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Abstract: Ensuring comfortable climatic conditions for operators in the cabin of technological ma-
chines is an important scientific and technical task affecting operator health. This article implements
numerical and analytical modeling of the thermal state of the vehicle cabin, considering external
airflow and internal ventilation. A method for calculating the heat transfer coefficients of a multi-
layer cabin wall for internal and external air under conditions of forced convective heat exchange is
proposed. The cabin is located in the external aerodynamic flow to consider the speed and direction
of the wind, as well as the speed of traffic. Inside the cabin, the operation of the climate system is
modeled as an incoming flow of a given temperature and flow rate. The fields of velocities, pressures,
and temperatures are calculated by the method of computer hydrodynamics for the averaged Navier–
Stokes equations and the energy equation using the turbulence model. To verify the model, the
values of the obtained heat transfer coefficients were compared with three applied theories obtained
from experimental data based on dimensionless complexes for averaged velocities and calculated
by a numerical method. It is shown that the use of numerical simulation considering the external
air domain makes it possible to obtain more accurate results from 5% to 75% compared to applied
theories, particularly in areas with large velocity gradients. This method makes it possible to get
more accurate values of the heat transfer coefficients than for averaged velocities.

Keywords: air conditioning; climate control; thermal comfort; ANSYS fluent; automotive cabin
climate control system; convection; heat transfer coefficient

1. Introduction

Currently, the materials of the cabin of vehicles and mobile technological machines,
including those for special purposes, are, as a rule, a complex multilayer composition of
heat-insulating, decorative, protective, and other layers (Figure 1). Increasingly complex
cabin materials, additional heat-loaded equipment, and increasing requirements for thermal
comfort require the development of refined approaches to modeling the thermal state of
vehicles. The creation of a microclimate in the cabin is the most important task to ensure
optimal conditions for human HVAC (Heating, ventilation, air-conditioning) work, as well
as for the operation of electronic equipment.

The factors that provide a comfortable microclimate and the theoretical foundations
for modeling the microclimate in cabins based on the balance equations of heat flows are
given in [1–3]. Heat transfer through the wall is modeled as convective heat exchange with
the environment, which is characterized by heat transfer coefficients to the environment
and the thermal conductivity of the wall [4–10].
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Figure 1. Harvester cabin: (a) outside; (b) inside. 
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system of Navier–Stokes equations. Hence, for free convection in a flat setting, methods 
for obtaining coefficients for flat horizontal and vertical plates and pipes were described 
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In the general case of forced convection, due to the impossibility of obtaining an 
analytical solution of the Navier–Stokes equations, for such problems, the main way to 
find the heat transfer coefficients is the experiment and the Nusselt criterion based on 
dimensionless complexes and similarity theory [11–16], by averaging the temperature 
fields and speeds. The values of the heat transfer coefficients are found from the Nusselt 
number, which in turn depends on the nature of the medium flow in the near-wall regions. 
In practice, the applied formulas of Jürgens, Raman, and Frank [1–3] have become widely 
used. 

Thus, experimental values were obtained, particularly for vertical and horizontal 
walls and pipes under natural and forced convection, for heat exchangers, taking into 
account the phase transitions of the liquid [17–28]. 

Computational fluid dynamics methods make it possible to obtain a numerical 
solution of hydrodynamic equations, considering complex boundary conditions. Modern 
research work is aimed at conducting virtual numerical tests, as well as finding and 
refining Nusselt values. Thus, in [29–34], the results of numerical studies and values of 
heat transfer coefficients for various tubular heat exchangers, in evaporators, coolers, and 
other surfaces are presented. 

When modeling the problem of thermal comfort, determining the coefficient of 
convective heat transfer with internal and external air is one of the key tasks of heat and 
mass transfer and applied hydro aerodynamics, since the cabin geometry and the 
configuration of the climate system create a significantly uneven velocity field outside and 
inside the cabin. 

In [35–42], the results of CFD analysis of thermal and hydrodynamic characteristics 
for various vehicles were presented, and optimization issues for various configurations 
and cab geometries were considered. Using numerical analysis based on СFD [43–45] 

Figure 1. Harvester cabin: (a) outside; (b) inside.

Analytical determination of heat transfer coefficients relates to the solution of the
system of Navier–Stokes equations. Hence, for free convection in a flat setting, methods for
obtaining coefficients for flat horizontal and vertical plates and pipes were described [4–10].

In the general case of forced convection, due to the impossibility of obtaining an ana-
lytical solution of the Navier–Stokes equations, for such problems, the main way to find the
heat transfer coefficients is the experiment and the Nusselt criterion based on dimensionless
complexes and similarity theory [11–16], by averaging the temperature fields and speeds.
The values of the heat transfer coefficients are found from the Nusselt number, which in
turn depends on the nature of the medium flow in the near-wall regions. In practice, the
applied formulas of Jürgens, Raman, and Frank [1–3] have become widely used.

Thus, experimental values were obtained, particularly for vertical and horizontal walls
and pipes under natural and forced convection, for heat exchangers, taking into account
the phase transitions of the liquid [17–28].

Computational fluid dynamics methods make it possible to obtain a numerical solution
of hydrodynamic equations, considering complex boundary conditions. Modern research
work is aimed at conducting virtual numerical tests, as well as finding and refining Nusselt
values. Thus, in [29–34], the results of numerical studies and values of heat transfer
coefficients for various tubular heat exchangers, in evaporators, coolers, and other surfaces
are presented.

When modeling the problem of thermal comfort, determining the coefficient of con-
vective heat transfer with internal and external air is one of the key tasks of heat and mass
transfer and applied hydro aerodynamics, since the cabin geometry and the configura-
tion of the climate system create a significantly uneven velocity field outside and inside
the cabin.

In [35–42], the results of CFD analysis of thermal and hydrodynamic characteristics
for various vehicles were presented, and optimization issues for various configurations
and cab geometries were considered. Using numerical analysis based on CFD [43–45]
makes it possible to obtain excellent results in modeling air flows, especially considering
turbulence [46,47].

The review above shows that modeling of air flows in the cabins of technological
machines is an important task. However, heat and mass transfer processes give good
accuracy in the case of laminar flow and lead to large errors in turbulence. The primary aim
of this work was to develop a numerical model of the air flow in the cabin of technological
machines. The novelty of this work is in the development of a new model of aerodynamics
inside the vehicle cabin based on the Navier–Stokes equations using turbulence models and
energy equations and determining the cabin heat transfer coefficients, as well as comparison
with applied theories, obtained through experimental data. The internal and external areas
of air in the cabin are considered. Ansys Fluent is used as a numerical implementation of
a CFD model. This method makes it possible to obtain the most accurate values of heat
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transfer coefficients and evaluate the applicability of applied theories, including those that
depend on air velocities.

2. Materials and Methods
2.1. Problem Formulation

To describe the behavior of a compressible viscous gas medium, the Reynolds-averaged
Navier–Stokes equations are used together with the continuity equation (RANS) in a 2D
formulation [48–52].

Velocity, temperature, pressure, and density are used as the main variables: u(x, y, t),
T(x, y, t), p(x, y, t), and ρ(x, y, t).

The mechanical properties of a gas are described by the dynamic viscosity µ, thermal
conductivity λ, and heat capacity cp, which are considered constant.

To close the system of equations of hydrodynamics, the Mendeleev–Clapeyron equa-
tion of state for an ideal gas is used, in which the variables pressure and density are related
by the following formula:

p =
ρTR
M

, (1)

where R is the universal gas constant, and M is the molar mass.

2.2. Boundary Conditions

As boundary conditions exist on the edge of the domain and the rigid body Ω, the
no-slip conditions of the medium are set as follows:

un|Ω = 0, uτ |Ω = 0, (2)

where un and uτ are the normal and tangential components of the velocity vector u = (u, v).
Velocity values (profiles) are set at the input,

u = u∗. (3)

Pressure values are set at the outlet,

p = p∗. (4)

In a numerical implementation, the equation usually considers the pressure relative to
the reference atmospheric pressure.

Since the moment equation contains second derivatives of velocities, it is necessary to
set additional boundary conditions. Typically, such conditions are introduced at the exit
as the value of certain velocities or derivatives of velocities equal to zero, which means
the absence of velocities in some directions and the uniformity of velocities at the exit of
their area.

For the energy equation at the boundary Ω, the values of temperatures or the values
of heat fluxes are set as follows:

T|Ω = T∗, λ
∂T
∂n
|Ω = q∗. (5)

For the case of unsteady motion of the medium at the zero moment of time, the initial
values of all fields are set.

Thus, the RANS system of equations, together with the boundary and initial conditions
(Equations (2)–(5)) and the turbulence equations, forms a closed boundary value problem
of differential equations regarding the averaged velocities u, pressure p, and temperature T.



Fluids 2022, 7, 226 4 of 16

2.3. Convective Heat Transfer

In the case of convective heat exchange with the external region, the heat flux is set at
the boundary as follows:

λ
∂T
∂n
|Ω = q∗ = α(Tout − T), (6)

where α is the heat transfer coefficient of the medium, and Tout is the known external temperature.
In the case of convective heat transfer through a layered wall with the external envi-

ronment, the heat transfer coefficient is calculated using the following formulas:

R = ∑
δi
λi

+
1

αin
+

1
αout

, (7)

α =
1
R

, (8)

where R is the coefficient of thermal resistance, δi and λi are the thickness and thermal
conductivity of the i-th wall, and αin and αout are the internal and external heat transfer
coefficients of the medium.

In the general case, the heat transfer coefficients and the temperature field for the
medium cannot be obtained analytically from the Navier–Stokes equations. For such
problems, the primary way to find the heat transfer coefficients is through experiment and
the Nusselt criterion based on dimensionless complexes and similarity theory [4–16].

Nu =
αL
λ

, (9)

where Nu is the Nusselt number, L is the characteristic size, and λ is the thermal conductivity.
For gases, the generalized equation of convective heat transfer has the following form:

Nu = f (Pr× Gr), (10)

where the Nusselt number is a function of the dimensionless Prandtl and Grashof numbers.
The Prandtl and Grashof values, in turn, depend on the gas parameters, temperature,
characteristic dimensions, and flow velocity.

Experimentally generalized equations of convective heat transfer were obtained for
several cases. In particular, the formulas from [1,4,6,8,14] have become widely used.
The following formulas are often used to calculate convective heat transfer in process
transport cabins:

α = 5 + 3.4u, (11)

α = 5.3 + 3.6
√

u, (12)

α = 6
√

u, (13)

where u is the air velocity along the wall.
Numerically, the heat transfer coefficients for cabin air and external space are deter-

mined from the value of the heat flux as f ollows:

qout = λ
∂T
∂n
|Ω−out = αout(Tout − Tw), (14)

qin = λ
∂T
∂n
|Ω−in = αin(Tin − Tw), (15)

where qout and qin are the heat flow from the wall in the direction of the outside air and the
inner cabin, respectively, and Tout and Tin are the external and internal temperatures.

The grid of finite volumes consisted of 32,518 tetrahedral cells with six fine wall layers.
The mesh orthogonality parameter was 0.6, which, according to the Ansys documenta-
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tion [43,48], is indicated as “normal quality”. Reducing the dimension of the elements did
not lead to a significant difference in the results.

The numerical algorithm converged at 250 steps; an increase in the number of steps
showed no difference in the results. The accuracy of the model was estimated from the
difference in mass flow rates at the inlet and outlet in the external domain and cabin, which
amounted to 0.002% and 1.5%, respectively.

3. Results
3.1. Numerical Analysis

RANS equations are solved numerically using turbulence models.
To date, many turbulence models are known, each of which shows sufficient accuracy

in certain cases [48–52]. The most universal are the k− ε and k−ω turbulence models [52],
where the turbulence kinetic energy k and the kinetic energy dissipation rate ε in the first
case and the turbulence kinetic energy k and the specific kinetic energy dissipation rateω
in the second case are assigned as additional unknowns.

Furthermore, all characteristics are considered averaged, and the bar is omitted
from above.

In this paper, the boundary value problem was simulated numerically by the finite
volume method in the Ansys Fluent software product. The k−ω turbulence model was
used as the most versatile model [43,48,53–56].

A rectangular cabin of technological transport in a wind tunnel is schematically shown
in Figure 2a. Inside the cabin, there is a source through which air enters at a given speed
and temperature. Zero relative pressure was set at the outlets. For clarity, all results are
given for the middle section of the cabin for a flat formulation of the problem.

Fluids 2022, 7, 226 6 of 20 
 

  
(a) (b) 

Figure 2. General scheme: (a) circuit inputs/outputs; (b) mesh of finite volumes. 

3.2. Task Parameters 
When modeling the problem of external aerodynamics, the size of the external 

domain depends significantly on the airflow velocities and the temperature gradient. In 
this problem, the external velocity was small, and the external temperature was constant 
along the entire domain outside the walls; therefore, the domain size was comparable to 
the cabin size, which made it possible to estimate the temperature and velocity fields near 
the walls. 

The cabin wall (top, right) was a multilayer structure; according to Equations (7) and 
(8) and Table 1, the thermal conductivity coefficient for the walls was 0.33 W/(m∙K), and 
the thickness was 0.0312 m.  

Table 1. Wall parameters. 

Wall Material Coefficient of Thermal Conductivity, 𝐖/(𝐦 ∙ 𝐊) Thickness, m 

Metal 58 0.002 
Bituminous mastic layer 0.27 0.0042 

Cast polyurethane 0.32 0.025 

The left wall was made of laminated glass, with a thermal conductivity coefficient of 
0.96 W/(m∙K). The bottom wall (floor) was thermally insulated. 

Table 2 shows the values of the boundary conditions and air parameters. 

Table 2. Boundary conditions and environment parameters. 

No. Title Value 
1 Free stream speed, m/s 5 
2 Incoming flow temperature, °C 30 
3 Air flow rate in cabins, m/s 1 
4 Cabin air flow temperature, °C 14 
5 Thermal conductivity of air, W/(m2∙K) 0.0242 
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Figure 2. General scheme: (a) circuit inputs/outputs; (b) mesh of finite volumes.

Figure 2b shows a finite volume grid of 32,518 cells with six near-wall layers to account
for the gradient of edge effects.

The minimum cell area was 1.1 × 10−3 m2, and the maximum was 5.5 × 10−3 m2.
The grid orthogonality parameter was 0.6, which is quite acceptable for such problems [48].

3.2. Task Parameters

When modeling the problem of external aerodynamics, the size of the external domain
depends significantly on the airflow velocities and the temperature gradient. In this
problem, the external velocity was small, and the external temperature was constant along
the entire domain outside the walls; therefore, the domain size was comparable to the cabin
size, which made it possible to estimate the temperature and velocity fields near the walls.

The cabin wall (top, right) was a multilayer structure; according to Equations (7) and (8)
and Table 1, the thermal conductivity coefficient for the walls was 0.33 W/(m·K), and the
thickness was 0.0312 m.
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Table 1. Wall parameters.

Wall Material Coefficient of Thermal
Conductivity, W/(m·K)

Thickness, m

Metal 58 0.002
Bituminous mastic layer 0.27 0.0042

Cast polyurethane 0.32 0.025

The left wall was made of laminated glass, with a thermal conductivity coefficient of
0.96 W/(m·K). The bottom wall (floor) was thermally insulated.

Table 2 shows the values of the boundary conditions and air parameters.

Table 2. Boundary conditions and environment parameters.

No. Title Value

1 Free stream speed, m/s 5
2 Incoming flow temperature, ◦C 30
3 Air flow rate in cabins, m/s 1
4 Cabin air flow temperature, ◦C 14
5 Thermal conductivity of air, W/(m2·K) 0.0242
6 Heat capacity of air, J/(kg·K) 1006.43

7 Average temperature on the human
surface, ◦C 25

8 Molar mass of air, kg/mol 28.966

3.3. Numerical Results

At the first stage, the nonstationary problem was solved. The initial temperature of
the outer domain and inside the cabin was set to 30 ◦C. The stabilization time of the fields
in time was 50 s (Figure 3a). Furthermore, all processes were stabilized in time, and the
problem was solved in a stationary formulation.
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Figures 3–7 show plots of residuals, velocity fields, pressures, temperatures, and
air densities.
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The average cabin temperature was 15.5 ◦C. The velocity and temperature fields inside
the cabin turned out to be significantly inhomogeneous, characterized by streamlines
(Figure 1a). The minimum air temperature was 14 ◦C in front of the driver, while the
maximum air temperature above the walls was 29.2 ◦C. In addition, air stagnation could be
observed in the upper right part.

In addition, the air flow and direction (and, therefore, temperature) were significantly
affected by the interior layout of the cab space.

Numerical modeling in this case allows selecting the optimal combinations of the
direction of air entering the cabin (configuration of deflectors), the number and location of
deflectors, and the speed and temperature of the airflow.

Figures 8–13 show the values of heat transfer coefficients from Equations (14) and (15)
and heat fluxes on the walls, obtained numerically.
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It can be noted that the profiles of the heat transfer coefficients determined the air
velocity profiles near the inner and outer walls, according to Equations (11)–(13). In
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particular, the values of the heat transfer coefficients had large gradients at the edges, where
the velocity profiles changed direction.

4. Discussion

In the first case, the heat transfer coefficients calculated by applying Equations (11)–(13)
and the average numerical values were compared. At the same time, for applied theories,
the speed of the oncoming flow was taken as the speed of the external flow, and the average
speed in the cabin, calculated from the balance equation, was taken as the internal one.

G·L = const, (16)

where G is the mass flow, and L is the width of the cabin along the vertical axis.
When ρ is constant inside the cabin, Equation (16) can be rewritten as

u·L = const. (17)

For an inlet speed of 1 m/s, L1 = 0.4 m, and L2 = 2 m, the average speed from
Equation (17) in the cabin is 0.2 m/s.

Comparison data of heat transfer coefficients with formulas obtained on the basis of
experimental data [1,4,6] are given in Tables 3 and 4.

Table 3. Values of the average heat transfer coefficients obtained by the numerical method and by
applied formulas obtained experimentally.

Wall Coefficient Type Value, W/(m2·K)
α = 5 + 3.4u
W/(m2·K)

α = 5.3 + 3.6
√

u
W/(m2·K)

α = 6
√

u
W/(m2·K)

Left wall
αin 5.3 5.7 6.9 2.7
αout 18.9 22.0 13.3 13.4

Top wall αin 2.3 5.7 6.9 2.7
αout 21.0 22.0 13.3 13.4

Right wall αin 4.3 5.7 6.9 2.7
αout 5.6 22.0 13.3 13.4

Table 4. Errors in the values of the average heat transfer coefficients obtained by the numerical
method and by applied formulas obtained experimentally.

Wall Coefficient Type Value, W/(m2·K) α = 5 + 3.4u, % α = 5.3 + 3.6
√

u, % α = 6
√

u, %

Left wall
αin 5.3 7 23 49
αout 18.9 14 29 29

Top wall αin 2.3 60 67 15
αout 21.0 5 36 36

Right wall αin 4.3 25 38 37
αout 5.6 75 58 58

To verify the numerical model, we compared the results obtained with the experimen-
tally obtained formulas used in practice (Tables 3 and 4).

From Tables 3 and 4, it can be seen that the smallest error in determining the thermal
conductivity coefficient was achieved on the left wall and was best described by the formula
α = 5 + 3.4u. In this case, the error did not exceed 14% and could be explained using a 2D
model for numerical calculation and the absence of internal equipment in the cabin.

The large difference in the values of the coefficients in Table 3 can be explained by the
nonuniformity of velocities along the walls, including turbulence zones over sharp edges
(Figure 14). The obstacles inside the cabin in the form of equipment and controls can lead
to even greater discrepancy in the results.
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To study the influence of velocities, the values of velocities along the walls in the
near-wall layer were additionally calculated for distances of one cell, which corresponds to
6 mm.

In the boundary value problem in Equation (2), all velocities on the walls were equal to
zero, but they increased rather quickly when moving away from the walls. As an example,
Figure 15 shows the velocity uy along the horizontal axis at a distance of three outer layers
and three inner layers of the grid.
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The points correspond to the values in the nodes. It can be seen that, at a distance of
6 mm, the speed increased and stabilized.

The speed values are shown in Figures 16–18. Here, In denotes the speed inside the
cabin, while Out denotes the speed outside the cabin.
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Next, for the velocity moduli obtained in the near-wall regions, the values of the heat
transfer coefficients were calculated using applied formulas. The coefficient values are
shown in Figures 19–24.
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As can be seen from the Figures 19–24, the heat transfer coefficients had a complex
nonlinear form due to the uneven velocity profiles.

5. Conclusions

In this study, numerical–analytical modeling of the thermal state of the vehicle cabin
was carried out, considering external airflow and internal ventilation, the values of heat
transfer coefficients for the walls were obtained, a comparison was made with existing em-
piric formulas based on experimental data, and an assessment was made of the applicability
of applied theories.

1. To calculate the values of the coefficients using applied formulas, the key point is
the availability of sufficiently accurate values of the velocity profiles over the walls.
Therefore, in this paper, it is shown that, when choosing the average internal and
external speeds as the air speeds, the difference with the numerical results ranges from
5% to 75%. The reason for this error is the use of average velocities in the cabin and in
the domain in applied theories, which does not correctly reflect the real velocity field.

2. The problem of finding the values of the velocity fields is related to the solution of the
Navier–Stokes equations and in most cases can only be solved numerically.

3. In this work, we also compared the values of the heat transfer coefficients obtained by
the numerical method and the values obtained from applied theories. The velocity
fields in this case for applied theories were taken from a preliminary numerical
calculation in near-wall regions.

4. This approach can be applied to simulate the thermal state of cabins of any complexity,
with high air flow rates and with various configurations of climate equipment inside
the cabin. The proposed numerical implementation can be considered as the most
optimal alternative for obtaining values on the basis of experimental data. Applied
formulas give a significant error, since they do not consider the gradients of velocities
and temperatures, and they can be used with certain restrictions.

5. Validation was carried out to calculate the average temperature in the cabin of the
technological transport in the absence of external airflow. The difference with the
numerical model of the average temperature was about 9%.
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