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Abstract

:

In this paper, the economically self-sufficient microgrid is planned to provide electric power and heat demand. The combined heat and power-based microgrid needs strategic placement of distributed generators concerning optimal size, location, and type. As fossil fuel cost and emission depend mainly on the types of distributed generator units used in the microgrid, economic emission dispatch is performed for an hour with a static load demand and multiple load demands over 24 h of a day. The TOPSIS ranking approach is used as a tool to obtain the best compromise solution. Harris Hawks Optimization (HHO) is used to solve the problem. For validation, the obtained results in terms of cost, emission, and heat are compared with the reported results by DE and PSO, which shows the superiority of HHO over them. The impact of renewable integration in terms of cost and emission is also investigated. With renewable energy integration, fuel cost is reduced by 18% and emission is reduced by 3.4% for analysis under static load demand, whereas for the multiple load demands over 24 h, fuel cost is reduced by 14.95% and emission is reduced by 5.58%.
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1. Introduction


In the past decades, the attention toward microgrid (MG) operation has increased with the integration of distributed generation (DG) units near the consumer end to fulfill the power demand. The MG has been characterized as a small-scale, self-sustaining cluster distribution power system architecture that combines multiple DG, combined heat and power (CHP) units, energy storage systems (ESSs), and load, acting as a single and controllable entity [1]. Integrating CHP units in the MG has attracted more attention with the motivation to provide thermal energy with electric power by using the waste heat generated during electricity generation [2]. The successful implementation of bio-inspired evolutionary optimization techniques in solving many complex engineering problems has attracted researchers to apply different optimization algorithms to solve the load dispatch problems using several test cases of power systems.



The combined heat and power dispatch (CHPED) problem has been realized using a real coded genetic algorithm [3], improved group search algorithm [4], oppositional teaching-learning based optimization [5], modified particle swarm optimization (PSO) [6], self-regulating PSO [7], cuckoo search algorithm (CSA) [8], gravitational search algorithm [9], exchange market algorithm [10], group search algorithm [11], and grey wolf optimization (GWO) [12] using different test cases. The demand-side management and the optimal operational problem of the MG were studied using a hybrid genetic algorithm (GA) and artificial bee colony (ABC) algorithm. Here, the objective is to minimize overall running costs of the MG, demand-side management costs, and costs due to load shifting [13]. A hybrid artificial neural network (ANN) and PSO model were used to solve the biomass gasification plant (BGP) problem. This model was used to estimate the amount of biomass that was used to produce the required syngas, which is needed to meet the energy demand [14]. To enhance power exchange, the two-round fuzzy-based speed (TRFS) algorithm followed Stackelberg’s game theory, and the Quasi-oppositional Symbiotic Organism Search Algorithm was used in a multi-MG environment to study the power exchange problem [15].



The power generating units using fossil fuels emit pollutant gases in the environment. These environmental concerns have pushed toward the integration of DGs based on clean and renewable resources. At the same time, emission constraints have also been considered in the scheduling problem. The economic dispatch and emission dispatch are single objectives to minimize the fuel cost and emission, respectively, by determining the optimal generation of each unit in the system while satisfying the demand load and other operational constraints. However, the results showed conflict with each other, i.e., minimizing fuel costs increases the emissions and vice-versa. Therefore, a multiobjective approach has been used to deal with these two conflicting objectives in the combined CHP economic and emission dispatch (CHPEED) problem. The CHPEED multi-objective problem has been solved using numerical polynomial homotopy continuation (NPHC) [16], the normal boundary intersection method [17], time-varying acceleration PSO [18], GWO [19], and multiverse optimization [20].



Integrating renewable-based DG such as wind and solar power with conventional units reduced environmental emissions. In Ref. [21], a comparative analysis was conducted to solve the power dispatch problem using different BI optimization methods for various test systems with the integration of wind units. The wind and fuel cell unit were integrated with the thermal plant to analyze economic dispatch and the MG power dispatch problem using CSA [22]. The solar and wind unit was incorporated with the thermal plant to investigate the CHPED using the squirrel search algorithm [23]. The impact on cost and emission with the integration of renewable-based DG was analyzed using an equilibrium optimizer (EO) [24]. The EED problem in a wind power integrated system was analyzed to estimate the impact of carbon trading prices on the reduction in carbon emission and enhancing the efficiency of power generation efficiency improvements [25]. To achieve the desired scenario of zero greenhouse gas emissions, the techno-economic feasibility analysis was carried out under different scenarios of the combined usage of renewable-based DG and storage systems [26]. The scheduling problem of MG having DG and wind units under their respective limits was performed using the manta ray foraging algorithm (MRFO). The effect on the cost due to the integration of solar power and energy storage systems was also examined [27]. The MG was reconfigured to analyze the demand response program using PSO to reduce the conventional DGs’ fuel cost and the cost of acquiring electricity from the grid. The point estimate method was used to simulate the uncertainty of RESs, while the uncertainty due to other parameters was ignored [28]. A multiobjective thermal unit-based economic dispatch was carried out using binary and continuous PSO algorithms in Ref. [29]. To study the performance of MG under six distinct scenarios, the modified binary PSO was used to solve the load dispatch problem. The uncertainty of RESs, demand, and the market price was considered to neglect the system’s power loss and spinning reserve [30]. The uncertainty associated with wind power plants due to uncertain wind velocity can be modeled using penalty and reserve cost to represent their under- and overestimation of wind power, respectively [31]. In Ref. [32], DE and PSO were used to analyze the planning problem in CHP-based MG. Here, the loss-sensitive approach was used to select the bus on a 14-bus MG and to determine the optimal size of DGs using PSO for minimum loss in the system, and CHPEED was further carried out using DE and PSO.



Wolpert and Macready, in the year 1997, proposed a No free lunch theorem, which states that no single algorithm can guarantee to solve all types of optimization problems [33]. Harris Hawks Optimization (HHO) is a swarm intelligence-based optimization approach; its analytical mode takes care of distinct foraging strategies such as tracing, sieging, and surprise attacks during the optimization process [34]. HHO has been successfully applied for various real-world problems such as in cost management and the operation of multi-source-based microgrids [35], and in relay coordination problems [36]. In this paper, HHO was implemented for the solution of DG placement planning and optimum generation scheduling of a CHP-based MG.



The main contribution is as follows:




	
The HHO algorithm was implemented to analyze its effectiveness in solving the DG placement and the load dispatch problem for an MG.



	
Selection of optimal size and location of DGs for a 14-bus RDS.



	
Load dispatch was conducted under two different scenarios (i.e., with and without renewable energy for minimization of cost and minimization of emission.



	
TOPSIS was implemented to obtain the best-compromised solution (BCS).








This paper is organized as follows: Section 2 contains the problem formulation that combines the modeling of different types of DG units, the formulation of the CHPEED problem, and operational constraints. The concept behind the HHO algorithm is presented in Section 3. Section 4 deals with the description of test cases, simulation results, and discussion. Finally, concluding remarks are discussed in Section 5.




2. Problem Formulation


This paper focuses on CHPEED-based optimal generation scheduling for effective energy management planning in MG. Here, the objective is to minimize the cost and emission due to on-site generation and the CHP system. Therefore, optimal siting and sizing of DG units are essential in this context. Its formulations are added with the CHPEED problem as below.



2.1. Optimal Placement of DG


The DG unit was placed in MG to minimize the power loss as [32]:


  M i n i m u m      (   P l   )  =   ∑   i = 1    N g     P i  −  P d   



(1)




where    P l    is the power loss in the system,    P d    is the power demand,    P i    is the power output of ith DG unit, and    N g    is the number of DG units in MG.



It is subject to the following constraints [32]:


   V  m i n     ≤    |   V i   |    ≤    V  m a x    



(2)




where    V i      is the voltage at the ith bus, with minimum voltage    V  m i n    = 0.95 p.u. and maximum voltage    V  m a x     = 1.05 p.u.


   P i  m i n   ≤  P i  ≤  P i  m a x    



(3)




where    P i  m i n     and    P i  m a x     are the minimum and maximum power output of the ith DG unit, respectively.




2.2. Economic Dispatch


The total operational cost of all committed DGs units expressed as [22]


   f 1  =  F  D G  T  +  F  W P P  T  +  F  F C  T   



(4)




where     f 1    is the cost function;   F  D G  T  ,    F  W P P  T  ,     and    F  F C  T    are the costs of conventional thermal generators, wind power plant (WPP), and fuel cell (FC) units over a period of time T, respectively [22,27].



2.2.1. Modeling of Conventional Thermal Generators


The fuel cost of conventional thermal generators is expressed as [32]


   F  D G  T  =   ∑   t = 1  T    ∑   i = 1    N g     (   a i  ·    (   P i t   )   2  +  b i  ·  P i t  +  c i   )   



(5)




where     a i  ,    b i  ,   and    c i    are the fuel cost coefficient of the ith DG unit.    P i t      is the power output of the ith DG unit at the tth interval of time and    N g    is the number of DG units [32].




2.2.2. Modeling of Wind Power Plant


As the power generation of a wind power plant (WPP) is governed by uncertain wind velocity, its variable output characteristics are used to compute the cost of wind power. The cost of wind power generation includes the cost due to the uncertainty in it, expressed as [21,22,32].


   F  W P P  T  =   ∑   t = 1  T    ∑   j = 1    N w     C j t   (   P   w j   t   )   



(6)




where    N w    is the number of WPP units and


   C j t   (   P   w j   t   )  =  β   w j     P   w j   t  +  k p   (   P   w  j ,   a v    t  −  P   w j   t   )  +  k r   (   P   w j   t  −  P   w  j ,   a v    t   )   



(7)




where    P   w j   t    and    P   w  j ,   a v    t    are the scheduled output and available wind power of the jth unit at the tth interval of time, respectively;    β   w j      are the maintenance and operating cost in USD/kW;    k p    and    k r    are the penalty cost (underestimation) coefficient and reserve cost (overestimation) of the wind power plant, respectively [21,31]. These penalty costs and reserve costs of the wind power plant are, respectively, represented as [21,31]:


   k p   (   P   w  j ,   a v    t  −  P   w j   t   )  =  k p    ∫    P   w j   t     P   w r       (   P w t  −  P   w j   t   )   f w   (   P w   )  d  P w   



(8)






   k r   (   P   w j   t  −  P   w  j ,   a v    t   )  =  k r    ∫  0   P   w j   t     (   P   w j   t  −  P w t   )   f w   (   P w   )  d  P w   



(9)




where    P   w r      is the rated output of wind power and    P w t    is the output power of a wind power plant at the tth time interval, determined as [21,31]:


    P w t   =  {       P   w r    ×    (   v t  −  v  c i n    )     (   v r  −  v  c i n    )    kW ,           ;                              v  c i n     ≤  v t    ≤  v r         P   w r    kW ,                                   ;                                v r    ≤  v t    ≤  v  c o         0 ,                                               ;              v t    ≤    v  c i n       a n d    v t  >  v  c o          



(10)




where    v t    is the wind velocity at the tth time in m/s;    v  c i n ,   ,    v  c o   ,   and    v r    are the cut-in velocity, cut-out velocity, and rated velocity in m/s, respectively.



To determine the penalty and reserve costs, it is necessary to select the probability distribution function (  p d f  ) for wind power output. The uncertainty and irregular nature of wind speed closely follow the Weibull distribution and   p d f   given as [21,31]:


  p d f    (  v ,   k ,   c  )  =  k c     (   v c   )    k − 1   e x p  (  −    (   v c   )   k   )   



(11)




where  k  and  c  are   p d f   parameters referred to as the shape factor and scale factor, respectively. The corresponding cumulative distribution function (  c d f  ) is given as [21,31]


  c d f    (  v ,   k ,   c  )  = 1 − e x p  (  −    (   v c   )   k   )   



(12)







The probability of wind power is calculated as [21,31]


   f w   (   P w   )   {   P w t  =  P   w r    ×    (   v t    –    v  c i n    )     (   v r    –    v  c i n    )     }  = p d f  (   P w   )  =   k l  v  c i n    c     (     (  1 + ρ l  )   v  c i n    c   )    k − 1   e x p  (  −    (     (  1 + ρ l  )   v  c i n    c   )   k   )   



(13)




where


   ρ =    P w     P   w r        ,   and   l =    (   v r  −  v  c i n    )     v  c i n       



(14)






   f w   (   P w   )   {   P w t  =  P   w r     }  = c d f  (   v  c o    )  +  (  1 − c d f  (   v r   )   )  = e x p  (  −    (     v r   c   )   k   )  − e x p  (  −    (     v  c o    c   )   k   )   



(15)






   f w   (   P w   )   {   P w t  = 0  }  = c d f  (   v  c i n    )  +  (  1 − c d f  (   v  c o    )   )  = 1 − e x p  (  −    (     v  c i n    c   )   k   )  + e x p  (  −    (     v  c o    c   )   k   )   



(16)








2.2.3. Modeling of Fuel-Cell Unit


The cost of an FC unit includes the cost of fuel and the efficiency of the fuel to generate electricity expressed as [22]:


   F  F C  T  =   ∑   t = 1  T   (   β  n a t u r a l     ∑   i = 1    N  F C        P  F C ,   i  t     η  F C ,   i      )   



(17)




where    β  n a t u r a l     is the operation and maintenance cost of FC in USD/kW;    η  F C ,   i     and    P  F C ,   i  t    are the efficiency and output power at the tth time of the ith FC unit, respectively [22].





2.3. Emission Dispatch


The emission released due to the burning of fossil fuel in the thermal power plants is expressed as follows [21,32]:


   f 2  =   ∑   i = 1    N g     E i t   (   P i t   )  =   ∑   i = 1    N g     (   α i  ·    (   P i t   )   2  +  β i  ·  P i t  +  γ i   )   



(18)




where    f 2    is total emission output;   α i  ,    β i  ,   and    γ i    are the emission cost coefficient of the ith DG unit [31].




2.4. Formulation of Multiobjective CHPEED Problem


The multiobjective cost function of the CHPEED problem is given as [32]:


  m i n i m i z e    ( F )  = w ∗  f 1  +  (  1 − w  )  ∗  f 2  ∗ P f n  



(19)




where  F  is the total cost,   P f n   is the price penalty factor,  w  is the weighting factor, and the   P f n   is the ratio of fuel to the emission cost and is evaluated as:


  P f  n i  =    (   a i  ·    (   P i  m a x    )   2  +  b  i   ·  P i  m a x   +  c i   )     (   α i  ·    (   P i  m a x    )   2  +  β i  ·  P i  m a x   +  γ i   )     



(20)







Equation (19) is minimized and subjected to operational constraints as follows [22,32].




2.5. Constraints


Total Power generation must be equal to sum of power demand and transmission loss. It is expressed as:


    ∑   i = 1    N g     P i t  =  P d t  +  P l t     



(21)




where    P l t    is the power loss and    P d t    is the power demand at the tth interval of time.    P l    is evaluated as (22) [32]:


   P l t  =   ∑   i = 1    N g      ∑   j = 1    N g     P i t  ·  B  i j   ·  P j t  +   ∑   i = 1    N g     B  0 i   ·  P i t  +  B  00    



(22)




where    B  i j   ,    B  0 i   ,   and    B  00     are the loss coefficients.



Power generated by individual generator must vary within their minimum and maximum operating limit. It is expressed as:


   P i  m i n     ≤    P i t    ≤    P i  m a x    



(23)






   P  w , j   m i n     ≤    P  w , j  t    ≤    P  w , j   m a x    



(24)






   P  F C , i   m i n   ≤    P  F C ,   i  t    ≤    P  F C , i   m a x    



(25)




where    P  F C , i   m i n     and    P  w , j   m i n     are the minimum power output of FC and WPP units, respectively;    P  w , j   m a x     and    P  F C , i   m a x     are the maximum power output of WPP and FC units, respectively.



The change in power generating unit between two consecutive times is limited by up and down ramp limits, respectively, as follows [32]:


   P i t  −  P i  t − 1     ≤ U  R i   



(26)






   P i  t − 1   −  P i t    ≤ D  R i   



(27)




where   U  R i    and   D  R i    are up and down ramp limits of the ith generating units, respectively [32].


   H R  =   ∑   i = 1    N g     θ i  ·  P i t   



(28)




where    H R    is the total heat output and    θ i    is the heat-to-power ratio of the ith DG unit [32].


    ∑   i = 1    N g     θ i  ·  P i t    ≥    H D   



(29)




where    H D    is the total heat demand.




2.6. TOPSIS


The technique of order preferences by the simulation to ideal solution (TOPSIS), initially proposed by Hwang and Yoon in 1981 [37], is a method to determine the optimal solution having the closest distance from the positive ideal solution and farthest distance from the negative ideal solution. The steps of the TOPSIS method are as follows:



Step I: Construct a decision matrix  R  as:


  R =  [   x  i j    ]  ,         i = 1 ,   … … ,   m ; j = 1 , … … ,   n .  



(30)




where    x  i j     is the value of the jth attribute of the ith alternative.



Step II: Normalize the decision matrix  R  as:


   r  i j   =    x  i j         ∑   j = 1  m   x  i j  2      ,         i = 1 ,   … … ,   m ; j = 1 , … … ,   n .  



(31)







Step III: Determine the weighted decision matrix as follows:


   v  i j   =  w j  ×  r  i j   ,         i = 1 ,   … … ,   m ; j = 1 , … … ,   n .    



(32)







Step IV: Determine the positive and negative ideal solution computed as follows:


   A +  =  {   v 1 +  ,    v 2 +  ,    v 3 +  , … … ,  v n +   }   



(33)




where


   v j +  =  {   (  max (  v  i j   ) ,   i f   j   ∈  J 1   )  and  (  min (  v  i j   ) ,   i f   j   ∈  J 2   )   }   



(34)






   A −  =  {   v 1 −  ,    v 2 −  ,    v 3 −  , … … ,  v n −   }   



(35)




where


   v j −  =  {   (  min (  v  i j   ) ,   i f   j   ∈  J 1   )  and  (  max (  v  i j   ) ,   i f   j   ∈  J 2   )   }   



(36)







Step V: Determine the separation distance of each alternative from positive and negative ideal solutions computed as follows:


   D i +  =     ∑   j = 1  n     (   v j +  −  v  i j    )   2    ,         i = 1 ,   … … ,   m ; j = 1 , … … ,   n  



(37)






   D i −  =     ∑   j = 1  n     (   v j −  −  v  i j    )   2    ,         i = 1 ,   … … ,   m ; j = 1 , … … ,   n  



(38)







Step VI: Compute the relative closeness (  R C  ) of each alternative as:


  R  C i  =    D i −     D i −  +  D i +    ,         i = 1 ,   … … ,   m ;  



(39)







An   R C   close to one indicates the superiority of the alternative.





3. Harris Hawks Optimization


Harris Hawks Optimization (HHO) is a population-based algorithm inspired by the foraging behavior of Harris Hawks, proposed by Heidari et al. in 2019 [34]. The analytical model of HHO simulates different foraging strategies such as tracing, sieging, and surprise attacks to capture prey during optimization. The cooperative foraging behavior of Harris Hawks is as follows:




	
A prey for the Harris hawk is a rabbit having great escaping energy; therefore, several hawks cooperatively attack to prey simultaneously from different directions.



	
This attack can be completed quickly, but sometimes considering the escape ability and behavior of the prey, it takes a few short-length, quick dives nearby the prey.



	
The different phase of chasing a prey depends on the prey’s escaping pattern with other dynamic conditions.



	
The switching strategy occurs when the best hawk (leader) stops and becomes lost on the hunt, and one of the other group members will pursue the chase.



	
The Harris hawk can switch between these phases to confuse the prey, which leads to their exhaustion, and increases its vulnerability.



	
Furthermore, by confusing the escaping prey, it cannot recover its defensive abilities and, in the end, it cannot escape from the team and encounter one of the hawks, which is often the most powerful and experienced, easily grabs the tired prey, and shares it with another group member.








Different phases of HHO are shown in Figure 1 [34].



3.1. Exploration Stage


The hawks perch randomly to wait, observe, and monitor at some location to find prey based on two strategies. These strategies are mathematically modeled as:


  X  (  t + 1  )  =  {       X  r a n d    ( t )  −  r 1  ∗  |   X  r a n d    ( t )  − 2 ∗  r 2  ∗ X  ( t )   |  ,                           q ≥ 0.5        X  r a b b i t    ( t )  −  X m   ( t )  −  r 3  ∗  (  L B +  r 4   (  U B − L B  )   )  ,     q < 0.5        



(40)




where   X  (  t + 1  )    is the position in the (t + 1)th iteration;    X  r a b b i t     is the position of the rabbit (prey);   q ,    r 1  ,    r 2  ,    r 3  ,    and   r 4    are random numbers in the interval [0, 1].   U B   and   L B   are the upper and lower bounds, respectively.    X m   ( t )    is the mean position of the population evaluated as:


   X m  =  1 N    ∑   i = 1  N   X i   ( t )   



(41)




where  N  is the population size, and    X i   ( t )    is the position of the ith individual in the tth iteration.




3.2. Transition from Exploration to Exploitation


In HHO, the rabbit’s escaping energy ‘ E ’ is used to transit between exploration and exploitation. The ‘ E ’ decreases with an increase in the iterations and is evaluated as:


  E = 2  E 0   (  1   –  t T   )   



(42)




where    E 0    is the initial rabbit’s escaping energy lying in the interval [−1, 1];  t  and  T  represent the current and maximum number of iterations, respectively. As the iteration increases,  E  decreases from [−2, 2] to 0. The exploration stage is used for    | E |  ≥ 1  , and for    | E |  < 1  , the exploitation is carried out to search the prey.




3.3. Exploitation Stage


In the exploitation phase, four different strategies were adopted, and they were switched between by using escape energy ‘E’; a random number r lies in the interval [0, 1], representing successful prey escape. If r < 0.5, the prey escapes successfully, while r > 0.5 means the unsuccessful escape of the prey.



3.3.1. Soft Besiege


For soft besiege,    | E |  ≥ 0.5   and   r ≥ 0.5   represent that the prey has enough energy to escape by jumping. Hence, hawks will hunt via a soft besiege strategy modeled as:


  X  (  t + 1  )  = Δ X  ( t )  − E  |  J ∗  X  r a b b i t    ( t )  − X  ( t )   |     



(43)




where   Δ X  ( t )    represents the differences between the position of rabbits and current individuals, as given in (45).  J  represents the strength of the rabbit for randomly jumping during the escape and is evaluated with the random number    r 5    as:


  J = 2  (  1 −  r 5   )     



(44)






  Δ X  ( t )  =  X  r a b b i t    ( t )  − X  ( t )   



(45)








3.3.2. Hard Besiege


For hard besiege,    | E |  < 0.5   and   r ≥ 0.5   represent that the prey’s energy has exhausted, and hawks will hunt via a hard besiege strategy modeled as:


  X  (  t + 1  )  =  X  r a b b i t    ( t )  − E  |  Δ X  ( t )   |   



(46)








3.3.3. Soft Besiege with Progressive Rapid Dives


For soft besiege with progressive rapid dives,    | E |  ≥ 0.5   and   r < 0.5   represent that the prey has enough energy. Hence, hawks will hunt via soft besiege with the progressive rapid dives strategy modeled as:


  Y =  X  r a b b i t    ( t )  − E  |  J ∗  X  r a b b i t    ( t )  − X  ( t )   |   



(47)






  Z = Y + S × L F  ( D )   



(48)




where  D  is the dimension of the problem, S is a random vector of size   1 ∗ D  , and   L F   is the levy distribution defined as


  L F  ( x )  = 0.01 ×   μ × σ      | ϑ |    1 / β     ,       σ =    (    Γ  (  1 + β  )  × sin  (    π β  2   )    Γ  (    1 + β  2   )  × β ×  2   (    β − 1  2   )       )    1 / β    



(49)




where  μ  and  ϑ  are random values that are between 0 and 1.  β  is the constant equal to 1.5.



The whole process at this stage is a mathematical model as:


  X  (  t + 1  )  =  {      Y       i f   F  ( Y )  < F  (  X  ( t )   )        Z       i f   F  ( Z )  < F  (  X  ( t )   )         



(50)








3.3.4. Hard Besiege with Progressive Rapid Dives


For hard besiege with progressive rapid dives,    | E |  < 0.5   and   r < 0.5   represent that the prey loses its energy and becomes exhausted, and hawks will hunt via hard besiege with the progressive rapid dives strategy modeled as:


  X  (  t + 1  )  =  {      Y       i f   F  ( Y )  < F  (  X  ( t )   )        Z       i f   F  ( Z )  < F  (  X  ( t )   )         



(51)




where


  Y =  X  r a b b i t    ( t )  − E  |  J ∗  X  r a b b i t    ( t )  − X  ( t )   |   



(52)






  Z = Y + S × L F  ( D )   



(53)







The flow chart of HHO is shown in Figure 2.






4. Simulation Results


4.1. Description of Test Cases


The HHO algorithm was applied to find out the optimal size, its location of DG, and then the solution of the CHPEED problem in MATLAB R2016a, and it was executed on a CPU with an i5 processor and 4 GB RAM with a speed of 2.50 GHz. The parameter of HHO was considered, as the population size was 100 with a maximum iteration of 1000.



For this analysis, a hypothetical MG of a 14-bus RDS having 14 buses and 13 branches was considered, as shown in Figure 3. The line and load data are shown in Table 1 [32]. The utility providing the spinning reserve is represented as a virtual generator and connected to slack bus 1.



The total static load demand was considered as (495 + j454) kVA. The initial real power loss without placement of DG units in RDS was 0.1995 kW with a minimum voltage of 0.9992 p.u. The simulation results for the placement of 4 DG units are given in Table 2. The optimal size of the 4 DGs with their best-suited location was obtained as 90.3178 kW (at bus 3), 187.9 kW (at bus 7), 114.9414 kW (at bus 13), and 44.8314 kW (at bus 14). The system power loss was reduced by 34.99% with a minimum voltage of 0.9995 p.u.



Analysis of the CHPEED was carried out for static load demand (SCHPEED)and for the multiple loads(MCHPEED) over 24 hr of a day with the following assumptions:




	(i)

	
A two-diesel generator (Dg) with the sizes of 200 kW and 100 kW was selected and placed on buses 7 and 13, respectively. Similarly, the two microturbines (MTs) were selected with the sizes of 80 kW and 30 kW and placed on buses 3 and 14, respectively. A Dg with the size of 500 kW was selected as a virtual generator to cover the peak demand of 495 kW.




	(ii)

	
To analyze the impact of renewable energy integration(REI), the Dg of capacity 100 kW at bus 13 was replaced by a fuel cell (FC), the MT of 30 kW of bus 14 was replaced by a wind turbine with a capacity of 40 kW, and rest was the same as above.









The parameters of the wind turbine were considered as follows [31]:



Cut-in speed    v  c i n   = 5    m  / s  ; cut-out speed      v  c o   = 15    m  / s  ; rated speed    v r  =   45 m/s. Weibull shape factor   k = 1.5  ; scale factor   c = 5  ; penalty cost coefficient    k p  = 5  ; reserve cost coefficient    k r    = 5.



The operational limits, fuel cost coefficient, emission coefficient, and heat rate data are listed in Table 3 [22,32]. For the planning of MG, the utility generator should be kept separately for participation in tracking the electric demand, i.e., at zero slack bus injection.



The B-loss coefficients are as follows [32]:


  B 1 = 0.001 ∗  [      0.4355 − 0.1694     0.1482 − 0.2684 − 0.0925       − 0.1694     0.2366 − 0.0247 − 0.0061 − 0.0689       0.1482     − 0.0247     0.1636 − 0.2391 − 0.1046       − 0.2684 − 0.0061 − 0.2391       0.6517   0.1987       − 0.0925 − 0.0689 − 0.1046       0.1987   0.1864      ]   










  B 2 = 0.1 ∗  [  − 0.0326   − 0.0314             0.0057         − 0.0018           0.0050  ]   










  B 3 =  [  0.0014  ]  ;  












4.2. Discussion


4.2.1. Best Cost Solution


For the SCHPEED problem, as in Table 4, the best cost solution of HHO35.8483 USD/h is found to be better as compared to the reported result by DE [32]: 35.8974 USD/h and PSO [32]: 35.897USD/h. Table 5 shows that for SCHPEED with REI, the operational cost is found to be 29.3180 USD/h, which is lower as compared to SCHPEED by 18%, and all operational constraints (21), (23)–(25) are also satisfied.



For the MCHPEED problem, the best cost solution is found to be USD 1203.0999, while USD 1023.3403 is for MCHPEED with REI as in Table 6. Their generation schedules are presented in Figure 4 and Figure 5, respectively.




4.2.2. Best Emission Solution


The best emission solution, 44.8121 g/kWh, was obtained by HHO as in Table 4. It was found to be lower than 44.820 g/kWh reported using DE [32] and 44.820 g/kWh by PSO [32], which was further reduced to 43.2924 g/kWh for SCHPEED with REI as in Table 5.



For the MCHPEED problem, the best emission solution was found to be 1068.1567 g/kW and 5.58% lower than1008.5490 g/kW for MCHPEED with REI as in Table 6. Figure 6 and Figure 7 represent the generation schedule corresponding to the best emission solution.




4.2.3. Best Compromise Solution


PPF is the weighted sum method to convert a multiobjective function into a single objective function. TOPSIS is used as a tool to rank the solution on the basis of the distance between positive and negative distance from the ideal solution. Table 7 and Table 8 show the top ten optimal front solutions for SCHPEED and MCHPEED problems. The elite solution was selected on the basis of top rank, and the corresponding Pareto fronts are shown in Figure 8, and Figure 9, respectively. Table 4 shows that for SCHPEED, the BCS in terms of the fuel cost of 35.9695 USD/h and the emission of 45.0773 g/kWh was also found to be superior to the reported results by DE [32] and PSO [32]. Considering Table 5, the BCS of 30.3835 USD/h and 44.3393 g/kWh was found to be lower due to REI with a topsis rank of 0.7886 as in Table 7.



For the MCHPEED problem, the BCS with the highest rank of 0.7602 (Table 8) in terms of cost and emission was found to be USD 1211.5507 and1077.6050 g/KW, respectively.



In the case of MCHPEED with REI, total cost refers to the sum of operational costs due to fossil fuel and renewable energy resources or both. Here, the total cost of USD 1094.9539 and the emission of 1050.8518 g/kW achieved the highest topsis rank of 0.7741, considered as BCS, as shown in Table 8. Here, it was observed that the operational cost was reduced by USD 113.5980 (9.4%), and the emitted emission was reduced by 26.7532 g/kW (2.5%) due to REI. The comparison of Pareto fronts is shown in Figure 8.




4.2.4. Heat Output


As shown in Table 9, considering the hourly load demand and corresponding heat output, it was observed that heat outputs were sensitive to changes in load demand. For the MCHPEED problem, heat output was seen to be increasing and fulfilled by energy resources with an increase in load demand.



However, considering Table 10 of MCHPEED with REI, it was observed that heat outputs remained increasing with load demand but were found to be lower as compared to MCHPEED. It may be due to sharing the particular range of load demand by renewable energy resources such as fuel cells and wind turbines.






5. Conclusions


In this paper, HHO successfully implements the planning of an MG to determine the optimal size and location of DGs and solve SCHPEED and MCHPEED problems to fulfill the particular load demand and a corresponding range of heat demand by different energy resources. The impact of REI is also investigated in both cases. Fuel cell and stochastic wind power are considered for analysis. TOPSIS is considered as a tool to obtain BCS based on the highest satisfaction level among the conflicting objectives. While comparing simulation results for the SCHPEED problem, the results obtained by HHO are found to be better compared to PSO and DE for minimum cost, minimum emission, and BCS for the multiobjective problem. The key findings are summarized below:




	
HHO is simple to implement and found to be impactful for the solution of both SCHPEED and MCHPEED complex constrained optimization problems.



	
With REI, fuel cost is reduced by 6.53 USD/h (18%) and emission is reduced by 1.519 g/kWh(3.4%) for SCHPEED, whereas fuel cost is reduced by USD 179.759 (14.95%) and emission is reduced by 59.60 g/kW (5.58%) for MCHPEED.



	
Heat output is found to be sensitive to changes in load demand



	
Operational cost, emission, and heat output are minimized with REI.
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Nomenclature




	FC
	Fuel cell
	RDS
	Radial distribution system



	DG
	distributed generators
	CHP
	Combined heat and power



	MG
	microgrid
	EED
	Economic emission dispatch



	WPP
	Wind power plant
	SCHPEED
	CHP under EED for static (fixed) load



	MT
	Micro Turbine
	MCHPEED
	CHP under EED for Multiple (dynamic) load



	REI
	Renewable Energy Integration
	BCS
	Best compromise solution



	    k p    
	penalty cost due to underestimation of wind
	   p d f   
	Probability distribution function



	    k r    
	reserve cost due to overestimation of wind
	    V  m i n     ,    V  m a x     
	Minimum and maximum voltage



	  k  
	shape factor
	    F  D G  T  ,    F  W P P  T  ,    F  F C  T    
	cost of thermal units, wind power plant, and fuel cell, respectively



	  c  
	scale factor
	    v  c i n ,   ,    v  c o   ,  v r    
	Cut-in velocity, cut-out velocity, and rated velocity in m/s, respectively



	    H R    
	Total heat output
	    θ i    
	Heat-to-power ratio of ith DG unit



	    H D    
	Total heat demand.
	    f 1  ,    f 2    
	Cost and emission function



	   P f n   
	Price penalty factor
	  w  
	Weighting factor
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Figure 1. Different phases of HHO. 
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Figure 2. Flowchart of HHO algorithm. 
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Figure 3. Single line diagram of 14-bus RDS. 
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Figure 4. The generation scheduling of MSCHPEED for cost minimization. 
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Figure 5. The generation scheduling of MSCHPEED with REI for cost minimization. 
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Figure 6. The generation scheduling of MSCHPEED for emission minimization. 
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Figure 7. The generation scheduling of MSCHPEED with REI for emission minimization. 
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Figure 8. Pareto optimal fronts for SCHPEED and SCHPEED with REI. 
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Figure 9. Pareto optimal fronts for MCHPEED and MCHPEED with REI. 
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Table 1. Line and load data of 14-bus RDS.






Table 1. Line and load data of 14-bus RDS.





	Bus No.
	Start Bus
	End Bus
	R
	X
	Real
	Reactive





	1
	0
	0
	0
	0
	0
	0



	2
	1
	2
	0.0133
	0.042
	20
	6



	3
	2
	3
	0.0194
	0.059
	85
	27



	4
	3
	4
	0.0312
	0.16
	40
	1



	5
	2
	5
	0.023
	0.12
	20
	6



	6
	5
	6
	0.023
	0.12
	20
	6



	7
	6
	7
	0.0193
	0.059
	76
	16



	8
	6
	8
	0.032
	0.084
	10
	30



	9
	7
	9
	0.034
	0.17
	61
	16



	10
	2
	10
	0.016
	0.042
	12
	75



	11
	10
	11
	0.193
	0.059
	10
	90



	12
	11
	12
	0.067
	0.17
	16
	61



	13
	12
	13
	0.04
	0.1
	90
	59



	14
	11
	14
	0.05
	0.15
	35
	61
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Table 2. Simulation results for 14-bus RDS.






Table 2. Simulation results for 14-bus RDS.





	Parameters
	Without DGs
	With 4 DGs





	Power Loss (kW)
	0.1995
	0.1297



	Loss Reduction (%)
	-
	34.99



	DGs Size (kW) /Location
	-
	90.3178/3, 187.9/7, 114.9414/13, 44.8314/14



	Total DG Size (kW)
	-
	437.9906



	   V  m i n     (pu)
	0.9992
	0.9995



	   V  m a x     (pu)
	0.9998
	0.9999
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Table 3. Operational limits, fuel cost coefficient, emission coefficient, and heat rate data.
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	Type
	    Size    (   k W   )     
	     P i  m i n      

     (   k W   )     
	     P i  m a x      

     (   k W   )     
	     a i     
	     b i     
	     c i     
	     α i     
	     β i     
	     γ i     
	    H e a t   R a t e      

     (   k j  /  k W h   )     





	Dg
	500
	0.00
	500
	10.193
	105.18
	62.56
	26.55
	−16.1836
	7.0508
	10,314



	Dg
	200
	40
	200
	2.035
	60.28
	44.0
	14.4296
	−64.1535
	130.4094
	11,041



	MT
	80
	16
	80
	0.5768
	57.783
	−133.0915
	3.0358
	−57.3403
	311.5728
	11,373



	Dg
	100
	20
	100
	1.1825
	65.34
	44.0
	19.38
	−176.6946
	821.6573
	10,581



	MT
	30
	6.0
	30
	0.338
	89.1476
	−547.619
	1.0346
	−60.384
	943.1898
	12,186



	FC
	100
	0
	100
	0
	0.07
	0
	0
	0
	0
	0



	WPP
	40
	0
	40
	0
	0.22
	0
	0
	0
	0
	0
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Table 4. Generation schedule and comparative results for SCHPEED with demands of 338 kW.
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Scenarios

	
Methods

	
     P 1   (   D g   )     

	
     P 2   (   D g   )     

	
     P 3   (   M T   )     

	
     P 4   (   D g   )     

	
     P 5   (   M T   )     

	
Fuel Cost (USD/h)

	
Emission (g/kWh)

	
Heat (kWh)

	
Loss (kW)






	
Best Cost

	
HHO

	
0.00

	
157.09

	
80.00

	
73.1552

	
30.00

	
35.8483

	
45.4856

	
347.5639

	
2.2452




	
DE [32]

	
0.00

	
166.30

	
80.00

	
64.30

	
30.00

	
35.8974

	
45.8467

	
348.048

	
---




	
PSO [32]

	
0.00

	
166.68

	
80.00

	
63.89

	
30.00

	
35.897

	
45.870

	
348.000

	
---




	
Best Emission

	
HHO

	
0.00

	
168.8009

	
57.1848

	
96.0540

	
21.0526

	
36.9396

	
44.8121

	
329.3694

	
5.0922




	
DE [32]

	
0.00

	
166.50

	
58.30

	
96.10

	
21.50

	
36.851

	
44.820

	
329.790

	
---




	
PSO [32]

	
0.00

	
166.20

	
58.64

	
96.07

	
21.66

	
36.840

	
44.820

	
330.070

	
---




	
BCS

	
HHO

	
0.00

	
146.4312

	
80.00

	
89.92

	
24.7656

	
35.9695

	
45.0773

	
344.0685

	
3.1168




	
DE [32]

	
0.00

	
150.54

	
80.00

	
90.92

	
20.55

	
36.0720

	
45.020

	
341.7225

	
---




	
PSO [32]

	
0.00

	
150.20

	
80.00

	
89.86

	
21.95

	
36.0600

	
45.030

	
342.7200

	
----








BCS: Best Compromise Solution.
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Table 5. Generation schedule and comparative results for SCHPEED with REI with demands of 338 kW.






Table 5. Generation schedule and comparative results for SCHPEED with REI with demands of 338 kW.





	Scenario
	     P 1   (   D g   )     
	     P 2   (   D g   )     
	     P 3   (  F C  )     
	     P 4   (   D g   )     
	     P 5   (  W P P  )     
	Total Cost (USD/h)
	Fuel Cost (USD/h)
	Wind Cost (USD/h)
	Emission (g/kWh)
	Heat (kWh)
	Loss (kW)





	Best Cost
	0.00
	174.8425
	95.6318
	33.2694
	39.8741
	29.3180
	27.5252
	1.7928
	48.1604
	171.1845
	5.6179



	Best Emission
	0.00
	200.00
	50.1720
	100.00
	0.4670
	34.4114
	34.2040
	0.2074
	43.2924
	244.9725
	12.6390



	BCS
	0.00
	155.0687
	92.0436
	88.6900
	9.1448
	30.3835
	29.9638
	0.4197
	44.3393
	198.7907
	6.9470
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Table 6. Comparative results for MCHPEED and MCHPEED with REI.






Table 6. Comparative results for MCHPEED and MCHPEED with REI.





	
Scenario

	
MCHPEED

	
MCHPEED with REI




	
Total Cost

(USD)

	
Emission

(g/kW)

	
Heat

(kW)

	
Loss

(kW)

	
Total Cost

(USD)

	
Fuel Cost

(USD)

	
Wind Cost

(USD)

	
Emission

(g/kW)

	
Heat

(kW)

	
Loss

(kW)






	
Min.Cost

	
1203.0999

	
1089.9256

	
15,587.8723

	
203.5641

	
1023.3403

	
1003.2465

	
20.0938

	
1085.8532

	
15,528.2799

	
167.1917




	
Min. Emis

	
1250.0066

	
1068.1567

	
15,918.5405

	
309.1087

	
1384.1995

	
1361.902

	
22.2975

	
1008.5490

	
17,674.5642

	
555.1573




	
BCS

	
1211.5507

	
1077.6050

	
15,588.9110

	
212.6814

	
1094.9539

	
1070.9602

	
23.9937

	
1050.8518

	
15,579.2478

	
253.8731
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Table 7. Top ten Pareto optimal solution for SCHPEED.






Table 7. Top ten Pareto optimal solution for SCHPEED.





	
S. No.

	
SCHPEED

	
SCHPEED with REI




	
Fuel Cost

(USD/h)

	
Emission

(g/kWh)

	
    M  u 1     

	
    M  u 2     

	
TOPSIS

	
Total Cost

(USD/h)

	
Emission

(g/kWh)

	
    M  u 1     

	
    M  u 2     

	
TOPSIS






	
1

	
35.9695

	
45.0773

	
0.002

	
0.0079

	
0.796

	
30.3835

	
44.3393

	
0.0111

	
0.0415

	
0.7886




	
2

	
36.0148

	
45.0389

	
0.002

	
0.0077

	
0.7941

	
30.5396

	
44.2242

	
0.0117

	
0.041

	
0.7784




	
3

	
35.8766

	
45.1944

	
0.0026

	
0.0083

	
0.7613

	
30.0147

	
45.1952

	
0.014

	
0.0407

	
0.7433




	
4

	
36.1974

	
44.96

	
0.0028

	
0.0067

	
0.7039

	
30.2459

	
45.2667

	
0.0153

	
0.0388

	
0.7172




	
5

	
35.8483

	
45.4856

	
0.0046

	
0.0083

	
0.6436

	
30.3843

	
45.336

	
0.0163

	
0.0376

	
0.698




	
6

	
36.4597

	
44.8753

	
0.0046

	
0.0056

	
0.5464

	
31.5101

	
43.9487

	
0.0182

	
0.0368

	
0.6697




	
7

	
36.6261

	
44.8394

	
0.0059

	
0.0051

	
0.4633

	
31.4086

	
44.444

	
0.0185

	
0.0349

	
0.6531




	
8

	
36.7405

	
44.8232

	
0.0068

	
0.0048

	
0.4177

	
31.8543

	
44.1804

	
0.0213

	
0.0339

	
0.6146




	
9

	
36.8258

	
44.8157

	
0.0074

	
0.0047

	
0.3901

	
29.6449

	
47.2935

	
0.0272

	
0.0388

	
0.5877




	
10

	
36.9396

	
44.8121

	
0.0083

	
0.0047

	
0.3614

	
29.318

	
48.1604

	
0.0329

	
0.041

	
0.5542
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Table 8. Top ten optimal front solutions.






Table 8. Top ten optimal front solutions.





	
S. No.

	
MCHPEED

	
MCHPEED with REI




	
Fuel Cost

(USD)

	
Emission

(g/kW)

	
   M  u 1    

	
   M  u 2    

	
TOPSIS

	
Total Cost

(USD)

	
Emission

(g/kW)

	
   M  u 1    

	
   M  u 2    

	
TOPSIS






	
1

	
1211.551

	
1077.605

	
0.0342

	
0.1084

	
0.7602

	
1094.954

	
1050.852

	
0.1551

	
0.5313

	
0.7741




	
2

	
1216.566

	
1072.838

	
0.0381

	
0.1015

	
0.7268

	
1137.664

	
1039.921

	
0.2188

	
0.4576

	
0.6765




	
3

	
1216.921

	
1074.578

	
0.0406

	
0.0988

	
0.709

	
1175.755

	
1033.977

	
0.2841

	
0.3924

	
0.58




	
4

	
1203.1

	
1089.926

	
0.0561

	
0.1241

	
0.6888

	
1199.708

	
1030.557

	
0.3263

	
0.3522

	
0.5191




	
5

	
1221.714

	
1073.912

	
0.0509

	
0.0891

	
0.6365

	
1228.073

	
1028.583

	
0.3772

	
0.3045

	
0.4467




	
6

	
1222.0187

	
1082.3297

	
0.044

	
0.0578

	
0.5677

	
1260.982

	
1023.543

	
0.4362

	
0.2537

	
0.3677




	
7

	
1223.182

	
1087.8793

	
0.0522

	
0.0542

	
0.5093

	
1280.761

	
1022.409

	
0.4721

	
0.2236

	
0.3214




	
8

	
1227.4204

	
1086.4162

	
0.056

	
0.0471

	
0.4568

	
1306.819

	
1015.037

	
0.519

	
0.1947

	
0.2728




	
9

	
1230.0698

	
1089.8465

	
0.0635

	
0.0421

	
0.3983

	
1347.69

	
1013.701

	
0.5934

	
0.1521

	
0.204




	
10

	
1250.007

	
1068.157

	
0.1173

	
0.057

	
0.3272

	
1384.2

	
1008.549

	
0.6598

	
0.1465

	
0.183











[image: Table] 





Table 9. Optimal generation scheduling for MCHPEED under BCS.






Table 9. Optimal generation scheduling for MCHPEED under BCS.





	Hr.
	     P 1   (   D g   )     
	     P 2   (   D g   )     
	     P 3   (   M T   )     
	     P 4   (   D g   )     
	     P 5   (   M T   )     
	Load (kW)
	Heat (kW)





	1
	0.1742
	43.8226
	18.95
	28.9484
	13.7722
	105
	107.6286



	2
	0.0439
	100.2222
	20.8996
	57.2967
	15.1846
	190
	181.4153



	3
	7.9917
	106.5203
	41.9026
	82.8549
	15.4974
	250
	257.7412



	4
	34.6496
	86.6041
	79.7197
	95.8914
	16.1365
	310
	375.0671



	5
	79.0714
	122.3964
	76.6417
	98.9171
	25.9711
	400
	532.2534



	6
	111.5772
	186.8943
	79.5952
	91.3479
	24.9627
	490
	666.1347



	7
	146.7594
	199.9927
	78.8478
	99.8593
	29.8921
	550
	780.8991



	8
	256.9116
	199.6686
	77.2061
	99.9982
	29.1331
	650
	1061.2783



	9
	300.363
	199.9386
	79.9998
	99.7264
	28.9461
	690
	1177.0124



	10
	364.7395
	199.1256
	78.1749
	99.9798
	28.6631
	740
	1339.5097



	11
	377.7434
	200
	79.9864
	98.3194
	27.7766
	750
	1373.6715



	12
	353.816
	197.5439
	79.9687
	100
	27.3565
	730
	1310.6095



	13
	292.299
	196.903
	78.4594
	99.9998
	30
	680
	1153.3381



	14
	232.1257
	199.7308
	80
	99.892
	28.6524
	630
	1000.5748



	15
	183.5236
	198.0663
	78.5526
	97.0593
	29.4762
	580
	870.8251



	16
	173.3918
	175.3966
	64.5036
	99.9331
	27.4251
	535
	805.1119



	17
	137.2064
	147.8064
	78.3677
	79.0651
	21.3752
	460
	682.8948



	18
	99.7382
	139.1221
	67.8092
	85.6515
	20.4403
	410
	567.8843



	19
	59.8613
	75.3932
	79.433
	89.8884
	17.4494
	320
	427.6205



	20
	1.3002
	129.0986
	56.3055
	76.8063
	11.8101
	270
	269.2425



	21
	6.216
	92.0592
	22.5511
	77.3491
	11.2522
	205
	202.8413



	22
	2.9803
	72.9563
	33.5925
	52.3411
	10.0549
	170
	172.7066



	23
	0
	58.0973
	31.3545
	53.8645
	8.5012
	150
	148.3782



	24
	4.6627
	41.2238
	27.9014
	23.5275
	12.9832
	110
	124.272
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Table 10. Optimal generation scheduling for MCHPEED with REI under BCS.






Table 10. Optimal generation scheduling for MCHPEED with REI under BCS.





	Hr.
	     P 1   (   D g   )     
	     P  2    (   D g   )     
	     P  3    (  F C  )     
	     P 4   (   D g   )     
	     P 5   (  W P P  )     
	Load (kW)
	Heat (kW)





	1
	0.4602
	55.8001
	0.0026
	38.1092
	12.2087
	105
	77.6358



	2
	0.0014
	67.2099
	32.6849
	76.9633
	16.9728
	190
	116.7346



	3
	16.6051
	76.3607
	49.985
	97.6993
	13.7738
	250
	183.5804



	4
	43.8702
	95.4026
	65.24
	86.5622
	21.4451
	310
	260.8134



	5
	2.0257
	193.1514
	84.1992
	99.9095
	31.4198
	400
	244.4528



	6
	137.9878
	156.3819
	94.3015
	81.5604
	23.9735
	490
	550.0218



	7
	172.6773
	181.9743
	83.4654
	84.7427
	33.0027
	550
	663.1865



	8
	248.3451
	198.6839
	88.2413
	97.6099
	29.5584
	650
	882.3438



	9
	339.0121
	193.143
	90.55
	73.6115
	23.326
	690
	1092.496



	10
	389.558
	193.4966
	93.7557
	85.5281
	17.9975
	740
	1232.578



	11
	372.8658
	192.9266
	95.0478
	96.2457
	27.3994
	750
	1197.57



	12
	365.0877
	198.1613
	72.7586
	87.811
	37.2745
	730
	1175.156



	13
	288.2583
	183.1858
	95.2879
	96.5362
	34.9216
	680
	971.5743



	14
	238.2183
	198.1671
	83.9061
	83.2904
	37.8205
	630
	844.4403



	15
	198.0663
	199.9986
	68.8349
	84.5582
	35.8806
	580
	743.4311



	16
	161.1864
	184.6829
	70.2232
	89.7806
	34.1974
	535
	639.7981



	17
	98.8017
	154.436
	88.2272
	92.8929
	28.9415
	460
	456.3623



	18
	33.2158
	174.0753
	76.4767
	99.9994
	33.2225
	410
	309.1514



	19
	16.428
	103.6468
	67.9597
	97.0659
	39.9701
	320
	205.216



	20
	15.2292
	136.6882
	29.9529
	62.3144
	30.3556
	270
	201.9077



	21
	0
	59.1014
	39.9741
	90.1443
	20.5677
	205
	120.4767



	22
	9.5316
	78.936
	2.6982
	64.9587
	17.4007
	170
	141.4918



	23
	1.3006
	47.4008
	42.5158
	51.3921
	8.6482
	150
	83.3885



	24
	0.2675
	60.3013
	12.1609
	36.1635
	2.3829
	110
	79.3222
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