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Abstract: Within the framework of Classical Continuum Thermomechanics, we consider an unsteady
isothermal flow of a simple isotropic linear viscous fluid in the liquid state to investigate the transient
flow conditions. Despite the attention paid to this problem by several research works, it seems that the
understanding of turbulence in these flow conditions is controversial. We propose a dimensionless
procedure that highlights some aspects related to the transition from viscous to turbulent flow which
occurs when a finite amplitude pressure wave travels through the fluid. This kind of transition is
demonstrated to be described by a (first) dimensionless number, which involves the bulk viscosity.
Furthermore, in the turbulent flow regime, we show the role played by a (second) dimensionless
number, which involves the turbulent bulk viscosity, in entropy production. Within the frame of
the 1D model, we test the performance of the dimensionless procedure using experimental data
on the pressure waves propagation in a long pipe (water hammer phenomenon). The obtained
numerical results show good agreement with the experimental data. The results’ inspection confirms
the predominant role of the turbulent bulk viscosity on energy dissipation processes.

Keywords: bulk viscosity; compressible navier-stokes; pressure waves; turbulence; water hammer

1. Introduction

The physical description of the role of viscous terms for unsteady flows has gained
particular attention by researchers. Indeed, this aspect is not related only to theoretical
reasoning, while it has a clear practical importance when friction damping deeply influ-
ences physical phenomena in engineered structures. The water hammer phenomenon
occurring in pipe networks is only one of such examples (e.g., [1]). As it is well known, the
water hammer phenomenon plays a crucial role in the pipe’s design and surge protection
devices [2]. Generally, the hydraulic approaches to study the water hammer phenomenon
are founded on the 1D or 2D models. The classical 1D hydraulic model, in which the friction
forces are expressed through the steady approximation, shows a significant discrepancy
with the experimental damping and shift pressure waves [1].

Several friction models have been proposed so far. They rely on a series of assumptions
that can lead to unreliable reproduction of the physics phenomenon. With reference to the
water hammer phenomenon, Ghidaoui et al. [1] highlighted that several models assume
that turbulence in pipes is quasi-steady and its features can be modeled as in steady flows.
These assumptions have been identified as the main source of unreliability in reproducing
experimental findings of transient flows (e.g., [3]).

To overcome this shortcoming, a wide range of friction models are proposed in the
literature [3]. The resulting models show an improvement in simulating pressure wave
propagation (e.g., [4–7]); other improvements are obtained with 2D models [8]. The results
of most of the models have been compared to experimental data and satisfactory com-
parison was achieved even if with different assumptions. Mainly developed within the
frame of the water hammer problem, some of them assume that the instantaneous value of
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the viscous term is related to time evolution of the transient [4], some relate the unsteady
contribution to the fluid acceleration [9], further conjectured that the role of viscous terms is
not longer described by the Reynolds number [10], dimensional analysis of the 1D and 2D
models revealed the role of some dimensionless numbers in the pressure wave attenuation
in the water hammer phenomenon [3,8,11]. The problem is still controversial and further
efforts seem to be needed. It can be observed that while on the one hand some approaches
neglect the viscous compressible effects, on the other hand, some proposed dimensionless
numbers involve the shear viscosity.

In this paper we emphasize the role played by the viscous compressible effects and the
turbulent fluctuations on the energy dissipation processes, proposing new dimensionless
numbers that involve the bulk viscosity and turbulent bulk viscosity. A rigorous model
is proposed and numerically solved. The obtained results show good agreement with
experimental data revealing the reliability of the dimensionless procedure by confirming
the predominant role of the turbulent bulk viscosity on energy dissipation processes.

In detail, we consider a simple fluid, i.e., a homogeneous, chemically inert, and electri-
cally neutral fluid, for which the thermodynamic state is defined by an equation of state
which relates the absolute temperature, the thermodynamic pressure, and the density [12].
A simple linear viscous fluid is characterized by a linear mechanical constitutive equation;
for isotropic fluids, the momentum transport phenomena involve two scalar viscosity
coefficients. Using the Classical Continuum Thermomechanics (CCT), we examine an
unsteady flow of a simple isotropic linear viscous fluid. In CCT, the mechanical description
of fluid flow is based on Newtonian mechanics (with special emphasis on the surface
forces), whilst the thermodynamic description is based on Classical Irreversible Thermody-
namics, according to which the fluid is in Local Thermodynamic Equilibrium condition
(LTE condition). The CCT covers a wide range of phenomena, from Linear non-equilibrium
Thermodynamic Regime (LTR), which corresponds to the viscous (laminar) flow regime,
to the Non-Linear non-equilibrium Thermodynamic Regime (NLTR), which corresponds
to the turbulent flow regime. The LTR, which is stable and regular, is characterized by
“small” values of both the velocity gradient, ‖∇v‖, and the temperature gradient, |∇T|:
perturbations of the mechanical and thermodynamic state vanish during the evolution of
the motion. The NLTR, which is unstable and chaotic, is characterized by “large” values
of ‖∇v‖ and/or |∇T|: perturbations amplify and have systematic effects on the motion
features. The phenomena which are characterized by very high frequencies and short
wavelengths cannot be examined using the CCT, but they require an extended formulation
which removes the LTE assumption [13]. Other phenomena, which are very fast or very
steep, must be considered as boundary phenomena: these kinds of phenomena can be
analyzed using either the CCT or extended formulation.

Within the framework of CCT, ref. [14] have developed an idea suggested by [15–17],
and they have proposed a 3D model for the unsteady isothermal flow of a simple isotropic
linear viscous fluid in the liquid state (i.e., with low compressibility), which involves the
turbulent bulk viscosity. In this paper, we re-examine this model. After some brief remarks
on the simple isotropic linear viscous fluid (Section 2), we show the connection between
the closure equation for the turbulent bulk viscosity and the elementary time scale. For this
purpose, Section 3 recalls the main features of the Elementary Scales Method (ESM) [18]. In
Section 4, we suggest a dimensionless formulation of the field equations. This procedure
allows us to provide new details on the transition from viscous to turbulent flow which
occurs when a finite amplitude pressure wave travels through the fluid. We show that this
kind of transition is governed by a (first) new dimensionless number, involving the bulk
viscosity. In Section 5, we focus on the turbulent flow regime, and we show the role played
by a (second) new dimensionless number, involving the turbulent bulk viscosity, on the
entropy production. After reducing the 3D model to a 1D model, in Section 6, we show the
performance of the dimensionless procedure using experimental data concerning the 1D
pressure waves propagation in liquid-filled pipes (water hammer phenomenon). Section 7
closes the paper.
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2. Simple Isotropic Linear Viscous Fluids

The momentum transfer due to viscosity occurs in fluids when there is a relative
motion between fluid particles [19]. For Simple Isotropic linear viscous Fluids (SIF), the
momentum transfer depends only on the first spatial derivative of velocity, and the viscous
stress tensor Tvis is expressed by the linear mechanical constitutive equation:

Tvis = −η(∇ · v)I − 2µ1Edev (1)

where v is the velocity, I the unit tensor, η = 2/3µ1 + µ2 the bulk viscosity, µ1 the first
viscosity coefficient, µ2 the second viscosity coefficient, Edev the deviatoric part of the rate

of deformation tensor E, E =
1
2

(
∇v +∇vT

)
the symmetric part of the velocity gradient

tensor ∇v. The first viscosity coefficient, and the second viscosity coefficient (and hence
the bulk viscosity) are regular functions of pa, the thermodynamic (absolute) pressure, and
of T, the absolute temperature. For SIF, the relative velocity vrel between two neighboring
fluid particles, located in r and in r + dr at the time t, can be expressed as:

vrel = v(r + dr, t)− v(r, t) = ∇v · dr =
1
3
(∇ · v)I · dr + Edev · dr + ω× dr (2)

where ω is the angular velocity. Equations (1) and (2) are valid for both LTR and NLTR.

3. Elementary Scales Method (ESM)

Within the framework of CCT, the ESM [18,20] allows us to define the elementary
spatial scale |dr| and the elementary time scale |dt| such that:

`

|dr| � 1 (3)

tr

|dt| � 1 (4)

where ` is a fluid molecular length, and tr the relaxation time, i.e., the interval time to
restore an LTE condition in place of a local thermodynamic non-equilibrium condition [19].
The elementary spatial scale can be assumed proportional to the scale of the generic field
function gradient [21]:

|dr| ∝
|b|
|∇b| (5)

where b is the generic field function. For the purposes of this paper, we recall that the
continuity equation is given as:

∂ρ

∂t
+∇ · (ρv) = 0 (6)

where ρ is the density, which assures that ∀∇v ∃dt : ‖∇vdt‖ � 1. If ‖∇vdt‖ � 1, then
det (I +∇vdt) = 1 + (∇ · v)dt is very close to 1, and then |(∇ · v)dt| � 1. For Simple
Isotropic linear viscous Fluids in the Liquid State (SIFLS), for which, in the usual flow
conditions, ε = O

(
109 Pa

)
� 1, where ε is the bulk modulus of elasticity, the differential

state equation, expressed as [22]:

− 1
ρ

dρ = −1
ε

dpa + αdT (7)

where α is the thermal expansion, assures that ∀∇T ∃dr : α|dT| � 1. Observing that

dT =
∂T
∂t

dt +∇T · dr, the relationship α|dT| � 1, formally, implies that α|∇T · dr| � 1.

We stress that the elementary scales |dr| and |dt| are regular functions of both space r and
time t.
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4. Dimensionless Field Equations

To predict the transition from a viscous to turbulent flow regime when a finite am-
plitude pressure wave travels through SIFLS, we propose a new dimensionless number.
For the sake of clarity, this topic is treated by considering adiabatic walls and assum-
ing that the dynamic processes do not change the temperature significantly. By keeping
T = T0 = constant, the field equations are:

Dρ

Dt
+ ρ∇ · v = 0 (8)

ρ
Dv
Dt

= ρ f −∇(pa) +∇(η∇ · v) + 2∇ · (µ1Edev) (9)

1
ρ

dρ =
1
ε

dpa (10)

where f is the external body force per unit mass, expressed as f = −g = −gêz = −g∇z,
with g the vector of gravitational acceleration, g = |g|, êz the unit vector in the ver-
tical direction, z the elevation in the gravitational field. In the given flow conditions
(T = T0 = constant), Equation (7) reduces to the barotropic equation (Equation (10)). As-
suming that η, µ1, ε and α are pressure-independent (Navier–Stokes fluids), the field of
relative thermodynamic pressure p can be introduced in place of the absolute pressure pa,
being p = pa − patm, where patm is the constant atmospheric pressure.

Accordingly, the momentum equation is given as:

ρ
Dv
Dt

= −ρg∇z−∇p + η∇(∇ · v) + 2µ1∇ · Edev (11)

the barotropic equation reads as:
ρ = ρ0ep/ε (12)

and the continuity equation can be expressed as:

1
ε

Dp
Dt

+∇ · v = 0 (13)

where ρ0 = ρ(p = 0) is the density at the relative atmospheric pressure. The comparison
between Equations (8) and (10), rewritten as:

1
ρ

Dρ

Dt
=

1
ε

Dp
Dt

(14)

provides the continuity equation Equation (13). In order to recast the problem into di-
mensionless form, in addition to the velocity scale U0 and the length scale L0, a proper
pressure scale p0 must be specified. The changes in pressure can be mainly attributed to
the perturbation propagation. In the given flow conditions (i.e., isothermal conditions),
we express the pressure scale p0, which is identified with the maximum pressure wave
amplitude, as:

p0 = ρ0c0U0 (15)

where the relative wave celerity c0 is given as:

c0 =

√
ε

ρ0
(16)

Using c0, the time scale t0 is:

t0 =
L0

c0
(17)
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We stress that the time scale is related to the (fast) perturbation propagation. According
to this line of reasoning, setting:

b = b0[b] (18)

where b0 is the scale of b and the terms in square brackets are dimensionless, we obtain the
following relationships:

Db
Dt

=
∂b
∂t

+∇b · v =
b0c0

L0

[
∂b
∂t

]
+

b0U0

L0
[∇b · v] (19)

1
ρ
∇p =

c0U0

L0

[
1
ρ
∇p
]

(20)

η

ρ
∇(∇ · v) = ηU0

ρ0L2
0

[
1
ρ
∇(∇ · v)

]
(21)

µ1

ρ
∇ · Edev =

µ1U0

ρ0L2
0

[
1
ρ
∇ · Edev

]
(22)

The adopted notation implies that [B1B2] = [B1][B2] and [B1/B2] = [B1]/[B2], where
Bi is the generic field function or differential operator. With this setting, Equations (11), (12)
and (14) become:

1
M

[
∂p
∂t

]
+ [∇p · v] + 1

M
[∇ · v] = 0 (23)

1
M

[
∂v
∂t

]
+ [∇v · v] = − 1

Fr2 êz −
1
M

[
1
ρ
∇p
]
+

η

ρ0U0L0

[
1
ρ
∇(∇ · v)

]
+

2
Re

[
1
ρ
∇ · Edev

] (24)

[ρ] = eM[p] (25)

where M = U0/c0 is the Mach number, Fr =

(
U2

0
gL0

)1/2

the Froude number, Re =
ρ0U0L0

µ1

the Reynolds number. The term
η

ρ0U0L0

[
1
ρ
∇(∇ · v)

]
is related to the change in density

and, in turn, to the change in pressure. Using Equation (15), we derive:

η

ρ0U0L0

[
1
ρ
∇(∇ · v)

]
=

c0η

p0L0

[
1
ρ
∇(∇ · v)

]
(26)

where
p0L0

c0η
is the new dimensionless number. To our best knowledge, the bulk viscosity

is not present in any previous dimensionless number and, consequently,
p0L0

c0η
cannot be

obtained by any combination of existing dimensionless numbers. With Equation (26), the
dimensionless momentum equation reads as:

1
M

[
∂v
∂t

]
+ [∇v · v] = − 1

Fr2 êz −
1
M

[
1
ρ
∇p
]
+

c0η

p0L0

[
1
ρ
∇(∇ · v)

]
+

2
Re

[
1
ρ
∇ · Edev

] (27)

In line with Equation (27), the transition from viscous to turbulent flow regime occurs

when Re number and/or
p0L0

c0η
number exceed their critical values Rec and

(
p0L0

c0η

)
c
,

respectively: when Re > Rec and/or
p0L0

c0η
>

(
p0L0

c0η

)
c
, the stabilizing effect exerted by
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the viscous forces becomes evanescent and the stable and regular flow turns unstable and

chaotic. The two numbers
p0L0

c0η
and Re, which are conceptually similar, are intended

to describe different phenomena: the Re number is related to the viscous forces arising

from shape variation of the fluid particles; the
p0L0

c0η
number to the viscous forces arising

from volume variation; the Re number governs the transition between the viscous and

turbulent regimes during the fluid flow; the
p0L0

c0η
number the transition which occurs

when a pressure wave travels through the fluid, and therefore, a change in density happens.
Following the physics of the phenomenon, the higher p0 and L0 and the lower η and c0, the

higher the
p0L0

c0η
number.

5. Dimensionless Mean-Flow Field Equations

Following [14], in the turbulent flow regime, the mean-flow equations which corre-
spond to Equations (8)–(10) can be written as follows:

Dρ

Dt
+ ρ∇ · 〈v〉 = 0 (28)

ρ
D〈v〉

Dt
= −ρg∇z−∇〈p〉+ η∇(∇ · 〈v〉) + 2µ1∇ · 〈Edev〉 −∇ · TRe (29)

ρ = ρ
〈p〉/ε
0 (30)

where:
D〈b〉
Dt

=
∂〈b〉
∂t

+∇〈b〉 · 〈v〉 (31)

and:
TRe = ρ〈v′ ⊗ v′〉 (32)

is the Reynolds stress tensor. Equations (28)–(30) can be obtained using the Reynolds
decomposition along with the Russo Spena Assumption (RSAss) [14] setting:

p(r, t) = 〈p(r, t)〉+ p′(r, t) (33)

v(r, t) = 〈v(r, t)〉+ v′(r, t) (34)

ρ(r, t) = 〈ρ(r, t)〉 (35)

ρ′(r, t) = 0 (36)

where 〈b(r, t)〉 and b′(r, t) are the ensemble-mean and the turbulent fluctuation of the
generic field function b, respectively.

It has to be stressed that the density fluctuations are assumed to be negligible, whilst
its mean value can vary depending on the mean value of the pressure, according to
Equation (30).

In agreement with RSAss, the differential form of the mean barotropic equation can be
expressed as:

1
ρ

dρ =
1
ε

d〈p〉 (37)

According to Equation (37), the mean-flow equation which corresponds to Equation (14)
reads as follows:

1
ρ

Dρ

Dt
=

1
ε

D〈p〉
Dt

(38)
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The comparison between Equations (28) and (38) leads to:

1
ε

D〈p〉
Dt

+∇ · 〈v〉 = 0 (39)

In the context of the eddy-viscosity model, Equation (29) is consistent with the relationship:

〈vrel〉 = 〈v(r + dr, t)〉 − 〈v(r, t)〉 = ∇〈v〉 · 〈dr〉+ 〈∇v′ · dr′〉 (40)

being dr = 〈dr〉+ dr′ (as a field function and in line with the Reynolds decomposition,
dr can be splitted in the ensemble-mean value, 〈dr〉, and in the fluctuation value, dr′).
Equation (40) can be deduced from Equation (2) setting:

vrel = v(r + dr, t)− v(r, t) = ∇v · dr =

∇〈v〉 · 〈dr〉+∇〈v〉 · dr′ +∇v′ · 〈dr〉+∇v′ · dr′
(41)

According to Equation (41), 〈Tvis〉 is related to ∇〈v〉 by means of the relationship:

〈Tvis〉 = −η(∇ · 〈v〉)I − 2µ1〈Edev〉 (42)

while TRe is linked to turbulent fluctuations.
In the CCT context, the ESM assures that ∀∇〈v〉 ∃〈dt〉 : tr/|〈dt〉| � 1 and ‖∇〈v〉〈dt〉‖ � 1,

being dt = 〈dt〉+ dt′ (as for dr, the field function dt is splitted in the ensemble-mean value, 〈dt〉,
and in the fluctuation value, dt′). If ‖∇〈v〉〈dt〉‖ � 1 also |(∇ · 〈v〉)〈dt〉| � 1.

The additional Reynolds stress tensor TRe can be decomposed into its isotropic and
deviatoric parts:

TRe = (TRe)iso + (TRe)dev (43)

The deviatoric stress tensor (TRe)dev is related to additional shear stresses; the isotropic
part (TRe)iso, which is related to additional relative normal stresses, can be expressed using
the constitutive equation [14]:

(TRe)iso = −ηtur(∇ · 〈v〉)I (44)

where the turbulent bulk viscosity ηtur, which depends on both the fluid and the kinematic
properties of the flow field, is expressed by the closure equation:

ηtur = ηtur(r, t) = λe|(∇·〈v〉)〈dt〉| (45)

where λ is a parameter. Equation (45), which represents more accurately the closure
equation proposed in [14], shows the connection between the turbulent bulk viscosity and
the elementary time scale. If the temperature changes due to the dynamic processes, in
agreement with the RSAss, by assuming α = constant and ε = constant, the mean state
equation is:

α〈dT〉 = −1
ρ

dρ +
1
ε

d〈pa〉 = (∇ · 〈v〉)〈dt〉+ 1
ε

d〈pa〉 (46)

According to Equation (46), assuming for SIFLS that ε = O
(
109Pa

)
� 1, the ESM assures that

|d〈pa〉|/ε � 1, |(∇ · 〈v〉)〈dt〉| � 1, α|d〈T〉| � 1. Setting d〈T〉 = ∂〈T〉
∂t
〈dt〉+∇〈T〉 · 〈dr〉,

the relationship α|d〈T〉| � 1 implies that ∀∇〈T〉 ∃〈dr〉 : `/|〈dr〉| � 1 and α|∇〈T〉 · 〈dr〉| � 1.
With Equations (43) and (44), Equation (29) becomes:

ρ
D〈v〉

Dt
= −ρg∇z−∇〈p〉+ η∇(∇ · 〈v〉) +∇(ηtur∇ · 〈v〉)+

2µ1∇ · 〈Edev〉 −∇ · (TRe)dev

(47)
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In agreement with Equation (47), the mean kinetic energy equation is given as:

ρ
D〈k〉
Dt

= −ρg∇z · 〈v〉 −∇〈p〉 · 〈v〉 − (∇ · 〈T̃〉) · 〈v〉 (48)

where 〈k〉 = 〈v2〉/2 is the ensemble-mean specific kinetic energy, and:

〈T̃〉 = 〈Tvis〉+ TRe (49)

In the given flow conditions (T = T0 = constant), the mean energy equation is:

ρ
D〈e〉
Dt

= −ρg∇z · 〈v〉 −∇ · (〈p〉〈v〉) +∇ · (〈T̃〉 · 〈v〉) (50)

where 〈e〉 = 〈k〉 + 〈ui〉, with 〈ui〉 ensemble-mean specific internal energy. The mean
internal energy equation:

ρ
D〈ui〉

Dt
= −〈p〉∇ · 〈v〉 − 〈T̃〉 : ∇〈v〉 (51)

in connection with the mean Gibbs equation:

d〈ui〉 = Td〈s〉+ 〈p〉
ρ

dρ (52)

provides the mean entropy equation:

ρT
D〈s〉
Dt

= −〈T̃〉 : ∇〈v〉 = (η + ηtur)(∇ · 〈v〉)2 − 〈T̃dev〉 : 〈Edev〉 =

(η + ηtur)(∇ · 〈v〉)2 + 2µ1〈Edev〉 : 〈Edev〉 − (TRe)dev : 〈Edev〉
(53)

where 〈s〉 is the ensemble-mean specific entropy and 〈T̃dev〉 the deviatoric part of 〈T̃〉. Setting:

1
ρ
∇(ηtur∇ · 〈v〉) =

ηtur

ρ
∇(|(∇ · 〈v〉)〈dt〉|)∇ · 〈v〉+ ηtur

ρ
∇(∇ · 〈v〉) =

ηturU2
0

ρ0c0L2
0

[
1
ρ
∇(|(∇ · 〈v〉)〈dt〉|)∇ · 〈v〉

]
+

ηturU0

ρ0L2
0

[
1
ρ
∇(∇ · 〈v〉)

] (54)

1
ρ
∇ · (TRe)dev =

U2
0

L0

[
1
ρ
∇ · (TRe)dev

]
(55)

T〈s〉 = U2
0 [T〈s〉] (56)

T
D〈s〉
Dt

=
U2

0 c0

L0

[
T

∂〈s〉
∂t

]
+

U3
0

L0
[T∇〈s〉 · 〈v〉] (57)

the dimensionless form of momentum and entropy equations read as follows:

1
M

[
∂〈v〉

∂t

]
+ [∇〈v〉 · 〈v〉] = − 1

Fr2 êz −
1
M

[
1
ρ
∇〈p〉

]
+

c0η

p0L0

[
1
ρ
∇(∇ · 〈v〉)

]
+

2
Re

[
1
ρ
∇ · 〈Edev〉

]
+ M

c0ηtur

p0L0

[
1
ρ
∇(|(∇ · 〈v〉)〈dt〉|)∇ · 〈v〉

]
+

c0ηtur

p0L0

[
1
ρ
∇(∇ · 〈v〉)

]
−
[

1
ρ
∇ · (TRe)dev

] (58)
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1
M

[
T

∂〈s〉
∂t

]
+ [T∇〈s〉 · 〈v〉] = c0η

p0L0

[
1
ρ
(∇ · 〈v〉)2

]
+

c0ηtur

p0L0

[
1
ρ
(∇ · 〈v〉)2

]
+

2
Re

[
1
ρ
〈Edev〉 : 〈Edev〉

]
−
[

1
ρ
(TRe)dev : 〈Edev〉

] (59)

where
p0L0

c0ηtur
is the (second) new dimensionless number.

6. Test Case

In order to test the performance of the dimensionless procedure, we focus on the
classical hydraulic problem of 1D finite amplitude pressure waves propagation in liquid-
filled pipe (water hammer phenomenon). This phenomenon, which involves rapid changes
in a liquid density and considerable energy dissipations, occurs in pipe networks as a result
of valve maneuvers: the local liquid velocity variations generate pressure waves that travel
in the liquid-pipe system. In a 1D context, for a horizontal single-pipe system with axially
symmetric geometry, Equations (30), (39), (47), and (53) become:

1
ε

∂p
∂t

+
1
ε

U
∂p
∂x

+
∂U
∂x

= 0 (60)

∂U
∂t

+ U
∂U
∂x

= −1
ρ

∂p
∂x

+
η

ρ

∂2U
∂x2 − f

U|U|
2D

+
1
ρ

∂

∂x

(
ηtur

∂U
∂x

)
(61)

ρ = ρ0ep/ε (62)

T
∂s
∂t

+ TU
∂s
∂x

=
(η + ηtur)

ρ

(
∂U
∂x

)2
+ f

U2|U|
2D

(63)

where x is the pipe-axis longitudinal coordinate (i.e., along the mean flow direction),
ρ = ρ(x, t) the liquid density, U = U(x, t) = Q(x, t)/Ω the ensemble-mean value of the
relative velocity of the liquid with respect to the solid wall, with Q(x, t) the ensemble-mean
volumetric flow rate and Ω the (constant) area of the pipe cross-section, p = p(x, t) the
ensemble-mean value of the pressure, D the (constant) pipe diameter, f the Darcy friction
factor. It should be underlined that the temperature T is a parameter of the problem.

The parameter ε depends on the pipe-liquid system; the parameters f and ηtur depend
on both the pipe-liquid system and the kinematic property of the flow field. In the crossover

from 3D to 1D, the velocity 〈v〉 is reduced to U; the term 2
µ1

ρ
∇ · 〈Edev〉 − 1

ρ∇ · (TRe)dev

is reduced to − f
U|U|
2D

; the term −1
ρ
〈T̃dev〉 : 〈Edev〉 is reduced to − f

U2|U|
2D

; the material

derivative
D〈b〉
Dt

is reduced to
∂b
∂t

+ U
∂b
∂x

; the term |(∇ · 〈v〉)〈dt〉| is reduced to
∣∣∣∣∂U

∂x
dt
∣∣∣∣ and

the closure equation (i.e., Equation(45)) becomes:

ηtur = ηtur(x, t) = λe|
∂U
∂x dt| (64)

According to system of Equations (60)–(62), which neglect the thermal effects, cavita-
tion phenomena, and assume an elastic behavior of the pipe-wall, the relative wave celerity
reads as follows:

c =
√

ε

ρ0
e−p/ε (65)

The unknown parameters ε and λ must be calibrated using experimental data. The ex-
perimental data considered herein available in the literature [23], consist of thermodynamic

pressure time series, expressed in terms of piezometric head h(x, t) =
p

ρ0g
, collected at the

downstream section of a high density polyethylene pipe (in x = X, where X = 164.93 m
is the pipe length, with D = 93.3 mm, wall thickness 8.1 mm), during the water ham-
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mer phenomenon (ρ0 = 1000 kg/m3). The experiments are carried out using standard
laboratory facilities (reservoir-pump-pressurized tank-pipe-valve): the pipe connects the
upstream pressurized tank to a downstream maneuver valve; the piezometric signals are
measured employing piezoresistive transducers, the steady-state discharge by means of
electromagnetic flow-meters. Once the initial steady-state is established, the water hammer
is generated by a fast closure of the valve. During the tests, the water temperature range
varied between 18.1 and 18.9 ◦C. Hence, the basic hypothesis of the proposed model (i.e.,
isothermal flow) applies. Details about experimental set-up and procedures are in [23].
Table 1 summarizes the experimental initial steady-state conditions. Figure 1 shows the
experimental results (for the clarity of the plot, the time series are shifted vertically by 40 m,
horizontally by 0.35 s; the duration of the observation time, td, is 10 s). The maximum surge
pressure ∆pmax is in agreement with the Joukowsky formula:

∆pmax = ρ0c0U0 = p0 (66)

where ∆p = p(X, t)− p(X, 0)

Table 1. Initial steady-state conditions.

Test U(x, 0) = U0 m/s h(X, 0) m Re =
ρ0U0D

µ1

1 0.07 21.20 6940
2 0.14 21.03 13,345
3 0.22 20.80 20,526
4 0.24 20.68 22,392
5 0.31 20.51 28,923
6 0.36 20.37 33,588
7 0.42 20.04 39,653
8 0.52 19.61 48,143
9 0.58 19.47 54,114
10 0.66 19.39 61,578
11 0.71 19.11 66,710
12 0.78 18.92 72,774

0 2 4 6 8 10 12 14
t (s)

0

100

200

300

400

500

h(
L

,T
) (

m
)

test 1

test 12

Figure 1. Experimental data [23].

As shown in Figure 2, the experimental trials collapse in a master curve if the data

are scaled setting [p] =
gh

c0U0
, g = 9.81 m/s2, c0 = 350 m/s, L0 = D = 93.5 mm, td = 10 s.

This result can be attributed to the reliability of the dimensionless procedure and indicates
no significant Reynolds number dependence, in agreement with [14]. The selected value
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of c0 assures that [∆p] = [p(X, t)]− [p(X, 0)] ' 1 for 0 < [t/td] ≤ 0.1; with this setting,
ε = ρ0c2

0 =1.225 × 108 Pa. The dimensionless form of Equations (60)–(63) becomes:

1
M

[
∂p
∂t

]
+

[
U

∂p
∂x

]
+

1
M

[
∂U
∂x

]
= 0 (67)

1
M

[
∂U
∂t

]
+

[
U

∂U
∂x

]
= − 1

M

[
1
ρ

∂p
∂x

]
+

c0η

p0L0

[
1
ρ

∂2U
∂x2

]
− f

2
[U|U|]+

c0ηtur

p0L0

[
1
ρ

∂2U
∂x2

]
+ M

c0ηtur

p0L0

[
1
ρ

∂

∂x

(∣∣∣∣∂U
∂x

dt
∣∣∣∣)∂U

∂x

] (68)

[ρ] = eM[p] (69)

1
M

[
T

∂s
∂t

]
+

[
TU

∂s
∂x

]
=

c0η

p0L0

[
1
ρ

(
∂U
∂x

)2
]
+

c0ηtur

p0L0

[
1
ρ

(
∂U
∂x

)2
]
+

f
2

[
U2|U|

] (70)

Equations (67)–(69) are solved using a commercial finite element software package [24].
Following [14], the elementary time scale |dt| is chosen proportionalyl to the wave travel
time through the pipe tw. In a first step, tw can be approximated as:

tw =
2X
c0

(71)

0.0 0.2 0.4 0.6 0.8 1.0
[t/td]

1.0

0.5

0.0

0.5

1.0

[p
] -

 [p
(X

,0
)]

Figure 2. Experimental data scaled according to [p] =
gh

c0U0
, g = 9.81 m/s, c0 = 350 m/s,

L0 = D = 93.5 mm.

The numerical simulations are carried out setting |dt| = 0.01tw. For the viscous flow
regime, the Darcy friction factor is expressed as:

f =
64

R̃e
(72)

where R̃e =
ρ|U|D

µ1
. For the turbulent flow regime, f is computed through the Blasius formula:

f =
0.3164

R̃e
0.25 (73)
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The Blasius formula is valid for smooth pipes in the range R̃ec ≤ R̃e ≤ 105, with R̃ec the
critical Reynolds number (R̃ec ' 2× 103). The normal flow is used as the initial condition.
The initial value [p(x, 0)] is given by the normal flow formula for the circular pipe:

[p(x, 0)] = [p(X, 0)] +
f0

2M
[x] (74)

where [p(X, 0)] = h(X, 0)
g

c0U0
with h(X, 0) = 21.65 − 5.2 × 10−5Re, f0 =

0.3164
Re0.25 ,

Re =
ρ0U0D

µ1
. Setting µ1 = µ2 = 10−3 kg

ms
, the reference value of the bulk viscosity is

η =
2
3

µ1 + µ2 = 1.66× 10−3 kg
ms

. The downstream boundary conditions are given as:

[U(X, t)] = 1−
[

t
tc

]
for 0 <

[
t
tc

]
≤ 1 (75)

[U(X, t)] = 0 for
[

t
tc

]
> 1 (76)

where tc = 0.1 s is the closure time. The inlet boundary conditions are expressed as:

[p(0, t)] = ([p(0, td)]− [p(0, 0)])
[

t
td

]
+ [p(0, 0)] (77)

where [p(0, 0)] = [p(X, 0)] +
f0

2M
[X] and [p(0, td)] = 0.65[p(0, 0)] + ∆h

g
c0U0

, with

∆h = 7.65 m. The selection of the best values of the parameters ε and λ involves two
steps. In the first step, the refinement of ε value is carried out paying attention to the phase
shift of the pressure waves; the second step is devoted to the calibration of λ. A standard
test-and-try procedure is adopted. Figure 3 shows good agreement between experimental
and computational results. The best fit is obtained for ε = 1.2 × 108 Pa

(
c0 = 347 m

s
)
,

λ = 2.7× 106 kg
ms

.

0.0 0.2 0.4 0.6 0.8 1.0
[t/td]

1.0

0.5

0.0

0.5

1.0

[p
 - 

p(
X

,0
)]

Experimental Numerical

Figure 3. Comparison between experimental and numerical results, for Re = 33, 588.

The resulting values taken for Re,
p0L0

c0η
and M numbers are given in Table 2. We

observed that, for the specific case of a pressure wave generated by the fast and complete

closure of the valve, the following relationship holds: Re = 1.66
p0L0

c0η
.

The inspection of the entropy production is evaluated by introducing the follow-
ing functions:

S1(t) =
1
[X]

∫ [X]

0

f
2

[
U2|U|

]
[dx] (78)
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S2(t) =
1
[X]

∫ [X]

0

c0ηtur

p0L0

[
1
ρ

(
∂U
∂x

)2
]
[dx] (79)

Figure 4 shows the evolution of both S1 and S2. Results reveal that the predominant
role in the energy dissipation process is played by the compressibile turbulent effects.

In order to gain deeper insight into the phenomenon, the trend of spatially averaged

of the
p0L0

c0ηtur
number:

N(t) =
1
[X]

∫ [X]

0

p0L0

c0ηtur
[dx] (80)

and of the
∣∣∣∣∂U

∂x
dt
∣∣∣∣ number:

A(t) =
1
[X]

∫ [X]

0

∣∣∣∣∂U
∂x

dt
∣∣∣∣[dx] (81)

are computed. Results inspection reveals that N(t) is almost constant (N(t) ' 1.25 × 10−5);
A(t) is very close to zero, consistent with the ESM (Figure 5).

0.0 0.2 0.4 0.6 0.8 1.0
[t/td]

0.00

0.02

0.04

0.06

0.08

S 1
(t

), 
S 2

(t
)

S1
S2

Figure 4. Temporal variation of S1(t) and S2(t), for Re = 33,588.

Table 2. Values of Re,
p0L0
c0η

and M numbers.

Test Re
p0L0

c0η
M

1 6904 4143 0.2 × 10−3

2 13,345 8061 0.4 × 10−3

3 20,526 12,316 0.6 × 10−3

4 22,392 13,435 0.7 × 10−3

5 28,923 17,354 0.9 × 10−3

6 33,588 20,153 1.0 × 10−3

7 39,653 23,792 1.2 × 10−3

8 48,143 28,886 1.5 × 10−3

9 54,114 32,468 1.7 × 10−3

10 61,578 36,947 1.9 × 10−3

11 66,710 40,026 2.0 × 10−3

12 72,774 43,662 2.2 × 10−3
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0.0 0.2 0.4 0.6 0.8 1.0
[t/td]

0.0

0.5

1.0

1.5

2.0

A
(t

)

×10 5

Figure 5. Temporal variation of A(t), for Re = 33,588.

7. Conclusions

As an extension of previous works [14,17], we have examined the unsteady flow
of a simple isotropic linear viscous fluid in the liquid state. We have suggested a new
dimensionless procedure of the field equations. On the basis of the obtained results, we
have conjectured that the transition from viscous to turbulent flow, which occurs when a
finite amplitude pressure wave travels through the fluid, is governed by the dimensionless

number
p0L0

c0η
. This new dimensionless number is conceptually different from the Re

number. The Re number is related to the viscous forces arising from shape variation
of the fluid particles, whilst the new dimensionless number is related to the viscous
forces arising from volume variation; the Re number governs the transition between the
viscous and turbulent regimes during the fluid flow, whilst the new dimensionless number
governs the transition which occurs when a pressure wave travels through the fluid. After
some remarks on the role played by the elementary time scale in the closure equation
for the turbulent bulk viscosity, we have applied the dimensionless procedure to the
mean-flow equations which govern the unsteady turbulent flow regime, and we have

identified a (second) new dimensionless number, given as
p0L0

c0ηtur
. To test the performance

of the dimensionless procedure, we have analyzed the experimental data concerning
the 1D finite amplitude pressure waves propagation in liquid-filled pipe (water hammer
phenomenon). We have shown that the experimental data roughly fall together on one
curve. In line with the numerical simulation outcomes, this result is attributed to the
reliability of the dimensionless procedure. The numerical results show good agreement
with the experimental data. The analysis of the numerical results reveals the predominant

role played by the
p0L0

c0ηtur
number in the turbulent compressible dissipation. Although we

have suggested that the flow becomes unstable when the
p0L0

c0η
number exceeds its critical

value, at the present there are no studies to support this conjecture, a critical value of the
p0L0

c0η
number is unknown, the details of the transition process are not available.
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