Newtonian swimming speed as it approaches the
network, but slows down as the elastic link forces increase and it penetrates the network.
Comparing the simulations, Figure 6 shows that from t = 0.25 s to t = 1.25 s, the swimming
speed decreases as η (and network resiliency) increases. Eventually, when the swimmer
escapes the network, its swimming speed returns to the network-free Newtonian case.
The transition does not take place until the swimmer completely separates itself from the
network links, which takes longer for more deformable networks, i.e., for smaller values
of η, as the swimmer drags portions of the network with it. In Figure 6, we see that for
η = 1 mPa-s, the transition to network-free swimming occurs at about t = 2.5 s (right inset),
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while for η = 10 mPa-s (red dashed line) the transition occurs at about t = 1.8 s. For the
Hookean case, the transition is at t = 1.5 s (left inset).

Figure 6. Horizontal position of center of swimmer body as a function of time for a variety of different
values of η, the dashpot constant. Note that in each case the link stiffness was E = 25 mPa. The insets
show snapshots in time of two particular cases.

3.2. Remodeling of Network Due to Dissolution

Figure 7 shows a sequence of snapshots and related timeseries in the case when net-
work links are permanently dissolved when they come within δr = 0.2RS of the swimmer
body surface. We see that the swimmer effectively clears a path around itself, leaving
disconnected network nodes in its wake that become passive tracers. Due to the dissolution
of network links, there is less interaction between the swimmer and the elastic elements,
resulting in an increase in the swimmer’s average speed. The swimmer is able to traverse
the network considerably faster than without remodeling (Figure 7 vs. Figure 4). As in the
previous cases, the discrete nature of the network introduces small peaks and dips in speed
(one seen at about t = 1.06 s here). The potential energy of the network does not increase
as much as in the cases without remodeling because the links that tend to stretch the most
are also more likely to come close to the swimmer and be dissolved.

If we examine the effects of remodeling across a range of stiffness values, as E is
increased, the number of links that are dissolved over the course of a simulation tends to
increase to a relative maximum near E = 10 mPa and then decrease sharply as stiffness is
further increased (Figure 8A). Figure 8B,C depict the network links that were dissolved
during two simulations with different network parameters chosen in the range of relatively
high E values. The swimmer position shown is not part of the simulation; it is shown to
provide a reference for the extent of the dissolved network links. The case E = 10 mPa
and η = 1 mPa-s is a network that substantially deforms, making it more likely that larger
numbers of links will come in close proximity to the swimmer. Therefore, more links are
dissolved in the simulation compared to a more rigid network (E = 100 mPa, η = ∞)
where only those links that were initially very close to the swimmer path are dissolved.
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Figure 7. Summary of results for E = 25 mPa, η = 10 mPa-s in which network links coming
within 0.2RS of the body surface were permanently destroyed, modeling chemical degradation. See
Figure 3 for panel descriptions, but note that panels for t = 2 s are omitted because the swimmer
has completely exited the field of view at that time. See in Supplementary Materials Video S4 for an
animated version.

3.3. Effects of Varying E, η

We performed simulations of the model swimmer penetrating, traversing and exiting
the model viscoelastic network for a range of material parameters E and η. Figure 9 shows
the metrics of swimmer velocities (Panels A–C; E–G) and average potential energy in the
network (Panels D, H) for the base case with no link dissolution and for the case where
network links were dissolved. In particular, we report the minimum speed (Panels A, E)
and the maximum speed (Panels C, G) of the swimmer in a simulation, over the duration
of time it took for the swimmer to break completely free of the network and regain its
Newtonian swimming velocity. The mean speed in the network (Panels B, F) and the mean
network potential energy (Panels D, H) were computed by averaging these quantities from
t = 0 until the center of the body reached the outermost network layer. Note that in the
absence of remodeling, there is a relative minimum in both minimum and mean swimming
speed, approximately between 25 < E < 50 mPa, which becomes increasingly pronounced
as η increases toward the Hookean case, η = ∞. Intuitively, one might expect swimming
speed to decrease monotonically with increasing E as the network exerts larger forces on
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the swimmer. However, since the gaps between network nodes are comparable in size
to the swimmer cell body, a sufficiently large stiffness of the network links can result in
less deformation of these channels and faster traversal by the swimmer, especially as the
network is arranged as a uniform lattice.

Figure 8. Summary of results for a swimmer with the ability to dissolve nearby links moving
through networks with different viscoelastic properties. The range of the stiffness constant is
0.1 ≤ E ≤ 100 mPa and of the dashpot parameter is 0.1 ≤ η ≤ 10 and η = ∞. Panel (A) shows
the number of links broken from t = 0 s until the swimmer crossed the network and reached the
network-free swimming speed. Panels (B,C) show, at t = 0, the links that were ultimately broken later
during the simulation for two choices of E and η; images of the swimmer are shown for perspective.

Figure 9. Summary metrics for simulation results across a range of E and η, for base case without
remodeling (A–D) versus with chemical dissolution (E–H). Minimum and maximum swimming
speed over the entire simulation, and mean swimming speed and network potential energy averaged
up to the time at which the center of the body reaches the right edge of the network. All speeds are
normalized to that of the Newtonian (E = 0) case. Note the different y-axis scales between some base
and dissolution panels for clarity.
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The maximum speed reported in Figure 9C,G occurred overwhelmingly at the mo-
ment the swimmer’s cell body exited the network. Once the swimmer begins to exit the
network and the body is no longer constrained, it tends to experience a modest increase
in swimming speed compared to the Newtonian case due to the flagellum effectively
pushing against the nodes behind it. This is most effective (up to a maximum of 16% faster
than Newtonian) for high values of both E and η, when the network is most resilient to
deformation. The microswimmer does impart elastic potential energy into the viscoelastic
network as it moves through it. While the concept of the swimmer extracting some of this
elastic energy to boost swimming speed is intriguing, we did not find evidence for this.
Instead, we believe the speed boosts we observed as the swimmer exited the network were
primarily due to the swimmer’s ability to push against the network nodes behind it to
some extent. Indeed, simulations in which the flagellar torque was instantly lowered to
zero as the swimmer exited the network resulted in a near-instantaneous cessation of all
swimmer movement (data not shown).

When the swimmer can actively remodel the network, it achieves much higher swim-
ming speeds across all E and η as seen in both the minimum and mean speed metrics
(Figure 9E,F). The local minima in these speeds do not drop as far below the Newtonian
speed as those of the swimmers that are unable to dissolve links. While the swimmer
traverses the network overall much faster with remodeling, its maximum speed while
exiting is reduced (Figure 9G) due to a reduced ability to push against what were the
nearest network nodes, which now effectively became passive tracers.

Finally, we comment on the potential energy (PE) stored in the network elements.
Figure 9D shows the mean value of the PE per simulation for a range of values of E and η.
The trends indicate that, for a fixed value of η, the mean PE increases with E to a maximum
value, and then sharply decreases. Referring to Equation (4), the PE is proportional to the
stiffness E and each term is proportional to the square of the strain, which, in turn, depends
on the deformation of the network. These are competing effects because stiffer networks
deform less. The concavity of the curves in Figure 9D shows that the reduction in strain as
E increases dominates the effects of increasing stiffness. The mean potential energy across
all simulations with remodeling (Figure 9H) is smaller than that without remodeling, since
the most deformed links are dissolved. As in the base case, we do see the persistence of a
relative maximum in network PE with respect to E, though it shifts to a lower value.

4. Discussion

We have presented a model for the simulation of the motion of a swimmer in Stokes
flow as it approaches, traverses, and exits a viscoelastic region. The region represents a
polymeric network characterized by gaps of a size comparable to the dimensions of the
cell body, where continuum models do not apply. Our simulations are based on a hybrid
boundary integral-regularized Stokeslet method which allows for high resolution in the
discretization of the cell body and the flagellum. The network is composed of Maxwell
elements characterized by a stiffness parameter and a dashpot constant. Throughout this
work, we have assigned the same constants to all elements, although our model is not
restricted to homogeneous material properties of network links.

We note that the discrete nature of the network has an effect on the dynamics. For
instance, depending on its initial orientation with respect to the regular lattice of elements,
a swimmer may run directly into a network node, causing the swimmer to slow down,
while a swimmer that was initially lined up with the pores of the network may advance
faster. Hence, such discrete events introduce seemingly random noise in many of the
trends in velocities reported in Figure 9, although trends in network potential energy,
which is aggregated over the entire network, are smoother than the trends in speed of the
individual swimmer. While we found that sufficiently high stiffness values can facilitate
faster traversal of the network, this result is dependent on the particular geometry of
the system. In fact, in simulations not shown here, in some cases with network nodes
arranged with little geometric order, as opposed to in regular lattices, faster swimming
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with increased stiffness was not observed. On the contrary, in some cases with perturbed
networks with large E, the computational swimmer was not able to escape the viscoelastic
network. This observation is consistent with the experiments on natural bacteria [13] and
engineered nanopropellers [18], which demonstrate that, at times, the microswimmers
are not able to progress through the viscoelastic environment. In fact, the experiments
in [13] also show that pore sizes in a mucus network can be manipulated by squeezing the
sample between parallel plates, which alters subsequent bacterial progression and flagellar
bundling. This shear induced rearrangement of mucosal fibers could possibly open up the
types of channels present in the regular-lattice simulations above.

5. Future Directions

While we have demonstrated that our model can capture the dynamic remodeling of
network rheology by a microswimmer, here we chose a generic swimmer and used a very
simple dissolution model of network links. Bacteria exhibit an enormous diversity of body
shapes that affect motility in both Newtonian (e.g., [39]) and complex (e.g., [48]) fluids.
The latter effects are less well studied than the former and it would be worth investigating
other common body geometries (e.g., straight or curved rods, helices) interacting with
viscoelastic networks in the future: this would be straightforward with our modeling
framework. Likewise, in our treatment of network remodeling, we did not try to capture
the details of enzymatic release and their relation to specific rheological properties of the
polymeric network, central to systems such as H.pylori [16]. Of course, when probing a
particular system, details of the biochemistry should also be included.

Our method is formulated to model microswimmers that not only swim within dis-
crete viscoelastic networks but also penetrate into and exit out of such regions of a bulk
Newtonian environment. In many experimental studies of biological viscoelastic structures
(e.g., [49]), it is difficult to ascertain the precise geometry of the transition between New-
tonian and viscoelastic regions. In this study, we chose to model a sharp interface, since
this is consistent with observations in several studies, e.g., the oocyte cumulus complex
in mammalian reproduction [50], the mucus-periciliary layer interface in the respiratory
tract [51], and experiments involving bacterial invasion of cervical mucus [13]. While we
created a sharp interface between the Newtonian and viscoelastic region by assigning the
same parameters to every link in the network, smoother transitions could be modeled in the
future by assigning different properties to the network links near the edge of the network.

This study focused on a single microswimmer, but suspensions of many microswim-
mers are common in both natural and engineered systems [52]. At sufficiently dense
concentrations, cell locomotion can no longer be considered on an individual basis due
to hydrodynamic interactions. Intriguingly, [53] show how, even in dilute suspensions,
individual bacteria are, in fact, frequently mechanically coupled by a weak viscoelastic
matrix. It would be straightforward to extend our modeling framework to include multi-
ple microswimmers embedded in a network, with the only limitation being an increased
computational cost.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fluids7080257/s1, Video S1: Animated simulation output for
E = 25 mPa, η = ∞ (Hookean elements); Video S2: Animated simulation output for E = 25 mPa,
η = 10 mPa-s; Video S3: Animated simulation output for E = 25 mPa, η = 1 mPa-s; Video S4:
Animated simulation output for E = 25 mPa, η = 10 mPa-s in which network links coming within
0.2RS of the body surface were permanently destroyed, modeling chemical degradation.
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