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Abstract: Viscoelastic liquid sheet of couple-stress type streaming with relative motion into an
inviscid gas through porous molium is studied theoretically and quantitatively in this project. To
derive the differential equations that describe liquids, gases, and the electric field, we linearized the
governing equations of motion and continuity, Maxwell’s equations in quasi-static approximation,
and the appropriate boundary conditions at the two interfaces. Then we used the normal mode
method. It was demonstrated analytically that the solutions to these differential equations can be
found for both symmetric and antisymmetric disturbances, respectively. We could not obtain an
explicit form of the growth rates since we could not solve the dispersion relations for both situations
because they were obtained in highly complex forms. The Mathematica program is used to solve
the dimensionless forms of the dispersion relations numerically using Gaster’s theorem. Various
influences on the stability analysis of the considered system have been studied in detail, and it is
determined that the system in the presence of a porous material is more unstable than it would be
otherwise. In a two-dimensional system, the antisymmetric disturbance case is found to be more
unstable than the corresponding symmetric disturbance situation. Some characteristics, such as Wabe
number, Ohnesorge number, and electric field, have destabilizing effects, whereas others, such as
porosity, medium permeability, viscoelasticity parameter, gas-to-liquid viscosity ratio, and dielachic
constants, have stabilizing effects. Finally, it is discovered that the gas-to-liquid velocity ratio plays a
dual role in the stability condition depending on whether the gas-to-liquid velocity ratio U ≶ 1. In
the past, we have only found evidence of very few previous studies.

Keywords: hydrodynamic stability; electrohydrodynamics; liquid sheet; couple-stress flunds; flows
through porous medium

1. Introduction

The instability of a thin liquid sheet has been extensively investigated in the past and
is of great scientific and technological value. In relation to the process of atomization, it
was studied by Squire [1], Hagerty and Shea [2], Dombrowski and Johns [3], and Li and
Tankin [4] on the stability and breakup process of thin liquid sheets. An inviscid liquid
sheet in a stationary inviscid gas medium was studied by Squire [1]. If the Weber number
(We) is greater than one, he found that instability arises. Antisymmetric and symmetric
waves are the only two types of waves that Hagerty and Shea [2] found to exist at any given
frequency. Researchers discovered that antisymmetric waves have a higher growth rate
than their symmetric counterparts. Dombrowski and Johns [3] were the first to investigate
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the instability of viscous liquid sheets and derive a drop-size relation that showed to be
in good agreement with experimental results. They based some of their conclusions on a
few educated guesses. Li and Tanken [4] found that the viscosity of a viscous liquid sheet
moving in an inviscid gas is complicated at small wave numbers because the dispersion
curve exhibits two local maxima, one corresponding to aerodynamic instability, and the
other is viscosity enhanced.

Several practical applications rely on the ability of a liquid sheet to fragment into
minute droplets when ejected into a gaseous medium, including spray painting and inkjet
printing, as well as gas turbine and liquid rocket motors and oil burners [5]. Understanding
how liquid sheets become unstable and break up is important both for science and industry.
There are a wide variety of uses for this technology, and books about it tend to focus on a
single application. Examples include Lefebvre [6], Yarin [7], and Lin [8], all of which deal
with non-Newtonian fluids, as well as Lefebvre’s book on internal combustion and Lin’s
book on liquid sheet and liquid jet breaking up. The review article by Dasgupta et al. [9]
provides an excellent overview of the issue.

For practical reasons, electrohydrodynamics is an essential branch of fluid mechanics
that studies the interactions between electric and hydrodynamic forces. Hydrodynamic
motion and electric phenomena are linked in this manner. Consequently, the electrohy-
drodynamic equations of motion can be split into two groups: hydrodynamic equations
and electrical fields-equation sets. The boundary conditions for these equations are also
influenced by their connection. The electro-fluid dynamics of biological systems, liquid
ejection in zero gravity environments, and liquid and gas insulation studies are all examples
of electrohydrodynamics applications. Due to the complexity of the fluid-elastic interac-
tion in the presence of an electric field, few results are known about the instability and
breakup of electrohydrodynamic non-Newtonian liquid sheets, which is why new work
on the fundamental electrohydrodynamic phenomena involving non-Newtonian fluids is
increasingly needed [10–13]. Melcher [14] provides an overview of electrohydrodynamics
that includes numerous references to recent advances in the subject.

Couple-stress fluids are becoming increasingly important in current technology and
industry, making further study of these fluids desirable. Couple-stress fluids were first
proposed by Stokes [15]. The study of the lubricating mechanics of synovial joints, a topic
of current scientific inquiry, makes use of such fluids. Since the long chain hyaluronic acid
molecules in synovial fluid are discovered as additive, this theory states that fluids with
very large molecules exhibit noticeable magnitudes of Couple-stress [16–22]. In recent years,
there has been a lot of interest in figuring out how non-Newtonian fluids flowing through
porous media are affected by Couple-stress effects. The authors of [23–27] indicated an
increased interest in the possibilities of boosting oil recovery efficiency from water flooding
projects by mobility control with non-Newtonian displacing fluids in this area. It is also
important to note that the flow through porous media is of interest to petroleum engineers
and geophysical dynamicists; for example see refs. [28,29]. The present work hopes to
provide a foundation for further investigations of the instability and breakup of viscoelastic
liquid sheets in the presence of electric fields [30,31].

Electrohydrodynamic time instability of viscoelastic liquid sheet streaming with rela-
tive motion into an ambient inviscid gas through porous material is the focus of this paper.
For both antisymmetric and symmetric disturbances, the three-dimensional dispersion
relations in non-dimensional form have been established using complex forms. To the
best of our knowledge, this subject has never been explored before, and certain limiting
examples of prior efforts are found in the literature. Using a novel numerical technique to
see the impacts of various parameters on the stability of the system, stability analysis and
discussion are provided in this article’s concluding remarks section.

2. Formulation and Perturbation Equations

We consider a viscoelastic dielectric liquid sheet of couple-stress type whose thickness
is 2a that issues from a nozzle at a velocity U0l and has a density ρl , pressure pl , dielectric
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constant εl , kinematic viscosity vl(= µl/ρl), and kinematic viscoelasticity v′l
(
= µ′l/ρl

)
,

where µl and µ′l are the dynamic viscosity and dynamic viscoelasticity, respectively. This
liquid sheet is surrounded by a moving inviscid dielectric gas whose velocity is U0g and
has a density ρg, pressure pg, dielectric constant εg and kinematic viscosity νg, as shown
in Figure 1. The whole system is influenced by the presence of an electric field E0 parallel
to the interfaces y = ±a, and streaming through a porous medium whose porosity is ε,
and whose permeability is k1.

Figure 1. Description of the system for (a) Symmetric and (b) Antisymmetric disturbances.

The governing equations in three-dimensional Cartesian coordinates are the equation
of continuity, Navier–Stokes equation of motion, and Maxwell’s equations in both liquid
and gas media defined by [32,33]

∂ul
∂x

+
∂vl
∂y

+
∂wl
∂z

= 0 (1)

1
ε

∂ul
∂t

+
1
ε2 U0l

∂ul
∂x

= − 1
ρl

∂pl
∂x
− 1

k1

(
vl − v′l∇

2
)

ul (2)

1
ε

∂vl
∂t

+
1
ε2 U0l

∂vl
∂x

= − 1
ρl

∂pl
∂y
− 1

k1

(
vl − v′l∇

2
)

vl (3)

1
ε

∂wl
∂t

+
1
ε2 U0l

∂wl
∂x

= − 1
ρl

∂pl
∂z
− 1

k1

(
vl − v′l∇

2
)

wl (4)

and
∂ug

∂x
+

∂vg

∂y
+

∂wg

∂z
= 0 (5)

1
ε

∂ug

∂t
+

1
ε2 U0g

∂ug

∂x
= − 1

ρg

∂pg

∂x
−

vg

k1
ug (6)

1
ε

∂vg

∂t
+

1
ε2 U0g

∂vg

∂x
= − 1

ρg

∂pg

∂y
−

vg

k1
vg (7)

1
ε

∂wg

∂t
+

1
ε2 U0g

∂wg

∂x
=

1
ρg

∂pg

∂z
−

vg

k1
wg (8)

∇ ·
(
εjEj

)
= 0 (9)

∇× Ej = 0 (10)

Maxwell’s equations of motion are used to derive Equations (9) and (10) by assuming
that the quasi-static approximation is applicable in this problem, and so the electric field Ej
can be calculated from the gradient of a scalar electric potential ψj. The subscripts (j = l, g)
signify the liquid sheet and the gas.
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The flow has been divided into a steady flow and a time dependent perturbation.
The total electric field will be defined as Ej = E0i−∇ψj, then Equation (9) indicates that
electric potentials ψj in the two regions satisfy the following Laplace’s equations

∇2ψj = 0 (11)

Let u1j, v1j, w1j, p1j, and ψ1j where (j = l, g), denote perturbations in the fluid velocity
components u0j, v0j, w0j, the pressure p0j, and the electric potentials ψ0j. Hence, we also
can write

uj = u0j + u1j, vj = v1j, wj = w1j, pj = p0j + p1j and ψj = ψ0j + ψ1j

Substituting for the above quantities into Equations (1)–(8), and (11), we obtain the
following perturbed equations in the liquid sheet medium

∂u1l
∂x

+
∂v1l
∂y

+
∂w1l
∂z

= 0 (12)

1
ε2

[
ε

∂u1l
∂t

+ U0l
∂u1l
∂x

+
ε2

k1

(
vl − v′l∇

2
)

u1l

]
= − 1

ρl

∂p1l
∂x

(13)

1
ε2

[
ε

∂vl
∂t

+ U0l
∂v1l
∂x

+
ε2

k1

(
vl − v′l∇

2
)

v1l

]
= − 1

ρl

∂p1l
∂y

(14)

1
ε2

[
ε

∂w1l
∂x

+ U0l
∂w1l
∂x

+
ε2

k1

(
vl − v′l∇

2
)

w1l

]
= − 1

ρl

∂p1l
∂z

(15)

and in the gas region as
∂u1g

∂x
+

∂v1g

∂y
+

∂w1g

∂z
= 0 (16)

1
ε2

[
ε

∂u1g

∂t
+ U0g

∂u1g

∂x
+

ε2vg

k1
u1g

]
= − 1

ρg

∂p1g

∂x
(17)

1
ε2

[
ε

∂v1g

∂t
+ U0g

∂v1g

∂x
+

ε2vg

k1
v1g

]
= − 1

ρg

∂p1g

∂y
(18)

1
ε2

[
ε

∂v1g

∂t
+ U0g

∂v1g

∂x
+

ε2vg

k1
w1g

]
= − 1

ρg

∂p1g

∂z
(19)

Together with the electric potential equations in both regions

∇2ψ1l = 0 and ∇2ψ1g = 0 (20)

3. Normal Modes Analysis and Solutions

We seek solutions to Equations (13)–(20) in the liquid and gas medium whose
dependency on x, y, z, and t is of the type [34] to analyze the disturbance into normal
modes analysis

(u1l , v1l , w1l , p1l , ψ1l) = (Ul , Vl , Wl , Pl , Ψl) exp[i(kx + nz) + ωt] (21)(
u1g, v1g, w1g, p1g, ψ1g

)
=
(
Ug, Vg, Wg, Pg, Ψg

)
exp[i(kx + nz) + ωt] (22)

where Ul , Vl , Wl , Pl , Ψl and Ug, Vg, Wg, Pg, Ψg are functions of y only; k and n are the wave
numbers in the x and z, respectively, and ω = ωr + iωi is the complex frequency.

The interface displacement is given by

η = η0 exp[i(kx + nz) + ωt] (23)
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Substituting Equations (21) and (22) into Equations (13)–(20), we obtain in the liquid
sheet medium the equation

ikUl + DVl + inWl = 0 (24){
(εω + ikU0l) +

ε2

k1

[
vl − v′l

(
D2 −m2

)]}
Ul = −

ε2

ρl
(ikPl) (25){

(εω + ikU0l) +
ε2

k1

[
vl − v′l

(
D2 −m2

)]}
Vl = −

ε2

ρl
(DPl) (26){

(εω + ikU0l) +
ε2

k1

[
vl − v′l

(
D2 −m2

)]}
Wl = −

ε2

ρl
(inPl) (27)(

D2 −m2
)

Ψl = 0 (28)

where m2 = k2 + n2. Similarly, in the gas medium we obtain the following equations

ikUg + DVg + inWg = 0 (29)[(
εω + ikU0g

)
+

ε2vg

k1

]
Ug = − ε2

ρl

(
ikPg

)
(30)

[(
εω + ikU0g

)
+

ε2vg

k1

]
Vg = − ε2

ρl

(
DPg

)
(31)

[(
εω + ikU0g

)
+

ε2vg

k1

]
Wg = − ε2

ρl

(
inPg

)
(32)

(
D2 −m2

)
Ψg = 0 (33)

Multiplying Equation (25) by ik, operate by the operator D on Equation (26), multiply
Equation (27) by in, and add the obtained three equations. Afterwards, using Equation (24),
we obtain (

D2 −m2
)

Pl = 0 (34)

The solution of Equation (34) is given by

p1l =
[
C1emy + C2e−my] exp[i(kx + nz) + ωt] (35)

where C1 and C2 are constants of integration to be determined. Then, we can write
Equation (25) can be written in the form(

D2 − s2
)

Ul =
ikk1

ρlv′l

(
C1emy + C2e−my) (36)

where

s2 = m2 +
k1(εω + ikUol) + ε2vl

ε2v′l
(37)

Hence, the general solution of nonhomogeneous differential Equation (36) is given by

u1l =

[
C3esy + C4e−sy +

ikk1

ρlv′l

(
C1emy + C2e−my

m2 − s2

)]
exp[i(kx + nz) + ωt] (38)

Similarly, Equations (26) and (27) can be written in the form(
D2 − s2

)
Vl =

mk1

ρlv′l

(
C1emy − C2e−my) (39)



Fluids 2022, 7, 247 6 of 23

(
D2 − s2

)
Wl =

ink1

ρlv′l

(
C1emy + C2e−my) (40)

The solutions to nonhomogeneous differential Equations (39) and (40) are

v1l =

[
C5esy + C6e−sy +

mk1

ρlv′l

(
C1emy − C2e−my

m2 − s2

)]
exp[i(kx + nz) + ωt] (41)

w1l =

[
C7esy + C8e−sy +

ink1

ρlv′l

(
C1emy + C2e−my

m2 − s2

)]
exp[i(kx + nz) + ωt] (42)

where C3–C8 are constants to determined. Furthermore, from Equations (29)–(32), we obtain(
D2 −m2

)
Pg = 0 (43)

The solution of Equations (28), (33) and (43) can be written in the forms
Hence, we can write

p1g =
[
C9emy + C10e−my] exp[i(kx + nz) + ωt] (44)

ψ1l =
[
A1emy + A2e−my] exp[i(kx + nz) + ωt] (45)

ψ1g =
[
B1emy + B2e−my] exp[i(kx + nz) + ωt] (46)

where A1, A2, B1, B2, C9 and C10 are constants of integration to be determined.

4. Boundary Conditions

If the disturbance is antisymmetric or symmetric, the required boundary conditions
for the considered system are different. The upper and lower interfaces are used for
antisymmetric disturbances, for example at y = ±a is described by y = a + η and
y = −a + η, respectively, while for symmetric disturbance, the two interfaces are described,
respectively, by y = a + η and y = −a− η, where η is defined by Equation (23).

The antisymmetric disturbance case boundary conditions at y = ±a are [8,13]

1. The kinematic boundary condition should be satisfied at the two interfaces, which
states that the normal velocities of the liquid sheet at y = ±a are

v1l = ε
∂η

∂t
+ U0l

∂η

∂x
at y = ±a (47)

and for the gas medium, this condition yields

v1g = ε
∂η

∂t
+ U0g

∂η

∂x
at y = a (48)

2. The perturbed velocity of the gas far away from the interface should be vanishes, i.e.,

v1g = 0 at y→ ±∞ (49)

3. The stress tensor’s tangential component must be continuous at the interfaces, i.e.,

τyx =
1
k1

(
µl − µ′l∇

2
)(∂u1l

∂y
+

∂v1l
∂x

)
= 0 at y = ±a (50)

τyz =
1
k1

(
µl − µ′l∇

2
)(∂v1l

∂z
+

∂w1l
∂y

)
= 0 at y = ±a (51)
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4. At the interfaces, the electric field’s tangential component is continuous.

∂ψ1l
∂x

=
∂ψ1g

∂x
at y = ±a (52)

5. At interfaces, the electric displacement’s normal component is continuous.

εl
∂ψ1l
∂y
− εg

∂ψ1g

∂y
= ikηE0

(
εl − εg

)
at y = ±a (53)

6. The stress tensor normal component is broken up at the interface by the surface
tension coefficient, i.e.,

− p1l + εlE0
∂ψ1l
∂x

+ 2
(

µl − µ′l∇
2
)∂v1l

∂y
= −p1g + εgE0

∂ψ1g

∂x
+ pσ at y = ±a (54)

where pσ is the pressure due to the surface tension σ.
Please note that for symmetric disturbances the boundary conditions that change
forms are

7. The kinematic boundary condition (47) and the electric displacement boundary
condition (53) at y = −a take the forms

v1l = −
(

ε
∂η

∂t
+ U0l

∂η

∂x

)
at y = −a (55)

v1g = −
(

ε
∂η

∂t
+ U0g

∂η

∂x

)
at y = −a (56)

εl
∂ψ1l
∂y
− εg

∂ψ1g

∂y
= −ikηE0

(
εl − εg

)
at y = −a (57)

5. The Antisymmetric Disturbance Case

For each of the fluid sheets and gas media (upper and lower phases), as well as the
differential equation representing the influence of the electric field, we will try to find
solutions in this section as follows:

5.1. Solutions in the Liquid Sheet Phase

The kinematic boundary condition (47), on using Equations (23) and (41), can be
written at the two interfaces in the form

C5esa + C6e−sa +
mk1

ρlv′l

(C1ema − C2e−ma)

(m2 − s2)
= (εω + ikU0l)η0 (58)

C5e−sa + C6esa +
mk1

ρlv′l

(C1e−ma − C2ema)

(m2 − s2)
= (εω + ikU0l)η0 (59)

Solving Equations (58) and (59), we obtain

C5 =
(εω + ikU0l)η0

2 cosh(sa)
− mk1{C1 sinh[(s + m)a]− C2 sinh[(s−m)a]}

ρlv′l(m
2 − s2) sinh(2sa)

(60)

C6 =
(εω + ikU0l)η0

2 cosh(sa)
− mk1{C1 sinh[(s−m)a]− C2 sinh[(s + m)a]}

ρlv′l(m
2 − s2) sinh(2sa)

(61)
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The tangential stress boundary condition (50), on using Equations (38), (41), (58)
and (59), can be written at the two interfaces in the form

C3sesa − C4se−sa +
ikk1m(C1ema − C2e−ma)

ρlv′l(m
2 − s2)

+ ik(εω + ikU0l)η0 = 0 (62)

C3se−sy − C4sesa +
ikk1m(C1e−ma − C2ema)

ρlv′l(m
2 − s2)

+ ik(εω + ikU0l)η0 = 0 (63)

Solving Equations (62) and (63), we obtain

C3 = − ikk1m{C1 sinh[(s + m)a]− C2 sinh[(s−m)a]}
sρlv′l(m

2 − s2) sinh(2sa)
− ik(εω + ikU0l)η0

2s cosh(sa)
(64)

C4 =
ikk1m{C1 sinh[(s−m)a]− C2 sinh[(s + m)a]}

sρlv′l(m
2 − s2) sinh(2sa)

+
ik(εω + ikU0l)η0

2s cosh(sa)
(65)

The tangential stress boundary condition (51), on using Equations (41), (42), (58)
and (59), can be written at the two interfaces in the form

s
(
C7esa − C8e−sa) = −in(εω + ikU0l)η0 −

inmk1(C1ema − C2e−ma)

ρlv′l(m
2 − s2)

(66)

s
(
C7e−sa − C8esa) = −in(εω + ikU0l)η0 −

inmk1(C1e−ma − C2ema)

ρlv′l(m
2 − s2)

(67)

Solving Equations (66) and (67), we obtain

C7 = − in(εω + ikU0l)η0

2s cosh(sa)
− inmk1{C1 sinh[(s + m)a]− C2 sinh[(s−m)a]}

sρlv′l(m
2 − s2) sinh(2sa)

(68)

C8 =
in(εω + ikU0l)η0

2s cosh(sa)
+

inmk1{C1 sinh[(s−m)a]− C2 sinh[(s + m)a]]}
sρlv′l(m

2 − s2) sinh(2sa)
(69)

The equation of continuity (12) at y = ±a , on using Equations (38), (41), and (42) can
be written in the form[

sinh2(sa) cosh(ma) + cosh2(sa) sinh(ma)
]
C1

−
[
sinh2(sa) cosh(ma)− cosh2(sa) sinh(ma)

]
C2

+
ρlv′l
k1m

(
m2 + s2

)
(εω + ikU0l)η0 sinh2(sa) = 0 (70)

and [
sinh2(sa) cosh(ma) − cosh2(sa) sinh(ma)

]
C1

−
[
sinh2(sa) cosh(ma) + cosh2(sa) sinh(ma)

]
C2

+
ρlv′l
k1m

(
m2 + s2

)
(εω + ikU0l)η0 sinh2(sa) = 0 (71)

Solving Equations (70) and (71), we obtain

C1 = −C2 = −
ρlv′l

(
m2 + s2)(εω + ikU0l)η0

2k1m cosh(ma)
(72)
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Substitute from Equations (72) into Equations (64), (65), (60), (61), (68), and (69),
respectively, we obtain

C3 = −C4 =
iks(εω + ikU0l)η0

(m2 − s2) cosh(sa)
(73)

C5 = C6 =
m2(εω + ikU0l)η0

(m2 − s2) cosh(sa)
(74)

C7 = −C8 = − ins(εω + ikU0l)η0

(m2 − s2) cosh(sa)
(75)

Substitute from Equations (72) and (75) into Equations (38), (41) and (42) we obtain

p1l = −
ρlv′l

(
m2 + s2)(εω + ikU0l)η0 sinh(my)

k1m cosh(ma)
exp[i(kx + nz) + ωt] (76)

and

u1l =
ik(εω + ikU0l)η0

(m2 − s2)

[
2s sinh(sy)

cosh(sa)
−
(
m2 + s2) sinh(my)

m cosh(ma)

]
exp[i(kx + nz) + ωt] (77)

v1l =
(εω + ikU0l)η0

(m2 − s2)

[
2m2 cosh(sy)

cosh(sa)
−
(
m2 + s2) cosh(my)

cosh(ma)

]
exp[i(kx + nz) + ωt] (78)

w1l =
in(εw + ikU0l)η0

(m2 − s2)

[
2s sinh(sy))

cosh(sa)
−
(
m2 + s2) sinh(my)

)
m cosh(ma)

]
exp[i(kx + nz) + ωt] (79)

5.2. Solutions in the Gas Medium (in the Upper and Lower Phases)

Substitute form Equation (44) into Equations (30)–(32), we obtain

u1g = − ikε2(C9emy + C10e−my)

ρg

[(
εω + ikU0g

)
+

ε2vg
k1

] (80)

v1g = − mε2(C9emy − C10e−my)

ρg

[(
εω + ikU0g

)
+

ε2vg
k1

] (81)

w1g = − inε2(C9emy + C10e−my)

ρg

[(
εω + ikU0g

)
+

ε2vg
k1

] (82)

Using the kinematic boundary condition (48), and condition (49) in the two regions
(y→ ∞) and (y→ −∞), the in the upper gas region we obtain C9 = 0, while in the lower
gas region, we have C10 = 0. Then in the upper gas region (y ≥ a), we have

C10 =
ρg
(
εω + ikU0g

)
η0

mε2

[(
εω + ikU0g

)
+

ε2vg

k1

]
ema (83)

Therefore, in the upper gas medium, Equation (44) gives

pu
1g =

ρg
(
εω + ikU0g

)
η0

mε2

[(
εω + ikU0g

)
+

ε2vg

k1

]
exp[m(a− y)] exp[i(kx + nz) + ωt] (84)

Furthermore, Equations (80)–(82) yield the velocity component for (y ≥ a) as

uu
1g = −

ik
(
εω + ikU0g

)
η0

m
exp[m(a− y)] exp[i(kx + nz) + ωt] (85)
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vu
1g =

(
εω + ikU0g

)
η0 exp[m(a− y)] exp[i(kx + nz) + ωt] (86)

wu
1g = −

ik
(
εω + ikU0g

)
η0

m
exp[m(a− y)] exp[i(kx + nz) + ωt] (87)

Similarly, in the lower gas region (y ≤ −a), we have

C9 = −
ρg
(
εω + ikU0g

)
η0

mε2

[(
εω + ikU0g

)
+

ε2vg

k1

]
ema (88)

Therefore, in the lower gas medium, Equation (44) gives

pl
1g = −

ρl
(
εω + ikU0g

)
η0

mε2

[(
εω + ikU0g

)
+

ε2vg

k1

]
exp[m(a + y)] exp[i(kx + nz) + ωt] (89)

Hence, Equations (80)–(82) yield

ul
1g =

ik
(
εω + ikU0g

)
η0

m
exp[m(a + y)] exp[i(kx + nz) + ωt] (90)

vl
1g =

(
εω + ikU0g

)
η0 exp[m(a + y)] exp[i(kx + nz) + ωt] (91)

wl
1g =

in
(
εω + ikU0g

)
η0

m
exp[m(a + y)] exp[i(kx + nz) + ωt] (92)

Furthermore, the pressure due to the presence of surface tension is given by

pσ = σ

(
∂2η

∂x2 +
∂2η

∂z2

)
= −σm2η0 exp[i(kx + nz) + ωt] (93)

5.3. Solutions of the Electric Field (in the Upper and Lower Phases)

From Equation (46), since ψ1g → 0 as y→ ±∞, then in the upper gas region (y ≥ a),
we take B1 = 0, while in the lower gas region (y ≤ −a), we take B2 = 0. Then substituting
from Equation (45) of the liquid phase and Equation (46) for the gas phase (in the upper
and lower regions) into the boundary conditions (52) and (53) at y = ±a, we obtain(

A1ema + A2e−ma) = B2e−ma (94)(
A1e−ma + A2ema) = B1e−ma (95)

εlm
(

A1ema − A2e−ma)+ εgmB2e−ma = ikη0E0
(
εl − εg

)
(96)

εlm
(

A1e−ma − A2ema)− εgmB1e−ma = ikη0E0
(
εl − εg

)
(97)

Now, solving Equations (94)–(97), we obtain

A1 = −A2 =
ikη0E0

(
εl − εg

)
2m cosh(ma)

[
εl + εg tanh(ma)

] (98)

and

B1 = −B2 = −
ikη0E0

(
εl − εg

)
ema tanh(ma)

m
[
εl + εg tanh(ma)

] (99)

Therefore, the solutions (45) and (46) can be written in the form

ψ1l =
ikη0E0

(
εl − εg

)
sinh(my)

m
[
εl + εg tanh(ma)

]
cosh(ma)

exp[i(kx + nz) + ωt] (100)

ψu
1g =

ikη0E0
(
εl − εg

)
tanh(ma)

m
[
εl + εg tanh(ma)

] exp[m(a− y)] exp[i(kx + nz) + ωt] (101)
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ψl
1g = −

ikη0E0
(
εl − εg

)
tanh(ma)

m
[
εl + εg tanh(ma)

] exp[m(a + y)] exp[i(kx + nz) + ωt] (102)

6. The Symmetric Disturbance Case

In this section, we will try to obtain the solutions for the above-mentioned differential
equations describing each of the liquid sheet medium, and the gas medium (in the upper
and lower phases), together with the solution of the differential equation of the electric field,
in the corresponding case of symmetric disturbance. We note that the obtained solutions
for the gas medium in this case is found to be similar to the solutions for the previous case
of antisymmetric disturbances and will not be given here.

6.1. Solutions in the Liquid Sheet Phase

Following the same procedure shown in the previous case of antisymmetric distur-
bance together with the help of Equation (55) at y = −a, we obtain

C1 = C2 = −
ρlv′l

(
m2 + s2)(εω + ikU0l)η0

2k1m sinh(ma)
(103)

C3 = C4 =
iks(εω + ikU0l)η0

(m2 − s2) sinh(sa)
(104)

C5 = −C6 =
m2(εω + ikU0l)η0

(m2 − s2) sinh(sa)
(105)

C7 = C8 =
ins(εω + ikU0l)η0

(m2 − s2) sinh(sa)
(106)

Hence, we have the following solution

p1l = −
ρlv′l

(
m2 + s2)(εω + ikU0l)η0 cosh(my)

k1m sinh(ma)
exp[i(kx + nz) + ωt] (107)

u1l =
ik(εω + ikU0l)η0

(m2 − s2)

[
2s cosh(sy)

sinh(sa)
−
(
m2 + s2) cosh(my)

m sinh(ma)

]
exp[i(kx + nz) + ωt] (108)

v1l =
(εω + ikU0l)η0

(m2 − s2)

[
2m2 sinh(sy)

sinh(sa)
−
(
m2 + s2) sinh(my)

sinh(ma)

]
exp[i(kx + nz) + ωt] (109)

w1l =
in(εw + ikU0l)η0

(m2 − s2)

[
2s cosh(sy))

sinh(sa)
−
(
m2 + s2) cosh(my)

)
m sinh(ma)

]
exp[i(kx + nz) + ωt] (110)

6.2. Solutions of the Electric Field (in the Upper and Lower Phases)

Following the same procedure given in the previous case of antisymmetric disturbance,
together with the help of Equation (57) at y = −a, we obtain

A1 = A2 =
ikη0E0

(
εl − εg

)
2m sinh(ma)

[
εl + εg coth(ma)

] (111)

and

B1 = B2 =
ikη0E0

(
εl − εg

)
ema coth(ma)

m
[
εl + εg coth(ma)

] (112)

Hence, we have the following solutions

ψ1l =
ikη0E0

(
εl − εg

)
cosh(my)

m
[
εl + εg coth(ma)

]
sinh(ma)

exp[i(kx + nz) + ωt] (113)
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ψu
1g =

ikη0E0
(
εl − εg

)
coth(ma)

m
[
εl + εg coth(ma)

] exp[m(a− y)] exp[i(kx + nz) + ωt] (114)

ψl
1g =

ikη0E0
(
εl − εg

)
coth(ma)

m
[
εl + εg coth(ma)

] exp[m(a + y)] exp[i(kx + nz) + ωt] (115)

7. Non-Dimensional Dispersion Relations

Using the normal stress boundary condition (54) at y = a we can now calculate
the dispersion relation for the antisymmetric disturbance situation by substituting the
following Equations (75), (78), (84), (85), (93), (100), and (101) into the normal stress
boundary condition:

ρlv′l
(
m2 + s2)(εω + ikU0l)

k1
tanh(ma)−

k2E2
0
(
εl − εg

)2[
εl + εg tanh(ma)

] tanh(ma)

+
2µm2(εω + ikU0l)

k1(m2 − s2)

[
2 ms tanh(sa)−m2

(
m2 + s2

)
tanh(ma)

]
(116)

+ 4µ′m3s(εω + ikU0l) tanh(sa) +
ρg
(
εω + ikU0g

)
ε2

[(
εω + ikU0g

)
+

ε2vg

k1

]
+ σm3 = 0

To facilitate the analysis, we need to write the dispersion relation (7) in dimension-
less form using the following non-dimensional quantities: Weber number We =

(
ρlU2

0la
)
/σ,

Reynolds liquid number Rel = (U0la)/vl , Ohnesorge number Oh =
√

We/Re = vl
√

ρl/(aσ)
gas to liquid density ratio ρ = ρg/ρl , gas to liquid velocity ratio U = U0g/U0l , gas to liquid
viscosity ratio v = vg/vl , Reynolds gas number Reg = (U/v)Rel , viscoelasticity parameter
V′ = (v′l/a2)

√
ρl/(aσ), electric field parameter E = E0/

√
σ, non-dimensional dielectric

constants ε̃l = εla, ε̃g = εga, the non-dimensional medium permeability
κ1 = k1/a2 and let K = ka, N = na represent the non-dimensional wave numbers. Fur-
thermore, put M = ma, S = sa. We also define the quantities Ω = Ωr + iΩi

√
We, where

Ωr = ωra2
√

ρl/(σa), Ωi = (ωia)/U0l . Hence the non-dimensional form of the dispersion
relation (7) for antisymmetric disturbance case reduces to the form

{
(εΩ + iK

√
We)2

ε2 +

(
2M2V′ + Oh

)
κ1

(εΩ + iK
√

We)− K2E2(ε̃l − ε̃l)
2[

ε̃l + ε̃g tanh(M)
]} tanh(M)

− 4ε2V′(Oh)M3(εΩ + iK
√

We)[
κ1(εΩ + iK

√
We) + ε2(Oh)

] [S tanh(S)−M tanh(M)] (117)

+ 2(Oh)M2(εΩ + iK
√

We) tanh(M) + 4V′M3S(εΩ + iK
√

We) tanh(S)

+
ρv(Oh)(εΩ + iKU

√
We)

κ1
+

ρ(εΩ + iKU
√

We)2

ε2 + M3 = 0

where

S =

√√√√
M2 +

[
κ1(εΩ + iK

√
We) + ε2(Oh)

]
ε2V′

(118)

For the symmetric disturbance example, we use Equations (84), (86), (93), (107), (109),
(113), and (114) in Equation (54) to derive the following non-dimensional dispersion relation
in the form of a dispersion relation for the symmetric disturbance scenario.



Fluids 2022, 7, 247 13 of 23

{
(εΩ + iK

√
We)2

ε2 +

(
2M2V′ + Oh

)
κ1

(εΩ + iK
√

We)− K2E2(ε̃l − ε̃l)
2[

ε̃l + ε̃g coth(M)
]} coth(M)

− 4ε2V′(Oh)M3(εΩ + iK
√

We)[
κ1(εΩ + iK

√
We) + ε2(Oh)

] [S coth(S)−M coth(M)] (119)

+ 2(Oh)M2(εΩ + iK
√

We) coth(M) + 4V′M3S(εΩ + iK
√

We) coth(S)

+
ρv(oh)(εΩ + iKU

√
We)

κ1
+

ρ(εΩ + iKU
√

We)2

ε2 + M3 = 0

The non-dimensional dispersion relations (7) and (7) for non-porous media ( ε = 1
and κ1 → ∞), and absence of viscosity and viscoelasticity parameters (Oh = 0, V′ = 0)
and gas velocity (U = 0), reduce to the dispersion relations obtained by El- Sayed [35],
which is a generalization of the work of Ibrahim and Akpan [36] in absence of electric field,
and hence their results have been recovered. This limiting case in the absence of an electric
field and presence of viscosity, reduces to the same results obtained by Dasgupta et al. [37],
while in absence of viscosity and presence of gas velocity, it reduces to the same results of
Nath et al. [38], respectively.

8. Stability Analysis and Discussion

The dispersion relations (7) and (7) are very complicated and cannot be solved ana-
lytically to express the real part of growth rates in terms of the wave numbers; otherwise,
these two equations can be solved numerically using Mathematica software, to yield values
of wave number K as a function of growth rate Ω for various values of the other physical
parameters included in the analysis. In providing a guessed root of Ωr, it is helpful to
realize that the imaginary part Ωi = −K, in accordance with Gaster’s theorem [39]. Please
note that the three-dimensional results are obtained from the numerical solutions of the
dispersion relations (7) and (7) with N = 1, 2 (the z-direction wave numbers), while the
two-dimensional results corresponds to the case N = 0. Hence, by solving the dispersion
relations (7) and (7) in the temporal mode of instability for both the antisymmetric and
symmetric disturbances cases, the effects of various parameters on the stability of an electri-
fied viscolastic couple-stress liquid sheet surrounded by an inviscid gas in porous medium
can be examined. These dispersion relations are solved numerically using Mathematica
via a new technique combined between Muller and Gaster methods, see refs. [40,41] to
obtain relationships between the non-dimensional real part of growth rates Ωr and the non-
dimensional wave numbers K of the both disturbances. The effects of the other physical
parameters including in this study are shown graphically in the following Figures 2–16
which exhibit the growth rate Ωr as a function of the wave number K for the flow. Both
symmetric and antisymmetric disturbances cause Ωr to rise initially when K climbs to its
maximum value, and thereafter it falls. The dominant growth rate and the related dominant
wave number are both referred to as the dominant growth rate and the dominant wave
number. The critical wave number Kc is the point where the growth rate curve intersects
the wave number axis. Couple-stress liquid sheet becomes unstable with positive growth
rate in the region beneath the growth rate curve whose wave number ranges from zero to
the cutoff critical wave number, which is defined as the instability zone. With maximum
dominant growth rates Ωr and dominant wave number K in place, the liquid sheet becomes
unstable. Figure 2 depicts the fluctuation of the non-dimensional growth rate Ωr with
the non-dimensional wave number K in the antisymmetric disturbance situation for two-
dimensional configurations (N = 0) and three-dimensional ones (N = 1, 2) and constant
physical parameter values. Two-dimensional disturbances (N = 0) have higher growth
rates than three-dimensional disturbances (N ≥ 1), and three-dimensional disturbances
with (N = 1) have higher growth rates than those with (N = 2), as seen in the figure.
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As a result, we can say that the system is more unstable in two dimensions than it is in
three dimensions.

Figure 2. Variation in the non-dimensional growth rate Ωr with different values of the non-
dimensional wave number K the two- and three-dimensional of configuration N = 0 and N = 1, 2,
respectively, when We = 1000; Oh = 0.1; ρ = 0.01; v = 0.2; κ1 = 2; ε̃l = 0.3; ε̃g = 0.1; E = 3; U = 1.5;
V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 3. For various Weber numbers We, the variation in the non-dimensional growth rate Ωr

depends on the non-dimensional wave number K, We, when N = 1; Oh = 0.1; ρ = 0.01; linebreak
n = 1; v = 0.2; κ1 = 2; ε̃l = 0.3; ε̃g = 0.1; E = 3; U = 1.5; V′ = 0.1; ε = 0.5, for axisymmetric
disturbance case.

Figure 4. Non-dimensional growth rate Ωr and non-dimensional wave number K for differ-
ent values of Ohnesorge number Oh, when We = 1000; N = 1; ρ = 0.01; v = 0.2; κ1 = 2;
ε̃l = 0.3; ε̃g = 0.1; E = 3; U = 1.5; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.
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Figure 5. Non-dimensional growth rate Ωr and non-dimensional wave number K for different values
of viscoelastitily parameter V′, when We = 1000; Oh = 0.1; ρ = 0.01; N = 1; v = 0.2; κ1 = 2;
ε̃l = 0.3; ε̃g = 0.1; U = 1.5; ε = 0.5, for axisymmetric disturbance case.

Figure 6. Analysis of non-dimensional growth rate Ωr and non-dimensional wave number K
for different electric field strengths E, when We = 1000; Oh = 0.1; ρ = 0.01; N = 1; v = 0.2;
ε̃l = 0.3; ε̃g = 0.1; E = 3; U = 1.5; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 7. Variation of non-dimensional growth rate Ωr with non-dimensional wave number K for
various medium permeability values κ1, when We = 1000; Oh = 0.1; ρ = 0.01; n = 1; v = 0.2; κ1 = 2;
ε̃l = 0.3; ε̃g = 0.1; E = 3; U = 1.5; V′ = 0.1, for axisymmetric disturbance case.
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Figure 8. Non-dimensional growth rate Ωr and non-dimensional wave number K for different values
of porous medium porosity ε, when We = 1000; Oh = 0.1; N = 1; v = 0.2; κ1 = 2; ε̃l = 0.3;
ε̃g = 0.1; E = 3; U = 1.5; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 9. Non-dimensional growth rate Ωr and non-dimensional wave number K for different gas
to liquid densities ρ, when We = 1000; Oh = 0.1; N = 1; ρ = 0.01; v = 0.2; κ1 = 2; ε̃l = 0.3;
ε̃g = 0.1; E = 3; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 10. Change in non-dimensional growth rate Ωr with non-dimensional wave number K
for varied gas to liquid velocity values U < 1, when We = 1000; Oh = 0.1; N = 1; ρ = 0.01;
v = 0.2; κ1 = 2; ε̃l = 0.3; ε̃g = 0.1; E = 3; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.
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Figure 11. Variation of non-dimensional growth rate Ωr with non-dimensional wave number K
for varied gas to liquid velocities U > 1, when We = 1000; Oh = 0.1; N = 1; ρ = 0.01; v = 0.2;
κ1 = 2; E = 3; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 12. Change in non-dimensional growth rate Ωr with non-dimensional wave number K
for various dielectric constants values ε̃l and ε̃g, when We = 1000; Oh = 0.1; N = 1; ρ = 0.01;
κ1 = 2; ε̃l = 0.3; ε̃g = 0.1; E = 3; V′ = 0.1; ε = 0.5, for axisymmetric disturbance case.

Figure 13. Non-dimensional growth rate Ωr and non-dimensional wave number K for different
gas to liquid viscosity values ν, when We = 2000; Oh = 2; N = 1; v = 0.2; ρ = 0.1; U = 1.5;
ε̃l = 0.3; ε̃g = 0.1; E = 10; V′ = 5; for axisymmetric disturbance case.
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Figure 14. Non-dimensional growth rate Ωr and non-dimensional wave number K for both case
of porous medium (ε = 0.5; κ1 = 2), and non-porous medium (ε = 1; κ1 → ∞), when We = 2000;
Oh = 2; N = 1; v = 0.2; ρ = 0.1; U = 1.5; ε̃l = 0.3; ε̃g = 0.1; E = 10; V′ = 5; for axisymmetric
disturbance case.

Figure 15. Variational of non-dimensional Ωr with non-dimensional K in three-dimensional case
(N = 1) for both anlisymmetric and symmetric disturbances with the same values of the parameters
shown before.

Figure 16. Change in in non-dimensional Ωr with non-dimensional K in two-dimensional case
(N = 0) for both antisymmetric and symmetric disturbances with the same values of the parameters
used above.

8.1. Effect of the Weber Number

For various values of the Weber number and constant values of other parameters
included in the analysis, the non-dimensional growth rate Ωr is shown in Figure 3 for
the antisymmetric disturbance example. This graph shows that when the Weber number
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rises, so do the dominant growth rates, dominant wave numbers, and critical wave num-
bers. Consequently, the instability zone expands, demonstrating that the Weber number
destabilizes the system.

8.2. Effect of Ohnesorge Number

For antisymmetric disturbances with fixed physical parameters, the Ohnesorge num-
ber Oh affects the non-dimensional growth rate Ωr against the non-dimensional wave
number K in Figure 4. The figure shows that all curves have the same wave number at
both the beginning and the conclusion, as can be seen. Increasing the Ohnesorge number
Oh raises the maximum dominant wave numbers, and they are the same as the dominant
wave number, while the critical wave numbers remain unchanged. As a result, we can infer
that the Ohnesorge number Oh destabilizes the system under consideration as the unstable
zone under the curves expands.

8.3. Effect of Viscolasticity Parameter

Viscoelasticity parameter and other physical constants remain constant in the anti-
symmetric disturbance situation, hence the growth rate Ωr of the non-dimensional wave
number K is shown in Figure 5. The graphic shows that the maximum dominating growth
rates fall as the viscoelasticity parameter V′ is increased, and that all curves have the
same starting wave number value and critical wave number value. The instability zone
shrinks when the viscoelasticity parameter V′ is increased, indicating that the viscoelasticity
parameter V′ has a stabilizing effect.

8.4. Effect of Electric Field

According to the antisymmetric disturbance case, the relationship between non-
dimensional growth rate Ωr and non-dimensional wave number K can be seen in Figure 5
for various electric field E values and constant other physical parameters. Increasing the
electric field E values increases both the maximum dominant wave numbers and critical
wave numbers, but the dominant wave number remains constant. For this sort of distur-
bance, the electric field has a destabilizing effect because it increases the instability zones.

8.5. Effect of Medium Permeability

The antisymmetric disturbance mode is depicted in Figure 7, which shows how distur-
bance Ωr growth rate changes with non-dimensional wave number K under various values
of medium permeability κ1 and constant values of other physical parameters. For example,
we see in this figure that as permeability is increased, dominant and critical wave numbers
remain at their predetermined values due to lower maximum dominant growth rates. In-
creased values of medium permeability κ1, therefore, we suggest that medium permeability
has stabilizing effects on this system of interest.

8.6. Effect of Porosity of Porous Medium

Using a non-dimensional growth rate Ωr vs. a non-dimensional wave number K and
the same values for the other parameters, Figure 8 depicts the effect of porous medium ε
porosity on the instability of couple-stress viscoelastic electrified liquid sheets for antisym-
metric disturbances. Increasing the porosity of porous medium decreases the maximum
dominant growth rate Ωr , but they retain at the same dominent wave number value. As a
result, we may deduce that increasing the porosity of a porous medium ε stabilizes this
system by raising the starting wave numbers and critical wave numbers, respectively, while
decreasing the instability zones.

8.7. Effect of Gas to Liquid Density Ratio

Non-dimensional growth rate of disturbance Ωr with non-dimensional wave number
K for varying gas to liquid density ratio ρ and constant values of the other physical
parameters is shown in Figure 9 for antisymmetric disturbance modes. When the gas to
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liquid density ratio grows, both the dominant growth rates and crucial wave numbers
increase, while the dominant wave numbers occur at the same fixed wave number value
and the starting points of the curves are coincidental. The instability zone expands as the
gas-to-liquid density ratio increases, demonstrating the destabilizing effect of gas to liquid
density on the examined structure.

8.8. Effect of Gas to Liquid Velocity Ratio

There is an antisymmetric form of disturbance when U ≶ 1, which is depicted in
Figures 10 and 11 by the fluctuation of the non-dimensional growth rate Ωr with the
non-dimensional wave number K for various values of the gas to liquid velocity ratio U.
With increasing gas to liquid velocity ratio U <1, both dominating growth rates and critical
wave numbers drop, and thus the instability zone reduces as well, as seen in Figure 10.
Therefore, we infer that the gas to liquid velocity ratio 0 ≤ U < 1 stabilizes the system in
question, as seen in the following figure: As shown in Figure 11, the gas to liquid velocity
ratio greater than one (U > 1) has a destabilizing effect on a similar system. Furthermore,
keep in mind that the dominant wave numbers fall and grow (slightly) as the gas to liquid
velocity ratio increases in the cases when U ≶ 1. Therefore, we conclude that the ratio
of gas to liquid velocity affects the stability of the system in two ways. Stabilization and
destabilization of the system are both dependent on U ≶ 1, and vice versa.

8.9. Effect of Dielectric Constants

Non-dimensional growth rate Ωr is shown in relation to the now-dimensional wave
number K for different values of dielectric constant ε̃l , ε̃g in liquid and gaseous media.
As dielectric constants are increased, the resultant curves tend to converge and the instabil-
ity zones narrow gradually, as seen by the curves’ behavior. The dislectric constants ε̃l , ε̃g in
liquid and gas media have a small stabilizing influence on the system under consideration,
therefore we can draw this conclusion.

8.10. Effect of Gas to Liquid Viscosity Ratio

Figure 13 shows the non-dimensional growth rate Ωr vs. the non-dimensional wave
number K as a function of the gas to liquid viscosity ratio ν and various other factors.
The figure clearly shows that the system is stable in the absence of gas viscosity, and we
found that increasing the gas to liquid viscosity ratio ν caused all of the curves to nearly
coincide, but the figure is not shown here. This result shows that the system is neutrally
unstable for small values of the gas to liquid viscosity ratio. It is also worth noting that
the maximum dominant growth rates and, thus, the instability zones shrink when the
gas to liquid viscosity ratio rises significantly. For very low gas to liquid viscosity ratios,
the corresponding effect is only mildly stabilizing, but for high gas to liquid viscosity ratios,
the effect is stabilizing.

8.11. Effect of Porous Medium

As shown in Figure 14, for antisymmetric disturbance mode, the non-dimensional
growth rate Ωr and wave number K are related to each other in the presence (ε and κ1) and
absence (ε = 1 and κ1 → ∞ ) of porous media. The presence of porous media makes the
system more unstable than it would be in the absence of porous medium, as can be seen
from this image. All preceding figures that indicate the effect of other parameters, such as
Figures 7 and 8, are based on this result. As a result, we have come to the conclusion that
the system is more susceptible to breakup in the presence of porous medium than in the
absence of such media.

8.12. Effect of Dimension

There is an inverse relationship between non-dimensional growth rates Ωr and non-
dimensional wave number K in the cases of a three-dimensional configuration (N = 1) and
a zero dimension (N = 0), as shown in Figures 15 and 16. According to Figure 15, both
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symmetric and antisymmetric disturbances have nearly the same influence on the increas-
ing rate of instability in the three-dimensional example. There is no difference between an
antisymmetric or symmetric disturbance’s impact on instability, because the growth rate
curves are nearly identical. Figure 16 shows that for small wave numbers, the dominating
growth rate for antisymmetric disturbance mode is higher than the equivalent symmetric
disturbance mode, whereas for higher wave numbers, the growth rate curves for both
antisymmetric and symmetric cases are coincident. To sum up, in the three-dimensional dis-
turbance case, every parameter has an identical effect in both antisymmetric and symmetric
mods, but in the two-dimensional disturbance case, the antisymmetric instability zone is
larger than the symmetric instability zone, and as a result, the system is more unstable
when configured in the antisymmetric mode than when configured in the symmetric mode.

9. Concluding Remarks

An incompressible viscoelastic dielectric liquid sheet of the couple-stress type stream-
ing with relative velocity in an inviscid dielectric gas medium through a porous medium
has been studied using fluid and electric field equations of motion with the corresponding
appropriate boundary conditions in this work, resulting in an electrohydrodynamic insta-
bility analysis. It was found that there are two types of disturbances: antisymmetric and
symmetrical. Analytically, we may derive the dispersion relations for both antisymmet-
ric and symmetric disturbances, and by defining some non-dimensional qualities of the
parameters included in our analysis, we can represent the derived dispersion equations
in dimensionless forms. The influence of various factors on the instability of this type of
liquid sheet problem can be explored by computationally resolving the non-dimensional
dispersion relations using Mathematica software via the Gaster technique. Based on the
preceding discussion and examination of the numbers, here are a few possible conclusions:

(1) When a system is placed in a two-dimensional configuration, it is more unstable
when it is subjected to antisymmetric disturbance than when it is subjected to
symmetric disturbance.

(2) A porous medium makes the system more unstable, and it breaks down more quickly,
compared to the lack of a porous medium.

(3) Ohnesorge number, Weber number, and electric field all have a destabilizing effect on
the system under consideration.

(4) The system is stabilized by the viscoelasticity parameter, the medium permeability,
the porous medium porosity, and the gas to liquid viscosity ratio.

(5) We have found that the dielectric constants have a small stabilizing effect.
(6) The gas to liquid velocity ratio affects system stability in two ways: it stabilizes when

U < 1 is less than one, and it destabilizes when U > 1 is more than one.
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