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Abstract: In this research, the linear stability of a cylindrical interface between two viscoelstic Walters
B conducting fluids moving through a porous medium is investigated theoretically and numerically.
The fluids are influenced by a uniform axial electric field. The cylindrical structure preserves heat and
mass transfer across the interface. The governing equations of motion and continuity are linearized,
as are Maxwell’s equations in quasi-static approximation and the suitable boundary conditions
at the interface. The method of normal modes has been used to obtain a quadratic characteristic
equation in frequency with complex coefficients describing the interaction between viscoelstic Walters
B conducting fluids and the electric field. In light of linear stability theory, the Routh–Hurwitz criteria
are used to govern the structure’s stability. Several special cases are recoverd under suitable data
choices. The stability analysis is conferred in detail via the behaviors of the applied electric field and
the imaginary growth rate part with the wavenumbers. The effects of various parameters on the
interfacial stability are theoretically presented and illustrated graphically through two sets of figures.
Our results demonstrate that kinematic viscosities, kinematic viscoelasticities, and medium porosity
improve stability, whereas medium permeability, heat and mass transfer coefficients, and fluid
velocities decrease it. Finally, electrical conductivity has a critical influence on the structure’s stability.

Keywords: electrohydrodynamic stability; heat and mass transfer; Walters B viscoelastic fluids;
porous medium

1. Introduction

Kelvin–Helmholtz instability (KHI) is one of the most well known instabilities in geo-
physical, astrophysical, and laboratory areas [1]. KHI appears at the interface separating
two superposed fluids streaming with different velocities and densities. As a result of
its relationship with types of astrophysical phenomena, chemical engineering, and fluid
dynamics involving a shear current, it has been examined by a great number of contributors.
Linear KHI has been discussed in Chandrasekhar’s monograph [2]. The effect of flow is
disturbed in linear KHI problems. The nonlinear KHI for packets of waves has been dis-
cussed before by Weissman [3]. The linear and nonlinar developments of KHI of cylindrical
structures of dielectric and conducting fluids in different situations has been investigated
in several studies. For instance, Choudhury [4] discussed the nonlinear evolution of the
KHI of turbulent tangential velocity discontinuities. Funada et al. [5] analysed the stability
of stratified gas–liquid flow in a horizontal rectangular channel under the effect of surface
tension and viscosity on the normal stress using viscous potential flow. Chong et al. [6]
studied the linear development rate for Kelvin–Helmholtz instability in a moving mixing
layer. Asthana et al. [7] determined the Kelvin–Helmholtz instability of viscous potential
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flow in a cylindrical channel with heat and mass transfer. Hoshoudy et al. [8] analyti-
cally investigated the influence of density and velocity gradients on the Kelvin–Helmholtz
instability (KHI) of two stacked finite-thickness fluid layers.

Electrohydrodynamics (EHD) can be seen as a class of fluid mechanics concerned
with the effects of electric forces, or alternatively as the class of EHD concerned with
the influence of fluid flow on electrical fields. As a result, the interactions (electric fields
with polarized or free charges) in fluids are taken into account. A review of the EHD
topic with an emphasis on several recent advancements has been presented by David [9].
In dielectric fluids, both gravity and surface tension are necessary, and surface waves arise
when capillary waves and gravity combine to create a single wave that has both effects.
By comparison, the effect of an applied electric field during conducting fluid flow has
many characteristics, along with numerous engineering and physical applications. EHD
surface waves arise when surface charges engage in the flow of fluids. Many authors have
reviewed the role of interfacial stresses on EHD characteristics. Melcher and Taylor [10]
considered the effect of electrohydrodynamic instability on interfacial shear stresses. Saville
[11] examined the electrohydrodynamics instability of the Taylor–Melcher leaky dielectric
model. The commencement of electrohydrodynamic motion caused by the application of an
electric field over a thin layer of liquid has been studied by Baygents et al. [12] for a scenario
in which the electrical conductivity changes linearly throughout the depth of the layer.
Finally, Rudraiah and Chiu-On Ng [13] have reported on the significance of nano-sized
smart materials in structural engineering, biological engineering, and military applications.

Several studies in linear EHD stability theory show a tendency to examine uncharged
jets in a uniform axial field. Elhefnawy and Moatimid [14] explored the influence of an axial
electric field on the stability of cylindrical flows in the presence of mass and heat transfer,
and the absence of gravity. Through vertical cylindrical porous inclusions with permeable
boundaries, three-dimensional viscous potential electrohydrodynamic Kelvin–Helmholtz
instability was examined by Moatimid and Hassan [15]. Awasthi [16] performed a linear
analysis of capillary instability in a cylindrical interface between two viscous and dielectric
fluids when the fluids are exposed to a continuous axial electric field and there is heat and
mass transfer across the contact. They observed that the axial electric field has a stabilizing
effect, while the radial one has a dual rule (stabilizing and destabilizing) on the system’s
stability. Awasthi and Agrawal [17] presented an analysis of the capillary instability of
electroviscous potential flow. Then, they revisited the analysis in their study of [18] as
they analysed the capillary instability with radial electric field of viscous potential flow.
Li et al. [19] conducted a linear investigation of the axisymmetric and non-axisymmetric
instability of a viscous coaxial jet in a radial electric field. In addition, they studied
the temporal linear instability of a coaxial jet with two immiscible Newtonian liquids
in both the axial and radial electric fields in [20]. The stability problem becomes more
intriguing, although more challenging, if the uniform conductivity of fluids is taken into
account. Surface charges are crucial in such cases, as conduction in the interface area plays
a significant role in many electrical systems. El-Sayed et al. [21] investigated the influence
of an applied electric field on the stability of an interface between two thin viscous leaky
dielectric fluid layers in a porous medium within the long-wave limit. In addition, they
performed a linear stability analysis of a two-dimensional incompressible leaky dielectric
viscous liquid sheet surrounded by a hydrodynamically passive conducting medium
when an electric field is applied parallel to the originally flat bounding fluid boundaries,
admitting surface charges as well [22]. Mestel [23,24] analysed the electrohydrodynamic
stability of a slightly and highly viscous jet, respectively, in his studies. Ganan-Calvo
[25] investigated electrohydrodynamically-driven (EHD) capillary jets in the parametrical
limit of negligible charge relaxation effects, i.e., when the electric relaxation time of the
liquid is tiny compared to the hydrodynamic rates. Ozen et al. [26] examined the linear
electrohydrodynamic stability of two immiscible fluids in channel flow. Many authors
have recently investigated the EHD stability of the interface between conducting fluids
in linear and nonlinear cylindrical structures. Keeping this in view, Gonzalez et al. [27]
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presented a temporal linear modal stability analysis for conducting viscous liquid jets
moving with nonzero velocity relative to an ambient gas and exposed to an alternating
radial electric field. Lopez-Herrera et al. [28] performed a temporal linear modal stability
analysis on poorly-conducting viscous liquid jets flowing relative to a steady radial electric
field. Only axisymmetric perturbations resulting in high-quality aerosols were considered.
Elhefnawy et al. [29] analysed the nonlinear electrohydrodynamic stability of a finitely-
conducting jet in an axial electric field. Elhefnawy et al. [30] investigated the weakly
nonlinear streaming instability of two conducting fluids in a cylindrical circular cross-
section interface.

When regarding two fluid flows separated by an interface, the interfacial stability
problem is commonly examined with the assumption that the fluids are immiscible. A very
extensive analysis of inviscid fluids with interfacial heat and mass transfer has been carried
out by Hsieh [31,32]. The KHI problem of a liquid/vapor cylindrical interface with heat and
mass transfer was formulated by Nayak and Chakraborty [33]. Kim et al. [34] investigated
capillary instability in the context of heat and mass transmission and discovered that it
resists the growth of disturbance waves. Awasthi et al. [35] investigated the nonlinear KHI
of cylindrical flows using viscous potential flow theory. For recent reviews on the subject of
EHD instability problems in a cylindrical interface between two fluids with mass and heat
transfer see, e.g., El-Sayed et al. [36–38]. Tiwari et al. [39] studied electrohydrodynamic
capillary instability with heat and mass transfer, which they then revisited in a later study
[40] accounting for the effect of free surface charge.

The flow of fluids through porous media is of great interest, as it is quite common in
nature. Such flows have many scientific, engineering, and geophysical applications [41–43].
Because of this wide interest in engineering and physical applications, KHI in flows in
porous media has sparked a great deal of attention in the scientific literature. For current
reviews on linear and nonlinear EHD flows in porous media in planar and cylindrical
geometries. For instance, Moatimid and Hassan [44] considered the linear electrohydrody-
namic KHI of a fully saturated porous interface between two dielectric fluids in the presence
of a horizontal electric field with heat and mass transfer. El-Sayed et al. [45] performed a
weakly nonlinear stability analysis of wave propagation in three dimensions in two super-
posed dielectric fluids streaming through porous media in the presence of a vertical electric
field creating surface charges. Amer and Moatimid [46] studied the electrohydrodynamic
instability of a flowing dielectric liquid jet in which an incompressible Newtonian viscous
fluid occupies the inner medium, while the outer medium is simultaneously filled with an
incompressible gas.

In addition, during the last few decades non-Newtonian viscous fluids have become in-
creasingly essential in industry. Among these fluids are liquids of different types, including
Walters B fluid. This fluid reflects the cumulative effects of many blood parameters, such as
red blood cell deformation, plasma viscosity, agglutination, and hematocrits. Walters B fluid
has great importance in many industrial applications. Plastic sheet extrusion, fabrication of
adhesive tapes, and applying coatings to hard surfaces are a few examples. Studying this
fluid in the context of fluid flow problems is both technologically important and a challenge
for applied mathematicians and engineers who are interested in obtaining accurate exact
solutions. Therefore, in Walters B viscoelastic fluid, the usual viscous term is replaced
by the resistive term −(ρ/k1)[v− ν′ ∂

∂t ]v, where ρ is the fluid density, k1 is the medium
permeability, v is the Darcician filter velocity, and ν and ν′ are the kinematic viscosity and
kinematic viscoelasticity, respectively [47]. Walters [48] reported that a mixture of poly-
methyl methacrylate and pyridine at 25 °C containing 30.5 g of polymer/litre with density
0.98 g/litre behaves very nearly the same as Walters B viscoelastic fluid. Polymers are used
in the manufacture of spacecraft, aeroplanes, tyres, belt conveyers, ropes, cushions, seats,
foams, plastics engineering equipment, contact lenses, and more. Walters B viscoelastic
fluid forms the basis for the manufacture of many such important and useful products.

Due to the great industrial and technological importance of Walters B viscoelastic flu-
ids, the interest in their study has increased in recent decades. Sharma et al. [47] investigated
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the instability of viscoelastic Walters B fluid flow in a porous medium. They found that in a
particular two-dimensional case, the system could be either stable or unstable depending on
the kinematic viscosity, medium permeability, and medium porosity. The Rayleigh–Taylor
instability (RTI) of two stratified Walters B viscoelastic superposed fluids was investigated
by Kumar and Singh [49]. In a stable stratification case, the system seems to be stable
according to certain conditions. In addition, they found that the growth rates decrease
and increase with increasing kinematic viscosity and kinematic viscoelasticity, respectively.
El-Sayed et al. [50,51] studied the nonlinear KHI of two semi-infinite Walters B viscoelastic
dielectric fluids streaming in porous media in three dimensions under varied (horizontal or
vertical) electric fields with or without surface charges at their interface. Recently, Moatimid
and Zekry [52] examined the nonlinear instability of two dielectric viscoelastic Walters B
fluids streaming through a vertical cylinder under a uniform axial electric field, introducing
multiple time scales in their analysis. A Ginzburg–Landau equation was derived to control
the nonlinear behavior of the surface deflection. Moatimid et al. [53] investigated the effect
of a uniform electric field on a cylindrical streaming sheet through a porous medium in the
presence of uniform, homogeneous, and isotropic media using viscous potential theory.

Taking into account the great variety of physical and engineering applications of vis-
coelastic Walters B fluids in contemporary technology, the present paper aims to investigate
the linear stability of two electrically conducting cylinderical Walters B viscoelastic fluids
with rigid boundaries streaming through a porous medium under a uniform axial electric
field. The uniform flow is investigated in the presence of heat and mass transfer. Using
the normal modes technique and appropriate boundary conditions, analytical solutions
for structure parameters are obtained. The effects of different physical parameters on the
streaming fluids is plotted graphically. The stability analysis is discussed in detail via
the behaviors of the applied electric field and the imaginary growth rate part with the
wavenumbers. All of the results obtained herein are new and confirm the former results.
The problem discussed here, to the best of our knowledge, has not been investigated yet
for conducting fluids in presence of heat and mass transfer.

2. Flow Description
2.1. Basic Equations

Assume an undisturbed cylindrical interface r = R separating two infinite Walters
B viscoelastic conducting fluids confined between two concentric circular rigid cylinders.
Applying the cylindrical coordinates (r, θ, z), where the z-axis is the symmetry axis in the
equilibrium case, the central solid core has a radius R1 and the outer cylinder has a radius
R2, where R1 < R < R2. Fluid (1) fills the inner cylinderical region R1 < r < R, while
fluid (2) fills the outer region R < r < R2. The two fluids flow with vertical uniform
velocities U1 and U2 along the z-axis through a porous medium, and are affected by a
constant axial electric field E0 acting along the z-direction. Keeping in mind the presence of
surface tension T between the two fluids, we denote by ρj, ε j, σj , Ej, m and λ1, (j = 1, 2)
the fluid densities, dielectric constants, electrical conductivities, electric field elements, and
the porosity and permeability of the medium, respectively. The temperatures at r = R1,
r = R, and r = R2 are taken as T1, T0, and T2, respectively [14]. A sketch of the physical
problem is shown in Figure 1.
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Figure 1. A sketch of the physical problem.

Assuming the disturbances in the system are axisymmetric, the equations of motion
and continuity for Walters B viscoelastic fluid flows through a porous medium are [50]

ρ

m

[
∂v
∂t

+
1
m
(v · ∇)v

]
= −∇p− ρg − ρ

λ1
[ν− ν′

∂

∂t
]v (1)

∇.v = 0, (2)

where p, ν, ν′, and g respectively denote the hydrostatic pressure, kinematic viscosity,
kinematic viscoelasticity, and acceleration due to gravity acting in the negative z-direction.
Assuming the motion of the two fluids is irrotational, the velocities can be written as the
gradient of the potential functions Φj(r, z, t) such that vj = Uj +∇Φj, j = 1, 2, where v
is the fluid velocity, t is the time, and ∇ =

(
∂/∂r, r−1∂/∂θ, ∂/∂z

)
. The potentials Φj and

j = 1, 2 satisfy Laplace’s equation [14]

∇2Φ1 = 0 for R1 < r < R + η,−∞ < z < ∞ (3)

∇2Φ2 = 0 for R + η < r < R2,−∞ < z < ∞ (4)

where∇Φj → 0 as z→ ±∞,∇2 = ∂2

∂r2 +
1
r

∂
∂r +

∂2

∂z2 and η = η(z, t) is the disturbance in the
radius of the interface from its equilibrium value R,

r = R + η(z, t) (5)

In EHD, the magnetic effects are very small; thus, the quasi-static electric field is
assumed. Hence, the electrical Maxwell’s equations are

∇× E = 0 , ∇.(ε E) =q (6)
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The charge conservation equation [10] is

∇ · J + ∂q
∂t

= 0 (7)

where J = σE + qv, is the free current density, q is the free charge density, and σ is the
electrical conductivity. Therefore, the electric field can be represented as the gradient of the
electrostatic potentials Ψj(r, z, t):

Ej = E0ez −∇Ψj, (j=1,2) (8)

From Equations (6) and (8), the scalar electric potentials Ψj, j = 1, 2 satisfy Laplace’s
equation:

∇2Ψ1 = 0 in R1 < r < R + η,−∞ < z < ∞ (9)

∇2Ψ2 = 0 in R + η < r < R2,−∞ < z < ∞ (10)

where ∇Ψj → 0, as z → ±∞. The solutions of Φj and Ψj, (j = 1, 2), should satisfy the
boundary conditions below.

2.2. Boundary Conditions

1. On a rigid cylindrical surface, the velocity potentials Φjand the electric potentials Ψj
(j = 1, 2) must satisfy the following conditions [14]:

∂Φ1

∂r
=

∂Ψ1

∂z
= 0 on r = R1 (11)

∂Φ2

∂r
=

∂Ψ2

∂z
= 0 on r = R2 (12)

2. At the interface r = R + η(z, t), the tangential electric field component is assumed to
be continuous [14]:

‖Ψz‖+ ηz‖Ψr‖ = 0, (13)

where ‖ f ‖ = f2 − f1 define the jump of the quantity f over the interface S = r− R−
η(z, t) between the two fluids.

3. When the uniform conductivity of fluids is taken into account, the problem becomes
more attractive, though more challenging as well. In many electrical structures,
surface charges and conduction in the interface region play a crucial role. The con-
tinuity of stationary current normal to the interface r = R + η(z, t) should lead to
charge accumulation on the interface [10,23]. At steady state, we obtain the following
condition:

ηz‖σΨz‖ − ‖σΨr‖ − ηzE0‖σ‖ = 0. (14)

4. The interfacial condition for the mass transfer across the interface, that is, the kinematic
condition, is provided by [14,15].

mηt‖ρ‖+ ηz‖ρ(Φz + U)‖ − ‖ρΦr‖ = 0 (15)

5. The conservation of energy transfer condition [14,15] is:

ρ1[Φ1r −mηt − ηz(Φ1z + U1)] = αmη (16)

where α is the coefficient of heat and mass transfer

6 The remaining dynamical boundary condition regarding the mass transport across the
interface, as shown by many authors [14,15], is the conservation of momentum bal-
ance: ∥∥∥∥ρ(v.∇S)

(
∂S
∂t

+ v.∇S
)∥∥∥∥+ 1

2

∥∥∥ε
(

E2
t − E2

n

)∥∥∥+ ‖P‖+ T∇.n = 0 (17)
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where P is the pressure and Et and En are the tangential and normal components of
the electric field, respectively. Integrating the linear equation of motion (1) results in
Bernoulli’s formula; eliminating the pressure using Bernoulli equation, condition (17)
can be rewritten in linearized form as

1
m2 ‖ρUΦz‖+

1
m
‖ρΦt‖+

1
λ1
‖ρνΦ‖ − 1

λ1

∥∥ρν′Φt
∥∥+ E0‖εΨz‖

+ gη‖ρ‖ − T(ηzz + R−2η) = 0, (18)

3. Stability Analysis
3.1. Derivation of Characteristic Equation

Obtaining the solutions for the deformed interface η(z, t) requires the velocity poten-
tials Φj(r, z, t) and electrostatic ptentials Ψj(r, z, t), as shown by many previous authors
[15]. We use the well-known normal mode technique. Hence, all previous quantities will
henceforth take the form

f (r). exp i(kz−ωt), (19)

where f (r) is a function of r, k is the wavenumber component along the z-direction, ω
denotes the complex growth rate, and i =

√
−1 is the imaginary unit. Here, we can

use Equation (19) together with Equations (3), (4), (9), and (10) along with the suit-
able boundary conditions (11)–(16) to represent the first order solutions of the potential
functions as

η = A. exp i(kz−ωt). (20)

Φj = ±
1

kρj

[
mα + i(kU1 −mω)ρj

]
γj(kr)A. exp i(kz−ωt), j = 1, 2 (21)

Ψj =

[
iE0(σ2 − σ1)

Nj(kR)(σ1β1(kR) + σ2β2(kR))

]
Nj(kr)A. exp i(kz−ωt), j = 1, 2 (22)

where

γj(kr) = ±
K1(kRj)I0(kr) + I1(kRj)K0(kr)

K1(kRj)I1(kR)− I1(kRj)K1(kR)
(23)

β j(kr) = ±
K0(kRj)I1(kr) + I0(kRj)K1(kr)

K0(kRj)I0(kR)− I0(kRj)K0(kR)
(24)

Nj(kr) = K0(kRj)I0(kr)− I0(kRj)K0(kr) (25)

where A is the complex amplitude of the surface elevation and Im and Km, (m = 0, 1) are
the modified Bessel functions of the first and second kinds, respectively. By substituting
the previous solutions (20)–(22) in condition (18), the frequency ω and the wavenumber
k in the view of the previous solutions for η, Φj and Ψj, (j = 1, 2) should satisfy the
characteristic equation
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S(ω, k) =
1

m2k

[
ρ1γ1(kR)(kU1 −mω)2 + ρ2γ2(kR)(kU2 −mω)2

]
+

1
λ1k

[
ρ1ν′1γ1(kR)(kU1 −mω) + ρ2ν′2γ2(kR)(kU2 −mω)

]
ω

− i
λ1k

[ρ1ν1γ1(kR)(kU1 −mω) + ρ2ν2γ2(kR)(kU2 −mω)]

− iα
mk

[γ1(kR)(kU1 −mω) + γ2(kR)(kU2 −mω)]

− mα

λ1k
[
(ν1γ1(kR) + ν2γ2(kR)) + iω

(
ν′1γ1(kR) + ν′2γ2(kR)

)]
−

kE2
0(ε2 − ε1)(σ2 − σ1)

[σ1β1(kR) + σ2β2(kR)]
+

T
R2

(
1− k2R2

)
= 0 (26)

Equation (26) is simplified in the dispersion relation

a0ω2 + (a1 + ib1)ω + (a2 + ib2) = 0 (27)

where

a0 =
1
k

[
ρ1γ1(kR) + ρ2γ2(kR)− m

λ1

[
ρ1ν′1γ1(kR) + ρ2ν′2γ2(kR)

]]
a1 =

1
λ1

[
ρ1ν′1U1γ1(kR) + ρ2ν′2U2γ2(kR)

]
− 2

m
[ρ1U1γ1(kR) + ρ2U2γ2(kR)]

b1 =
α

k
[γ1(kR) + γ2(kR)] +

m
λ1k

[ρ1ν1γ1(kR) + ρ2ν2γ2(kR)]

− mα

λ1k
[
ν′1γ1(kR) + ν′2γ2(kR)

]
a2 =

k
m2

[
ρ1U2

1 γ1(kR) + ρ2U2
2 γ2(kR)

]
− m α

λ1k
[ν1γ1(kR) + ν2γ2(kR)]

−
kE2

0(ε2 − ε1)(σ2 − σ1)

[σ1β1(kR) + σ2β2(kR)]
+

T
R2

(
1− k2R2

)
b2 = − α

m
[U1γ1(kR) + U2γ2(kR)]− 1

λ1
[ρ1ν1U1γ1(kR) + ρ2ν2U2γ2(kR)] (28)

In addition, we consider the following three special cases.

1. In the presence of heat and mass transfer α, inviscid Kelvin–Helmholtz instability,
i.e., (ν1 = ν2 = 0), pure flow with no elasticity, i.e., (ν′1 = ν′2 = 0), non porous medium,
i.e., (m = 1), and absence of applied electric field (E0 = 0), the dispersion relation (27)
reduces to the same equation as established by Nayak and Chakraborty [33].

2. In the presence of an applied electric field (E0) without heat and mass transfer, i.e.,
(α = 0), inviscid Rayleigh–Taylor instability, i.e., (U1 = U2 = 0), pure flow with no
elasticity, i.e., (ν′1 = ν′2 = 0), and a non-porous medium, i.e., (m = 1), relation (27)
reduces to the same equation as was derived by Elhefnawy et al. [29].

3. Finally, in a case with inviscid Rayleigh–Taylor instability, the absence of an electric
field, porosity, and heat and mass transfer for a pure hydrodynamic jet,
Equation (27) reduces to the same relation first presented by Rayleigh [54].

3.2. Growth Rate and Stability Criteria

Let ω = ωr + iωi; then, separating Equation (27) into real and imaginary components,
we have

a0(ω
2
r −ω2

i ) + (a1ωr − b1ωi) + a2 = 0 (29)
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and

ωr = −
(a1ωi + b2)

2(a0ωi + b1)
(30)

Eliminating ωr between (29) and (30), we obtain

c4ω4
i + c3ω3

i + c2ω2
i + c1ωi + c0 = 0 (31)

where

c0 = a2b2
1 − a1b1b2 + a0b2

2

c1 = 4a0a2b1 − b3
1 − a2

1b1

c2 = 4a2
0a2 − 5a0b2

1 − a0a2
1

c3 = −8a2
0b1

c4 = −4a3
0 (32)

The maximum growth rate can be obtained by solving ∂ωi/∂k = 0, as discussed earlier
in Awasthi [55]. Neutral curves are obtained by using ωi(k) = 0 in (31); then, we obtain the
neutral state by c0 = 0. Here, we can apply the Routh–Hurwitz stability criterion [56] to
the dispersion relation (27); then, the structure will be linearly stable according to

b1 > 0 (33)

and
a2b2

1 − a1b1b2 + a0b2
2 ≤ 0, (34)

Therefore, the structure will be stable if conditions (33) and (34) are simultaneously
satisfied; otherwise, it will be unstable. It is worth noting that if no kinematic viscosity
or kinematic viscoelasticity exist, the structure’s stability will be determined solely by
Equation (34). Because b1 in (27) is independent of the electric field E2

0 while being a
necessary condition for the stability analysis, the condition (34) must be considered here.
In the early calculations, which have been verified by many authors [50,51], it appears that
the parameter b1 is always of positive significance. The coefficient b1 depends on the values
of the structure parameters. Thus, we can choose the parameters α, m, ν1, ν2, ν′1, and ν′2 such
that the first condition b1 > 0 is automatically achieved. Now, we examine the effect of the
electric field intensity, E2

0 , on the structure’s stability. Therefore, the second condition (34) is
written in the form

E2
0 ≥ E2

c (35)

and
E2

c =
1

B2b2
1

(
A2b2

1 − a1b1b2 + a0b2
2

)
(36)

where

A2 =
k

m2

[
ρ1U2

1 γ1(kR) + ρ2U2
2 γ2(kR)

]
− m α

λ1k
[ν1γ1(kR) + ν2γ2(kR)]

+
T
R2

(
1− k2R2

)
B2 =

k(ε2 − ε1)(σ2 − σ1)

[σ1β1(kR) + σ2β2(kR)]
(37)

4. Numerical Results and Discussion

Before proceeding with the numerical analysis of linear stability, it is useful to express
the stability criteria, (33) and (34), in appropriate non-dimensional forms. This can happen
in a variety of ways, mainly depending on the characteristic length, time, and mass chosen.
For this, we investigate the non-dimensional forms based on the the characteristic time
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1/ω̂, characteristic length R, and characteristic mass T/ω̂2, where ω̂ is a characteristic
value of ω. The remaining non-dimensional quantities can be written as

k =
k∗

R
, ρ = ρ∗

T
R3ω̂2 , U = U∗ω̂R, E2

0 = E2∗
0

T
R

,

ν = ν∗
T

R3ω̂
, α = α∗

T
R3ω̂

, r = r∗R, λ1 = λ∗1 R2, ω = ω̂ω∗ (38)

The superscript asterisks refer to non-dimensionl quantities, and are omitted for
simplicity. As mentioned above, we focus on the effect of the electric field intensity on
the structure of cylindrical fluids. In addition, the domain of the parameters that satisfies
condition (33) is considered. The next step is to investigate the structure’s stability; keeping
in mind the considered non-dimensional procedure, we can draw two groups of figures.
The first group is obtained using Equation (36) to illustrate the behavior of the electric field
intensity log E2

0 against the wavennumber k for different values of the parameters included
in the study. The second group of figures is obtained by using Equation (31) to clarify the
variation of the growth rate ωi with the wavennumber k for different values of the other
physical parameters.

In the first group of Figures, we carry out a numerical analysis in order to determine
the structure’s stability by plotting the neutral curves described by Equation (36) in the
log E2

0 − k plane when E2
0 = E2

c . The upper stable regions, S, are separated from the lower
unstable ones, U, by these curves. These transition curves are plotted for a structure having
ρ1 = 0.9, ρ2 = 0.2, ε1 = 1.5, ε2 = 0.7, ν1 = 0.8 , ν2 = 0.9, σ1 = 0.6, σ2 = 0.1, ν′1 = 0.5,
ν′2 = 0.6, R1 = 0.1, R = 0.2, R2 = 0.3, U1 = 1, U2 = 10, α = 0.5, m = 0.05, and λ1 = 0.5.
In Figures 2–9, the first dimension represents the wave number, k, and the second represents
the electric field, log E2

0, with the latter one of the previous parameters.
Figures 2 and 3 introduce a detailed discussion for the influence of the electrical

conductivities σ1, σ2 on the stability of the fluid cylindrical structure. Figure 2 shows the
variation of the electric field log E2

0 versus k for the different electrical conductivity values
σ1( σ1 > σ2), with σ2 fixed (σ2 = 0.1). It can be seen that when the inner fluid conductivity is
increased from σ1 = 0.2 to σ1 = 0.25 and then to σ1 = 10, the instability region U increaseds
for a small wavenumber range (k ≤ 2.5), after which the stability does not depend on σ1,
as the curves are coincident. Then, the increase of the inner fluid conductivity σ1 with
fixed outer fluid conductivity σ2 increases the instability of the structure, which shows the
destabilizing effect of the inner fluid conductivity, σ1, on the structure. It should be noted
that the effect of the electrical conductivity values σ2( σ2 > σ1), with σ1 fixed (σ1 = 0.1) on
the stability of the structure, are found to be opposite to the effect of the previous case shown
in Figure 2. While the Figure is not shown here to save space, it indicates that the increase in
the outer fluid conductivity, σ2, with fixed inner fluid conductivity σ1 increases the stability
of the structure, which shows the stabilizing effect of the outer fluid conductivity σ2 on the
structure. On the other hand, Figure 3 shows the the influence of increasing the electrical
conductivity values σ1, σ2( σ1 > σ2); it can be seen that by increasing σ1, σ2, the stability
region S increases for a small wavenumber range (k ≤ 2.5), which shows the stabilizing
effect of the electrical conductivity values σ1, σ2( σ1 > σ2) on the considered structure. It
should be noted that the effect of the electrical conductivity values σ1, σ2( σ2 > σ1) on the
stability of the structure is opposite to the effect of the previous case shown in Figure 3.
While the figure is not shown here in order to save space, it indicates that an increase in
the electrical conductivity values σ1, σ2( σ2 > σ1) increases the instability of the structure,
showing the destabilizing effect of electrical conductivity values σ1, σ2. Hence, we conclude
that electrical conductivity has a dual role on the stability of the cylindrical structure, which
is in agreement with the previous results acheived by Elhefnawy [30] and Elsayed [36].
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Figure 2. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

electrical conductivities σ1, (σ2 = 0.1).

Figure 3. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

electrical conductivities σ1, σ2, (σ1 > σ2).

Figures 4–6 show the variations of the electric field log E2
0 with the wavenumber k for

various values of the kinematic viscosities ν1, ν2, (ν2 > ν1), the kinematic viscoelasticities
ν′1, ν′2, (ν′2 > ν′1), and the porosity of the medium m, respectively. It is shown that by
increasing the parameter values for each of ν1, ν2, (ν2 > ν1) in Figure 4, ν′1, ν′2, ( ν′2 > ν′1)
in Figure 5, and the porosity value m in Figure 6, respectively, the stability region S in
Figures 4–6 increases. Thus, we can conclude that each of the kinematic viscosities ν1, ν2,
(ν2 > ν1), kinematic viscoelasticities ν′1, ν′2, ( ν′2 > ν′1), and the porosity of the medium m,
has stabilizing effects on the stability of the structure. These results are in agreement with
previous results for two semi-infinite viscoelastic dielectric fluids acheived by El-Sayed [50].
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Figure 4. Variation of the electric field intensity log E2
0 with wavenumber k for different values of

kinematic viscosities ν1, ν2.

Figure 5. Variation of the electric field intensity log E2
0 with wavenumber k for different values of

kinematic viscoelasticities ν′1, ν′2.

Figure 6. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

porosity m .
By contrast, Figures 7–9 show the variations of the electric field log E2

0 with the
wavenumber k for various values of the fluid velocities U1, U2, (U2 > U1), the mass



Fluids 2022, 7, 224 13 of 22

and heat transfer coefficient values α, and the permeability of the medium λ1, respectively.
It can be seen that by increasing the parameter values for each of the fluid velocities U1, U2,
(U2 > U1) in Figure 7, the mass and heat transfer coefficient values α in Figure 8 and
the permeability of the medium λ1 in Figure 9, respectively, the instability region U
in Figures 7–9 has increased. Hence, we can conclude that each of the fluid velocities U1, U2,
(U2 > U1), the mass and heat transfer coefficient values α, and the permeability of the
medium λ1, respectively, have destabilizing effects on the stability of the structure. These
results are in agreement with the previous results obtained by Elhefnawy [30] and Moat-
imid [52,53].

Figure 7. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

fluid velocitiesU1, U2 .

Figure 8. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

mass and heat transfer coefficient α.
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Figure 9. Variation of the electric field intensity log E2
0 with wavenumber k for different values of the

permeability of the medium, λ1.

In the second group of figures, we investigated the influence of various physical ele-
ments included in the analysis of growth rate instability. We utilized Mathematica Software
to perform numerical calculations of the dispersion relation (31) in order to determine the
roots of the growth rate ωi versus the wavenumber k. These computations are depicted
in Figures 10–17, illustrating the variation of the growth rate ωi with the wavenumber k
for different values of the investigated structural characteristics. Figures 10–12 show the
variations of the imaginary growth rate ωi with the wavenumber k for different values of
the fluid velocities U1, U2, (U2 > U1), the permeability of the medium λ1, and the mass
and heat transfer coefficient values α, respectively. It is obvious from these Figures that
the growth rate, ωi, increases with increasing k until a maximum growth rate is reached at a
critical wavenumber value, after which ωi decreases, as seen in Figures 10–12, respectively.
By increasing the values of the fluid velocities U1, U2 , (U2 > U1), the permeability of the
medium λ1, and the mass and heat transfer coefficient values α, the maximum imaginary
part of the growth rate ωi increases when increasing the values of U1, U2, λ1, and α in the
wavenumber ranges, showing the destabilizing effects of these parameters on the stability
of the structure. It is clear from these figures that the instability arising due to the effect of
the fluid velocities U1, U2 is stronger than the instability arising due to the permeability of
the medium λ1, and the later one is in turn stronger than the effect of the mass and heat
transfer coefficient values α.
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Figure 10. Variation of the growth rate ωi with the wavenumber k for different values of the fluid
velocity U1, U2.

Figure 11. Variation of the growth rate ωi with the wavenumber k for different values of the
permeability of the medium, λ1.
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Figure 12. Variation of the growth rate ωi with the wavenumber k for different values of the mass
and heat transfer coefficient, α.

Figure 13. Variation of the growth rate ωi with the wavenumber k for different values of the kinematic
viscosity ν1, ν2.
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Figure 14. Variation of the growth rate ωi with the wavenumber k for different values of kinematic
viscoelasticity ν′1, ν′2.

Figure 15. Variation of the growth rate ωi with the wavenumber k for different values of electrical
conductivity σ1, σ2.
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Figure 16. Variation of the growth rate ωi with the wavenumber k for different values of the axial
electric field E0 .

Figure 17. Variation the growth rate ωi with the wavenumber k for different values of the the porosity
of the medium, m.

Figures 13 and 14 show the variations in the imaginary part of the growt rate ωi against
the wavenumber k for different values of the kinematic viscosities ν1, ν2, (ν2 > ν1), and
kinematic viscoelasticities ν′1, ν′2, (ν′2 > ν′1), respectively. It is clear from these figures that
the kinematic viscosities ν1, ν2 and kinematic viscoelasticities ν′1, ν′2 have no effect on the
stability of the structure for the small wavenumber range k < 0.06, because the imaginary
part of growth rate ωi curves are coincident for different values of ν1, ν2 and ν′1, ν′2. In
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addition, we note that ωi increases with increasing k until a maximum growth rate of
ωi is reached at a critical wavenumber value, after which ωi decreases, as can be seen in
Figures 13 and 14. By increasing the values of the parameters ν1, ν2, (ν2 > ν1) and ν′1, ν′2,
(ν′2 > ν′1), we found that the maximum imaginary part of the growth rate ωi decreases by
increasing their values in the same wavenumber range, showing the stabilizing effects of
these parameters on the considered structure. Figures 15–17 show the variations in the
imaginary part of the growth rate ωi with the wavenumber k for the different values of
electrical conductivity σ1, σ2, (σ1 > σ2), the axial electric field E0, and the porosity of the
medium m, respectively. It is clear from these figures that for the small wavenumber range
k < 0.06, both of electrical conductivites values σ1, σ2, (σ1 > σ2) and the axial electric field
E0 have no effect on the stability of the structure, as the imaginary part of the growth rate
ωi curves are coincident for the different values of the electrical conductivity values σ1, σ2,
(σ1 > σ2) and axial electric field E0 in Figures 15 and 16. In addition, for any value of σ1,
σ2 or E0, or m, we note that ωi increases with increasing k until a maximum growth rate
at a critical wavenumber value, after which ωi decreases, as can be seen in Figures 15–17.
By increasing the values of the parameters σ1, σ2, (σ1 > σ2), E0 and m, we found that the
maximum imaginary part of growth rate ωi decreases when increasing their values in the
same wavenumber range, showing the stabilizing effects of the parameters σ1, σ2, (σ1 >
σ2), E0 and m on the considered structure. Finally, It is obvious from Figures 15–17 that
the stability arises due to the effect of the electrical conductivity values σ1, σ2 takes hold
faster than the stability arises due to the effect of the electric field E0, and the latter takes
hold faster than the stability rises due to the effect of the porosity of the medium m. It
should be noted that the effects of the electrical conductivity values σ1, σ2(σ2 > σ1) and the
axial electric field E0(σ2 > σ1) on the stability of the structure are opposite to the effect
of the previous cases shown in Figures 15 and 16; however, these figures are not shown
here in order to save space. They indicate that the increase of electrical conductivity values
σ1, σ2(σ2 > σ1) increase the instability of the structure, which shows the destabilizing effect
of the electrical conductivity values σ1σ2(σ2 > σ1) and the axial electric field E0( σ2 >
σ1). Thus, we conclude that electrical conductivity has a dual role in the stability of the
cylindrical structure, which is in agreement with previous results.

5. Conclusions

In this article, novel results for Walters B viscoelastic fluid flows through a cylindrical
structure in a porous medium are provided and investigated for weakly electrically con-
ducting fluids. Accurate analytical solutions are presented for all parameters. A series of
parametric analyses were used to study the relationship between electrical forces, viscoelas-
tic stresses, and hydrodynamic interaction. Using the usual normal mode procedure, a
second-order dispersion equation of complex coefficients characterizing the behavior of the
perturbed structure was obtained and stability discussion was carried out via the critical
value of the applied electric field of the two fluids, along with the imaginary part of the
growth rate. The obtained results are outlined as follows:

• The electrical conductivities σ1, σ2 play a critical role in the cylindrical structure’s
mechanism. The axial electric field E0, according to its value, has a dual role on the
structure’s stability. From this, the following new results can be summarized.

• The increase of the inner fluid conductivity σ1 with fixed outer fluid conductivity σ2
increases the instability of the structure, showing the destabilizing effect of the inner
fluid conductivity σ1, while the increase in the outer fluid conductivity σ2 with fixed
inner fluid conductivity σ1 decreases, showing the stabilizing effect of the outer fluid
conductivity σ2.

• The increase of the electrical conductivity values σ1, σ2(σ1 > σ2) increases the stability
of the structure for a small wavenumber range (k ≤ 2.5), showing the stabilizing
effect of the electrical conductivity values σ1, σ2(σ1 > σ2). The increase of the electrical
conductivity values σ1, σ2( σ2 > σ1) increases the instability of the structure, showing



Fluids 2022, 7, 224 20 of 22

the destabilizing effect of these electrical conductivity values. These results are in
agreement with the previous results achieved by Elhefnawy [30] and Elsayed [36].

– The kinematic viscosities ν1, ν2, kinematic viscoelasticities ν′1, ν′2, and porosity of
the medium m have stabilizing effects on the structure.

– The permeability of the medium λ1, the mass and heat transfer coefficient α, and
the fluid velocities U1, U2 have destabilizing effects on the structure.

– The second group of figures (ωi, k) for different values of the parameters confirm
the same results obtained in the first group of figures (log E2

0, k); through these
groups, the previous limiting case can be recovered. Nonlinear effects in EHD
phenomena will be discussed in a future study.

Author Contributions: Conceptualization, T.M.N.M.; Formal analysis, T.M.N.M.; Methodology,
T.M.N.M.; Resources, N.M.H.; Validation, T.M.N.M.; Visualization, N.M.H.; Writing – original draft,
N.M.H.; writing—review and editing, , T.M.N.M. All authors have read and agreed to the published
version of the manuscript.

Funding: No external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are highly thankful and grateful to the Deanship of Scientific
Research at Prince Sattam Bin Abdulaziz University for generous support and facilities used in this
research work.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

(r, θ, z) cylindrical coordinates
A complex amplitude of surface elevation
Ej electric field components
g gravitational acceleration
m porosity of the medium
λ1 permeability of the medium
ε j dielectric constant
p fluid pressure
v fluid velocity
T surface tension
R radius of cylinder
r coordinate transverse to the cylinder surface
T1, T0, and T2 temperature at r = R1, r = R, and r = R2
t time
Uj vertical uniform velocity
σj electrical conductivity
α coefficient of heat and mass transfer
η elevation of unperturbed interface
ν′ fluid kinematic viscoelasticity
ν fluid kinematic viscosity
ρj fluid density
Φj velocity potential function
Ψj electrostatic potential function
Et and En tangential and normal components of the electric field
q free charge density
J free current density
k wavenumber
ω complex growth rate
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