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Abstract: Computational fluid dynamics (CFD) modeling of blood flow plays an important role in
better understanding various medical conditions, designing more effective drug delivery systems,
and developing novel diagnostic methods and treatments. However, despite significant advances
in computational technology and resources, the expensive computational cost of these simulations
still hinders their transformation from a research interest to a clinical tool. This bottleneck is even
more severe for image-based, patient-specific CFD simulations with realistic boundary conditions
and complex computational domains, which make such simulations excessively expensive. To
address this issue, deep learning approaches have been recently explored to accelerate computational
hemodynamics simulations. In this study, we review recent efforts to integrate deep learning with
CFD and discuss the applications of this approach in solving hemodynamics problems, such as
blood flow behavior in aorta and cerebral arteries. We also discuss potential future directions in the
field. In this review, we suggest that incorporating physiologic understandings and underlying fluid
mechanics laws in deep learning models will soon lead to a paradigm shift in the development novel
non-invasive computational medical decisions.

Keywords: computational fluid dynamics; numerical simulations; biomedical flows; hemodynamics;
deep learning; physics-informed neural networks; PINNs; patient-specific model

1. Introduction

A fluid dynamics problem can be solved mathematically through governing equations,
such as the Navier–Stokes equations of conservation of mass and conservation of momen-
tum. For problems associated with a higher degree of complexity, it becomes challenging
to solve the governing equations theoretically. This is usually the case in biomedical appli-
cations with the aim of investigating physiological flows where patient-specific geometries
and conditions should be considered in order to achieve a personalized solution. In such
cases, computational fluid dynamics (CFD) provides a powerful alternative based on nu-
merical methods that can be applied to a large array of fluid dynamics equations and solve
these complex problems either directly or iteratively [1].

CFD simulations have been increasingly used to analyze biomedical flows both in
health and disease. Physiological flows, such as cardiovascular flow [2–6], respiratory
flow [7–9], cerebrospinal flow [10,11], and intracellular flow [12,13], have been investigated
through CFD simulations. In addition, CFD has been used to analyze and develop medical
diagnostic methods [14–17], drug delivery systems [18,19], personalized treatments and
treatment planning [20–23], and medical devices [24–27].

In the last decade, there was a resurgence in image-based CFD modeling [28], which
brought the idea of patient-specific simulations closer to reality. The development of
open-source software, such as SimVascular [29], made this transition faster. Such packages
integrate the components of a patient-specific modeling pipeline from image segmentation
and 3D modeling to mesh generation and simulation. In addition to personalized diagnostic
and treatment solutions, patient-specific simulations could facilitate sensitivity studies to
investigate the effect of a wide range of factor parameter spaces on hemodynamics [30].
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Despite many research efforts and the predictive power of CFD-based solutions, they
still suffer from important limitations that hinder their application in clinical settings. First,
the more complex the problem and the computational domain are, the more computa-
tionally expensive the numerical simulation becomes, e.g., due to iterative optimization,
complex geometries, patient-specific boundary conditions, and unsteady flow. Furthermore,
the preprocessing, mesh generation, and postprocessing steps require more computational
time and power. This computational cost hampers the utility of numerical simulations for a
large cohort of patients or analyzing different risk factors in a single patient (e.g., different
degrees of stenosis), especially when a time-sensitive clinical recommendation is required.
One way to address this issue is to use 0D and 1D models, such as lumped-parameter
networks [31,32]. Such abstractions of a 3D model could significantly decrease the com-
putational cost at the expense of local flow field detail. For instance, whereas a 0D model
can estimate blood flow rate and pressure at each cross section of the computational do-
main, it cannot provide information about the complex local hemodynamics in those cross
sections. Therefore, when such details are required, the more costly 3D models should be
still employed.

Another limitation of conventional CFD simulations is the complexity of the steps
that are required to develop a numerical model. To carry out a patient-specific simulation,
the computational domain should be segmented from medical images, such as computed
tomography scans of the patient. In addition, realistic boundary conditions, initial con-
ditions, and material properties are required. However, determining these conditions is
usually challenging and sometimes becomes impossible if the measurement methods are
invasive [33]. For example, the boundary conditions that are prescribed at the outlets of the
computational domain should precisely model the downstream flow dynamics. However,
measurement of these outlet conditions is prohibitively difficult in smaller vessels. Con-
sidering the significant effect of these conditions on the final CFD solution, their deviation
from real conditions may drastically alter the personalized solutions suggested by the
simulation, thus limiting the utility of numerical models to satisfy clinical needs [34]. More-
over, when boundary conditions are unknown, solving inverse problems is significantly
more expensive.

Finally, recent advances in computational technologies and resources coupled with the
reduced costs of computation and data storage have increased the use of CFD for biomed-
ical applications. As a result, the volume of available data from clinical measurements,
numerical simulations, and benchtop validations is rapidly growing. The analysis of such
big data requires new strategies for translation into clinically relevant information. Deep
learning (DL), as a subset of machine learning, offers a wide range of capabilities that can
address these issues (Figure 1). DL techniques can reduce the expensive computational
time required for complex biomedical CFD simulations. They can also assist in solving
inverse problems where the boundary conditions are either unavailable or require invasive
measurements. In addition, DL can be used for reduced-order modeling, dimensionality
reduction, convergence time reduction, and shape optimization [35]. In this paper, a quali-
tative overview of the history and current advances of DL for biomedical fluid mechanics is
presented. First, DL approaches for general fluid mechanics problems are briefly reviewed.
Then, some of the current applications of DL approaches for hemodynamics simulations
are discussed. The paper is concluded with suggestions for future research directions.
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Figure 1. Deep learning models assist in segmenting the computational domain from medical images,
generating mesh and controlling its quality, estimating parameters needed for numerical simulations,
and predicting the simulation results.

2. Methods

An electronic search (until February 2022) of the PubMed and Google Scholar databases
was performed. The Boolean combination (i.e., AND and OR) of the following terms was
used in the search: “computational fluid dynamics”, “numerical models”, “hemodynam-
ics”, “blood flow”, “arteries”, “vessels”, “machine learning”, “deep learning”, and “neural
networks”. Synonyms, alternate terms, different spellings (e.g., hemodynamics and haemo-
dynamics), and medical subject headings (MeSH) were also considered to obtain more
information. Search results were limited to English-language papers with no limitations
for the publication year. Papers, including preprints, were screened for relevance using
the title and abstract. Reference lists of included publications were examined for relevant
citations. Search results were imported into Mendeley (version 1.19.8, Elsevier, London,
UK). Based on the reviewed papers, the following applications of DL for computational
hemodynamics were selected to be discussed in more detail in this review: hemodynamics
of aorta, cerebral hemodynamics, and enhancement of 4D flow magnetic resonance imaging
using CFD. Our bibliometric analysis indicates that ~87% of the papers that discuss the
application of deep learning for hemodynamics problems were published after 2020, which
indicates an increasing interest in this field.

3. Deep Learning for Fluid Mechanics

In this section, we provide a short review of DL-based approaches for the prediction
of the solution of fluid mechanics problems. In general, DL models offer new solutions to
reduce the computational time needed for expensive fluid mechanics problems, such as
turbulent flows [36]. This can be achieved through modeling flow kinematics by extract-
ing flow features or solving flow dynamics using learning architectures. DL models can
describe the spatiotemporal evolution of the flow using reduced-order modeling. Fur-
thermore, dominant flow features can be extracted through dimensionality reduction [37].
Model reduction methods, such as proper orthogonal decomposition and dynamic mode
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decomposition, can simplify the flow dynamics and capture its key patterns at a lower
computational cost [38]. For example, proper orthogonal decomposition, which can be
expressed as a two-layer neural network (i.e., autoencoder) [35], provides an orthogonal
linear transformation from physical coordinates into a modal basis.

Turbulent flow modeling (when Reynolds number (Re) >> 1) is common in biomedical
applications, e.g., due to the pulsatile nature of blood flow or the presence of stenosis
in a vessel [39]. Neural networks have been developed to model features of turbulent
flow, including the rotational and translational structures [40], as well as to reconstruct the
near-wall flow fields [41]. DL is also used to enhance resolution and remove noise in the
simulation of biomedical turbulent flows. In other words, high-resolution details within a
low-resolution cell can be inferred in Reynolds-averaged Navier–Stokes and large-eddy
simulations. To this end, various models, such as convolutional neural networks (CNNs)
and generative adversarial networks (GANs), have been studied to reconstruct turbulent
flow and estimate the flow field parameters [42–44].

Physics-informed neural network (PINN) models are also widely used in biomedical
applications. In general, PINNs have been developed for both incompressible [45–47]
and compressible flows [48]. They predict the underlying flow physics by integrating
the concentration field of a passive scalar with fluid mechanics laws (e.g., Navier–Stokes
equations), using them as constraints in the loss function of the neural network [49]. For
example, any deviation from zero for the conservation of mass would be penalized by
the model. These models are based on the notion of data assimilation. In fluid dynamics
experiments, flow patterns can be qualitatively assessed by techniques such as dye or
smoke visualizations. Here, dye or smoke behaves as a passive scalar, i.e., it is advected
by the flow without affecting the flow dynamics. Sparse measurements of these passive
scalars do not provide detailed information compared to high-resolution CFD simulation
results. However, their combination with fluid mechanics laws and deep learning can form
PINNs and lead to quantitative estimation of local and complex flow patterns. A PINN
model can be trained using the flow data in an arbitrary training domain within the
computational domain. This training domain should meet the following conditions [46].
First, the concentration field of the passive scalar should be available within the boundaries
of the training domain. Second, the gradients of the concentration normal to the boundaries
should be nonzero. The latter condition is specifically crucial in obtaining a single solution
for the velocity field. Another characteristic of the PINN models that makes them suitable
for biomedical applications is that they are agnostic to geometry, initial conditions, and
boundary conditions. In other words, the selection of the computational and training
domains is flexible, with their boundaries anywhere within the physical boundaries. PINNs
eliminate the need for meshing, which is usually another time-consuming and challenging
task in carrying out CFD simulations [34]. Altogether, the requirement of minimal training
data is one of the major advantages of PINNs relative to other DL models, which typically
require large training datasets.

4. Hemodynamics Applications

For hemodynamics simulations, machine learning techniques can be used for different
steps of numerical modeling, including (1) automatic segmentation of the computational do-
main from medical images [50–55], (2) automatic mesh generation and mesh quality assess-
ment [56–60], and (3) prediction of the numerical simulation results [46,61]. Machine learn-
ing has also assisted in estimating material properties and boundary conditions [62–64].
In addition, machine learning models have been developed for the postprocessing of the
simulation results [65]. Table 1 lists DL studies in which the hemodynamics in human blood
vessels were predicted. In these studies, DL models were proposed as an alternative to CFD
for steady-state and unsteady blood flow analysis. Some studies used DL models to predict
the results of reduced-order simulations, such as 1D CFD models [66–68]. These models are
specifically helpful when only general information about the blood flow is required, such as
flow rate or pressure at a cross section. Reduced models are significantly less computation-
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ally costly than 3D models. Therefore, they are convenient for generating large datasets
for the training of DL models. However, such models cannot provide information about
complex and local flow patterns. Thus, when such details are required, 3D models should
be employed, although they are associated with more costly computational demand, which
makes it more difficult to create adequately large training datasets. Some studies reported
3D CFD simulations in simplified geometries [33,69,70]. Although geometric simplification
can reduce computational cost, simplified simulations may not provide a patient-specific
clinical recommendation. In the remainder of this section, the application of deep learning
in estimating aortic hemodynamics, cerebral hemodynamics, and enhancement of 4D flow
magnetic resonance imaging (MRI) is discussed.

Table 1. Sample applications of deep learning for hemodynamics prediction. NN: neural network;
DNN: deep NN; CNN: convolutional NN; LSTM RNN: long–short-term memory recurrent NN; PINN:
physics-informed NN; 1D: one-dimensional CFD simulation; 3D: three-dimensional CFD simulation;
SS: steady-state; US: unsteady; AF: axisymmetric flow; RW: rigid vessel wall; EW: elastic vessel wall;
N: Newtonian flow; n-N: non-Newtonian; IC: incompressible flow; BC: CFD boundary conditions; Q:
blood flow; v: velocity; P: pressure; WSS: wall shear stress; MRI: magnetic resonance imaging.

Application DL Model CFD Assumptions
(Solver) DL Input DL Output Reference

Coronary artery lesion DNN 1D, US, AF, EW, N, IC

Q & P at each centerline
node + Q & P of the

upstream and
downstream nodes

Fractional flow reserve along
the vessel centerline [66]

Coronary blood flow DNN regressor 1D, SS, RW, N, IC
(custom-built solver) Geometry, SS P drop P drop [67]

Coronary bifurcations 2D CNN 3D, US, n-N
(ANSYS)

Geometric features (e.g.,
vessel radii, bifurcation

angles, etc.), shear stress for
SS flow in a constant-radius

straight tube

Time-averaged WSS [71]

Aortic aneurysm DNN 3D, SS, RW, N, IC
(STAR-CCM+) 3D geometry, CFD results v & P distributions,

v magnitude [61]

Coronary stenosis
(coronary bypass surgery)

PointNet
(based on [72])

3D, SS, N, IC
(ANSYS) 3D geometry, CFD results v & P distributions [73]

Aortic coarctation NN 3D, US, RW, N, IC
(HARVEY [74]) 3D geometry, CFD results P, WSS [30]

Aortic coarctation DNN
(LSTM RNN + DenseNet)

SS, IC
(STAR-CCM+) Vessel centerline, BC

P, time-averaged WSS,
secondary flow degree,

kinetic energy (averaged at
the centerline)

[75]

Thrombus formation
(in left arterial appendage) DNN 3D, US, RW, N, IC

(ANSYS) 3D geometry, CFD results Endothelial cell
activation potential [76]

Hepatic artery
(liver cancer

radioembolization)
CNN 3D, RW, N, IC

(SimVascular [29]) CFD results, outlet BC Outlet flow rate [77,78]

Intracranial aneurysm
(right internal
carotid artery)

PINN 3D, US, IC Concentration of the passive
scalar, 3D geometry v & P distributions, WSS [46]

Near-wall blood flow
(in aneurysm and
stenosis models)

PINN 1D-3D, SS, N, IC
(FEniCS [79]) Geometry, CFD results v & P distributions [33]

Cerebral vasospasm PINN 1D, US, EW, N, IC
(SimVascular)

3D angiography, 4D flow
MRI, or

ultrasound measurements

v & P distributions, vessel
cross-sectional area [68]

Cerebral aneurysm
(before and after

flow-diverting stent)
DNN

3D, SS, N, IC, stent
modeled by porous

media
(ANSYS)

3D geometry, CFD results v & P distributions [70]

Aorta/carotid bifurcation PINN 1D, US, EW, N, IC
Reduced-order pulsatile

flow results, 4D flow MRI at
some cross sections

P wave propagation [34]

Cerebral aneurysm CNN 3D, US, RW, N, IC
(CONVERGE)

3D geometry, CFD results,
4D flow MRI Enhanced 4D flow MRI [80]
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4.1. Hemodynamics of Aorta

DL models were developed to predict the hemodynamics in 3D patient-specific mod-
els of the aorta under different conditions. Liang et al. investigated the feasibility of
using deep neural networks (DNNs) for hemodynamics modeling of the human thoracic
aorta [61]. The steady-state distributions of velocity, velocity magnitude, and pressure were
predicted using separate DNN models that were trained by hemodynamics data obtained
from CFD simulations of 729 thoracic aorta models (built based on the real geometry of
25 patients) [81]. Each CFD simulation took about 15 min on an 8-core computer, which
was significantly longer than the time needed to run a DL model to predict the same results.
The DL models consisted of three steps of shape encoding using an autoencoder, nonlinear
mapping of shape code to field code, and field decoding to predict the scalar values of
velocity and pressure. In this study, the meshes had correspondence among different
geometric models such that the surface mesh of all aorta models had the same number
of mesh nodes. Some studies suggested that this method enhances the DL performance
in large sample sizes compared to methods based on an image–pixel representation for
interpolation [65,81,82]. On the other hand, some studies suggest this method may not be
suitable for complex geometries consisting of both small and large vessels [73].

Li et al. developed a DL model to predict coronary hemodynamics before and after
coronary artery bypass surgery with a high resolution [73]. The proposed model was a
dual sampling channel network based on PointNet where the CFD mesh nodes defined
the input point cloud [72]. The DL model was trained by the CFD results that were carried
out for 110 patients with coronary heart disease. The trained model was then used to
predict the velocity and pressure distributions for a given 3D geometry. The DL model
performance was evaluated using normalized mean absolute error and mean relative error.
Figure 2 is a comparison of the streamlines and velocity distributions estimated by CFD
(i.e., the reference) with those predicted by the DL model for a patient with a stenosis rate of
85%. For example, Figure 2a–d shows the flow streamlines before and after bypass surgery.
The study suggested that there was a good agreement between CFD and DL results. The DL
model was able to predict complex structures, such as vortices (black arrows in Figure 2).
However, it achieved lower accuracy in the regions with vortices and flow separations.

Aortic coarctation is a congenital heart defect characterized by the narrowing of the
aorta. This condition causes a pressure gradient across the stenosed location (Figure 3),
which can lead to further cardiovascular complications, such as heart failure and cere-
bral aneurysm [83]. Different risk factors have been suggested as indicators of aortic
coarctation severity, such as pressure gradient, time-averaged wall shear stress, and flow
rate [84–86]. However, CFD investigation of the combination of these risk factors would be
time-consuming. Feiger et al. [30] developed a machine learning framework to study the
effect of these factors in a 3D aorta geometry of an eight-year-old female patient. A second
geometry was also created synthetically by increasing the degree of stenosis. For each
geometry, a total of 50 CFD simulations were carried out for the combination of 10 blood
viscosity and 5 flow-rate values. Machine learning models, including fully connected neural
networks with a single hidden layer, support vector machines, and regression trees, were
trained and tested by the results of 40 and 10 simulations, respectively. The performance
of the predictive model was assessed by computing the correlation coefficient between
the machine learning model predictions and the CFD results. The study reported a high
accuracy for the pressure gradient and wall shear stress values predicted by the neural
network model. However, despite the high computational cost of the numerical simulations
that were used to train the neural networks (more than 70 million computation hours),
general conclusions cannot be made about the model performance, given the limited num-
ber and variety of geometries. Another study investigated the aortic hemodynamics in
a database of 228 images of the aorta consisting of healthy individuals and patients with
aortic coarctation [75]. Additional geometries were also generated synthetically to improve
the performance of the DL model. Unlike most of the current DL-based CFD studies that
use general simplified boundary conditions, patient-specific boundary conditions were
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obtained from a 4D phase–contrast MRI in this study. Static pressure, wall shear stress,
secondary flow degree, and specific kinetic energy were estimated using CFD and then
averaged at the corresponding centerline point of the vessel. The DL model was trained
using the vessel centerline geometry and CFD boundary conditions to predict the averaged
hemodynamics parameters. The DL model consisted of a long–short-term memory archi-
tecture that is usually well-suited for the processing of time series. This architecture was
used to predict the hemodynamics parameters of a centerline node based on the values of
the adjacent nodes. It should be noted that although the DL model was able to estimate the
hemodynamics parameters faster than a CFD simulation, long–short-term memory models
usually require a long computational time and considerable resources for training. Thus,
a lengthy training may contradict the primary goal of using DL for CFD estimation.
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Figure 3. Aortic coarctation creates a pressure gradient across the stenosed location, which can be
characterized using non-invasive numerical models. Reprinted from ref. [30].

4.2. Cerebral Hemodynamics

The investigation of cerebral hemodynamics is essential for developing new diagnostic
and treatment methods for cerebrovascular diseases. Clinical techniques for cerebral hemo-
dynamics measurement include transcranial Doppler ultrasound, which is usually limited
to measurements in a few cross sections of the cerebrovascular system. CFD simulations,
on the other hand, can estimate the hemodynamics in the entire cerebrovascular system.
However, such simulations are associated with expensive computational cost.

PINNs predict flow patterns quantitively based on the variation of a passive scalar
over time that is usually acquired through measurements or experiments. In the medical
setting, this information can become available from the propagation of contrast material
(e.g., Iohexol, Omnipaque 300, GE Healthcare, Chicago, IL) that is routinely administered
during diagnostic tests, such as angiography or contrast-enhanced computed tomogra-
phy [87]. Raissi et al. [46] developed a PINN model to predict the 3D hemodynamics in a
patient-specific intracranial aneurysm (Figure 4a). For model training, a uniform concentra-
tion for the passive scalar was only used in an arbitrary training domain (Figure 4b), and no
additional boundary condition information was required. Figure 4c shows the architecture
of the PINN model, which consisted of a densely connected physics-uninformed neural net-
work, automatic differentiation operators, and a Navier–Stokes-informed neural network.
The study suggested that the velocity and pressure predictions were in agreements with
the reference solution, which was obtained from a CFD simulation with patient-specific
boundary conditions (Figure 4d,e).

Sarabian et al. [68] developed a PINN model to estimate the flow rate and pressure
distributions in the cerebrovascular system. To predict these parameters, the DL model used
a 1D fluid dynamics model and limited measurements of transcranial Doppler ultrasound,
which were acquired at several locations in the cerebral vasculature, as well as the baseline
vessel cross-sectional areas. The DL results were compared and validated with the flow
measurements obtained from a gold-standard 4D flow MRI. This study suggested that the
1D CFD results achieved less agreement with the clinical measurements than the PINN
predictions, which could be due to the lack of patient-specific boundary conditions in the
CFD simulations or the presence of noise in the 4D flow MRI data.
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reference velocity distributions. Adapted with permission from ref. [46]. Copyright 2020, Science.

4.3. 4D Flow Magnetic Resonance Imaging

4D flow MRI can visualize and quantify the time variation of the 3D velocity field in
the vessels [88]. Other parameters and geometric features, such as vessel tortuosity and
cross-sectional area, can be calculated either directly or indirectly from these images [89].
However, 4D flow MRI is unable to provide information about some of the critical hemody-
namics parameters, such as pressure, on its own merits. Furthermore, limitations such as
patient scan time restrictions, intravoxel dephasing, and image noise can result in poor flow
estimations from 4D flow MRI scans [80]. On the other hand, CFD simulations, as an alter-
native to 4D flow MRI, usually suffer from a lack of patient-specific boundary conditions.
PINNs can combine the strengths of CFD and 4D flow MRI, boosting them further with the
power of DL. For example, PINNs were used to estimate pressure wave propagation from
4D flow MRI using a reduced-order model of pulsatile flow [34]. Other DL models, such as
CNNs, can be used to enhance the quality of 4D flow MRI data by CFD estimations [80].
Figure 5 compares DL-enhanced velocity fields with the original MRI estimations. In this
example, the DL model was able to improve the near-wall velocity estimation, smooth
the velocity gradient transitions in abnormalities such as cerebral aneurysms, and remove
unrealistic velocity fluctuations. In another study, CFD simulations were used to generate
synthetic 4D flow MRI data, which were subsequently used to train a deep super-resolution
residual network designed to enhance the quality of real 4D flow MRI data [90].



Fluids 2022, 7, 197 10 of 15

Fluids 2022, 7, x FOR PEER REVIEW 10 of 16 
 

than the PINN predictions, which could be due to the lack of patient-specific boundary 
conditions in the CFD simulations or the presence of noise in the 4D flow MRI data. 

4.3. 4D Flow Magnetic Resonance Imaging 
4D flow MRI can visualize and quantify the time variation of the 3D velocity field in 

the vessels [88]. Other parameters and geometric features, such as vessel tortuosity and 
cross-sectional area, can be calculated either directly or indirectly from these images [89]. 
However, 4D flow MRI is unable to provide information about some of the critical hemo-
dynamics parameters, such as pressure, on its own merits. Furthermore, limitations such 
as patient scan time restrictions, intravoxel dephasing, and image noise can result in poor 
flow estimations from 4D flow MRI scans [80]. On the other hand, CFD simulations, as an 
alternative to 4D flow MRI, usually suffer from a lack of patient-specific boundary condi-
tions. PINNs can combine the strengths of CFD and 4D flow MRI, boosting them further 
with the power of DL. For example, PINNs were used to estimate pressure wave propa-
gation from 4D flow MRI using a reduced-order model of pulsatile flow [34]. Other DL 
models, such as CNNs, can be used to enhance the quality of 4D flow MRI data by CFD 
estimations [80]. Figure 5 compares DL-enhanced velocity fields with the original MRI 
estimations. In this example, the DL model was able to improve the near-wall velocity 
estimation, smooth the velocity gradient transitions in abnormalities such as cerebral an-
eurysms, and remove unrealistic velocity fluctuations. In another study, CFD simulations 
were used to generate synthetic 4D flow MRI data, which were subsequently used to train 
a deep super-resolution residual network designed to enhance the quality of real 4D flow 
MRI data [90]. 

 
Figure 5. DL models have been used to enhance the velocity field obtained by 4D flow MRI by (a) 
improving near-wall velocity gradients, (b) smoothing velocity gradient transitions, (c) removing 
unrealistic velocity fluctuations, and (d) better characterizing near-wall velocity vectors in tortuous 
structures. Arrows show the main areas of image improvement. Adapted from ref. [80]. 

5. Discussion and Future Directions 
Recent advances in the field of DL for hemodynamics simulations indicate the strong 

potential of this computational method to address a wide variety of clinical needs. DL 
models do not replace conventional computational simulations but could assist them in 

Figure 5. DL models have been used to enhance the velocity field obtained by 4D flow MRI by
(a) improving near-wall velocity gradients, (b) smoothing velocity gradient transitions, (c) removing
unrealistic velocity fluctuations, and (d) better characterizing near-wall velocity vectors in tortuous
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5. Discussion and Future Directions

Recent advances in the field of DL for hemodynamics simulations indicate the strong
potential of this computational method to address a wide variety of clinical needs. DL
models do not replace conventional computational simulations but could assist them in
mitigating some of their common bottlenecks, such as high computational costs. The best-
case scenario for a DL model that is trained by the data obtained from CFD simulations is
to achieve an accuracy as good as the CFD results (i.e., the training dataset). Considering
the potential loss in accuracy, DL solutions are recommended, especially when either a
quick medical decision is needed, or it is difficult or impossible to develop conventional
computational models for a specific biomechanics problem.

DL usually requires large volumes of training data. When the training dataset is small,
the trained model may be suitable for interpolation but may not perform well for new input
data that represent different features than the training dataset (i.e., extrapolation). Many
DL datasets in other applications have a large sample size. However, such a large database
is not still available for fluid mechanics applications, specifically for biomedical CFD. Thus,
the current DL models suffer from insufficient training data [73,75]. Estimating an appro-
priate size of training data for a specific application is usually difficult. Based on available
studies, the training datasets for hemodynamics applications should include the data of
several thousand subjects. However, such big data are not usually available for CFD studies.
Developing such databases with appropriate labels for training could attract more interest
to develop DL models for biomedical flow applications. In addition, data augmentation
techniques can be employed to increase the size of datasets [66,70]. For instance, some
studies used statistical shape models to create large synthetic databases [75,76]. Similar
methods may be used to mitigate the issue of small training datasets.

In many recent DL-based CFD fluid mechanics investigations, reduced-order models,
such as 1D [66,67] and 2D flow fields [91–95], were employed. DL has also been used
for automatic parameter estimation in reduced-order models [31,34,96]. Whereas these
approximations can reduce the computational cost, they are unable to provide detailed
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information about the local and complex flow parameters, which might be needed in some
clinical applications. In addition, some DL models that are based on 3D flow studies are de-
veloped for ideal or simplified geometries with an insufficient sample resolution to predict
complex flow field structures [61,97]. Although these reduced-order and simplified models
decrease the computational time, they cannot estimate complex flow patterns, such as
recirculation, vorticity, and wall shear stress, which are important to understand patient
hemodynamics. Furthermore, the simplified assumptions of these models are associated
with uncertainty in the estimated hemodynamics parameters. Future efforts should focus
on developing DL models for 3D blood flow fields to handle high-resolution samples.

Most of the current DL models were designed to predict the flow behavior of simpler
conditions, such as Newtonian behavior of blood flow. Whereas blood can be assumed to
be a Newtonian fluid in large vessels (especially in most arteries), its viscosity varies with
flow rate in smaller arteries and capillaries [98]. For medical conditions such as stenosis,
a non-Newtonian model may be preferred over a Newtonian model [39]. Future efforts
should consider including more complex physics in DL models to account for realistic
conditions, such as non-Newtonian blood behavior in smaller arteries and viscoelastic
properties of the arterial wall.

PINNs can be specifically developed for hemodynamics estimation upon availability
of information on a clinical passive scalar. For example, in some procedures, such as
treatment planning for liver cancer radioembolization, several angiography tests with
contrast material are usually performed to identify the anatomy of the patient arterial
tree, locate abnormalities, and identify ideal injection locations for the real treatment [99].
Patient-specific data obtained from these tests can be used to train PINNs in future studies.
Similarly, blood velocity data estimated from other imaging modalities, such as Doppler
ultrasound and 4D flow MRI, can be used to generate the concentration field required to
train PINNs. These DL models can then be used to predict fluid dynamics parameters under
complex conditions, such as blood flow through heart valves. Despite CFD simulations
that need these data at the boundaries of the computational domain (e.g., as the inlet
or outlet boundary condition), PINNs are flexible about where this clinical information
(passive scalar) is measured from, as long as it is within the computational domain [46].
Utilizing patient-specific data in PINNs is a strength for this method, but it can also become
a bottleneck or issue. Angiography and 4D flow MRI scans can be noisy, especially in
smaller vessels. This noisy data may contradict the underlying fluid mechanics laws, which
represent another central component of PINNs [34]. This issue should be addressed in by
future PINN developments.

Finally, to perform a patient-specific CFD simulation, tedious procedures should
be completed. From image segmentation, model preprocessing, mesh generation, and
mesh quality control to boundary condition calibration, simulation parameter calculation,
and postprocessing of the simulation results, each step is time-consuming and requires
expertise. Current studies have investigated the potential of DL to perform each of these
tasks. The focus of future studies should be on developing DL pipelines that integrate all
the steps needed for a CFD simulation, from preprocessing to postprocessing of the data.

6. Conclusions

Recent advances in image-based, patient-specific CFD modeling have made this
method an attractive tool to develop personalized treatments and diagnostic methods.
However, bottlenecks such as the expensive computational cost of numerical models
represent a major obstacle in translating them into real-time clinical tools. This review
suggests that the current efforts and advances in integrating CFD with DL have a high
potential to define a new, non-invasive computational paradigm for medical diagnosis,
pretreatment planning, and personalized treatment.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Fluids 2022, 7, 197 12 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Reid, L. An Introduction to Biomedical Computational Fluid Dynamics. In Biomedical Visualisation; Springer: Cham, Switzerland,

2021; pp. 205–222.
2. Can, A.; Du, R. Association of Hemodynamic Factors With Intracranial Aneurysm Formation and Rupture. Neurosurgery 2016, 78,

510–520. [CrossRef] [PubMed]
3. Ameenuddin, M.; Anand, M. A Mixture Theory Model for Blood Combined With Low-Density Lipoprotein Transport to Predict

Early Atherosclerosis Regions in Idealized and Patient-Derived Abdominal Aorta. J. Biomech. Eng. 2020, 142, 101008. [CrossRef]
[PubMed]

4. Shadden, S.C.; Arzani, A. Lagrangian Postprocessing of Computational Hemodynamics. Ann. Biomed. Eng. 2015, 43, 41–58.
[CrossRef] [PubMed]

5. Khalili, F.; Gamage, P.T.; Taebi, A.; Johnson, M.E.; Roberts, R.B.; Mitchell, J. Spectral Decomposition of the Flow and Char-
acterization of the Sound Signals through Stenoses with Different Levels of Severity. Bioengineering 2021, 8, 41. [CrossRef]
[PubMed]

6. Khalili, F.; Gamage, P.T.; Taebi, A.; Johnson, M.E.; Roberts, R.B.; Mitchel, J. Spectral Decomposition and Sound Source Localization
of Highly Disturbed Flow through a Severe Arterial Stenosis. Bioengineering 2021, 8, 34. [CrossRef]

7. Gamage, P.P.T.; Khalili, F.; Azad, K.; Mansy, H.A. Modeling Inspiratory Flow in a Porcine Lung Airway. J. Biomech. Eng. 2018,
140, 061003. [CrossRef]

8. Nowak, N.; Kakade, P.P.; Annapragada, A.V. Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in
Human Lungs. Ann. Biomed. Eng. 2003, 31, 374–390. [CrossRef]

9. Xi, J.; April Si, X.; Dong, H.; Zhong, H. Effects of Glottis Motion on Airflow and Energy Expenditure in a Human Upper Airway
Model. Eur. J. Mech. B/Fluids 2018, 72, 23–37. [CrossRef]

10. Tully, B.; Ventikos, Y. Coupling Poroelasticity and CFD for Cerebrospinal Fluid Hydrodynamics. IEEE Trans. Biomed. Eng. 2009,
56, 1644–1651. [CrossRef]

11. Heidari Pahlavian, S.; Bunck, A.C.; Loth, F.; Shane Tubbs, R.; Yiallourou, T.; Robert Kroeger, J.; Heindel, W.; Martin, B.A.
Characterization of the Discrepancies Between Four-Dimensional Phase-Contrast Magnetic Resonance Imaging and In-Silico
Simulations of Cerebrospinal Fluid Dynamics. J. Biomech. Eng. 2015, 137, 051002. [CrossRef]

12. Kelly, W.J.; Muske, K.R. Optimal Operation of High-Pressure Homogenization for Intracellular Product Recovery.
Bioprocess Biosyst. Eng. 2004, 27, 25–37. [CrossRef] [PubMed]

13. Yarmush, G.; Santos, L.; Yarmush, J.; Koundinyan, S.; Saleem, M.; Nativ, N.I.; Yarmush, M.L.; Berthiaume, F.; Maguire, T.J.;
Guaghan, C. CFD Assessment of the Effect of Convective Mass Transport on the Intracellular Clearance of Intracellular Triglyc-
erides in Macrosteatotic Hepatocytes. Biomech. Model. Mechanobiol. 2017, 16, 1095–1102. [CrossRef] [PubMed]

14. Taebi, A.; Khalili, F. Advances in Noninvasive Diagnosis Based on Body Sounds and Vibrations—A Review. In Biomedical and
Biotechnology; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 5. [CrossRef]

15. Khalili, F.; Taebi, A. Advances in Computational Fluid Dynamics Modeling of Cardiac Sounds as a Non-Invasive Diagnosis
Method. In Biomedical and Biotechnology; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 5.
[CrossRef]

16. Cook, J.; Umar, M.; Khalili, F.; Taebi, A. Body Acoustics for the Non-Invasive Diagnosis of Medical Conditions. Bioengineering
2022, 9, 149. [CrossRef] [PubMed]

17. Taebi, A.; Solar, B.; Bomar, A.; Sandler, R.; Mansy, H. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [CrossRef]
18. Meschi, S.S.; Farghadan, A.; Arzani, A. Flow Topology and Targeted Drug Delivery in Cardiovascular Disease. J. Biomech. 2021,

119, 110307. [CrossRef]
19. Li, B.; Feng, Y. In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region

Using External Magnetic Fields. Bioengineering 2022, 9, 40. [CrossRef]
20. Taebi, A.; Vu, C.T.; Roncali, E. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioemboliza-

tion Dosimetry. J. Biomech. Eng. 2021, 143, 011002. [CrossRef]
21. Roncali, E.; Taebi, A.; Foster, C.; Vu, C.T. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational

Fluid Dynamics and Monte Carlo Simulation. Ann. Biomed. Eng. 2020, 48, 1499–1510. [CrossRef]
22. Ghosh, R.P.; Marom, G.; Rotman, O.M.; Slepian, M.J.; Prabhakar, S.; Horner, M.; Bluestein, D. Comparative Fluid–Structure Inter-

action Analysis of Polymeric Transcatheter and Surgical Aortic Valves’ Hemodynamics and Structural Mechanics. J. Biomech. Eng.
2018, 140, 121002. [CrossRef]

23. Uchiyama, Y.; Fujimura, S.; Takao, H.; Suzuki, T.; Hayakawa, M.; Ishibashi, T.; Karagiozov, K.; Fukudome, K.; Murayama, Y.;
Yamamoto, M. Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral
Aneurysm Treatment. Bioengineering 2021, 8, 143. [CrossRef]

http://doi.org/10.1227/NEU.0000000000001083
http://www.ncbi.nlm.nih.gov/pubmed/26516819
http://doi.org/10.1115/1.4047426
http://www.ncbi.nlm.nih.gov/pubmed/32507886
http://doi.org/10.1007/s10439-014-1070-0
http://www.ncbi.nlm.nih.gov/pubmed/25059889
http://doi.org/10.3390/bioengineering8030041
http://www.ncbi.nlm.nih.gov/pubmed/33808744
http://doi.org/10.3390/bioengineering8030034
http://doi.org/10.1115/1.4038431
http://doi.org/10.1114/1.1560632
http://doi.org/10.1016/j.euromechflu.2018.04.011
http://doi.org/10.1109/TBME.2009.2016427
http://doi.org/10.1115/1.4029699
http://doi.org/10.1007/s00449-004-0378-9
http://www.ncbi.nlm.nih.gov/pubmed/15480808
http://doi.org/10.1007/s10237-017-0882-x
http://www.ncbi.nlm.nih.gov/pubmed/28220319
http://doi.org/10.1115/imece2021-73815
http://doi.org/10.1115/imece2021-73825
http://doi.org/10.3390/bioengineering9040149
http://www.ncbi.nlm.nih.gov/pubmed/35447708
http://doi.org/10.3390/vibration2010005
http://doi.org/10.1016/j.jbiomech.2021.110307
http://doi.org/10.3390/bioengineering9010040
http://doi.org/10.1115/1.4047656
http://doi.org/10.1007/s10439-020-02469-1
http://doi.org/10.1115/1.4040600
http://doi.org/10.3390/bioengineering8100143


Fluids 2022, 7, 197 13 of 15

24. Khalili, F. Fluid Dynamics Modeling and Sound Analysis of a Bileaflet Mechanical Heart Valve. Ph.D. Thesis, University of
Central Florida, Orlando, FL, USA, 2018.

25. Caballero, A.; Mao, W.; McKay, R.; Sun, W. The Impact of Balloon-Expandable Transcatheter Aortic Valve Replacement on
Concomitant Mitral Regurgitation: A Comprehensive Computational Analysis. J. R. Soc. Interface 2019, 16, 20190355. [CrossRef]
[PubMed]

26. Gamage, P.T.; Dong, P.; Lee, J.; Gharaibeh, Y.; Zimin, V.N.; Dallan, L.A.P.; Bezerra, H.G.; Wilson, D.L.; Gu, L. Hemodynamic
Alternations Following Stent Deployment and Post-Dilation in a Heavily Calcified Coronary Artery: In Silico and Ex-Vivo
Approaches. Comput. Biol. Med. 2021, 139, 104962. [CrossRef] [PubMed]

27. Ge, L.; Leo, H.-L.; Sotiropoulos, F.; Yoganathan, A.P. Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole
Flow Rates: CFD Simulations and Experiments. J. Biomech. Eng. 2005, 127, 782–797. [CrossRef] [PubMed]

28. Taylor, C.A.; Steinman, D.A. Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future
Directions. Ann. Biomed. Eng. 2010, 38, 1188–1203. [CrossRef] [PubMed]

29. Lan, H.; Updegrove, A.; Wilson, N.M.; Maher, G.D.; Shadden, S.C.; Marsden, A.L. A Re-Engineered Software Interface and
Workflow for the Open-Source SimVascular Cardiovascular Modeling Package. J. Biomech. Eng. 2018, 140, 024501. [CrossRef]
[PubMed]

30. Feiger, B.; Gounley, J.; Adler, D.; Leopold, J.A.; Draeger, E.W.; Chaudhury, R.; Ryan, J.; Pathangey, G.; Winarta, K.; Frakes, D.; et al.
Accelerating Massively Parallel Hemodynamic Models of Coarctation of the Aorta Using Neural Networks. Sci. Rep. 2020,
10, 9508. [CrossRef]

31. Pfaller, M.R.; Pham, J.; Verma, A.; Wilson, N.M.; Parker, D.W.; Yang, W.; Marsden, A.L. Automated Generation of 0D and 1D
Reduced-Order Models of Patient-Specific Blood Flow. arXiv 2021, arXiv:2111.04878.

32. Westerhof, N.; Lankhaar, J.W.; Westerhof, B.E. The Arterial Windkessel. Med. Biol. Eng. Comput. 2009, 47, 131–141. [CrossRef]
33. Arzani, A.; Wang, J.-X.; D’Souza, R.M. Uncovering Near-Wall Blood Flow from Sparse Data with Physics-Informed Neural

Networks. Phys. Fluids 2021, 33, 071905. [CrossRef]
34. Kissas, G.; Yang, Y.; Hwuang, E.; Witschey, W.R.; Detre, J.A.; Perdikaris, P. Machine Learning in Cardiovascular Flows Mod-

eling: Predicting Arterial Blood Pressure from Non-Invasive 4D Flow MRI Data Using Physics-Informed Neural Networks.
Comput. Methods Appl. Mech. Eng. 2020, 358, 112623. [CrossRef]

35. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.
[CrossRef]

36. Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine Learning–Accelerated Computational Fluid
Dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [CrossRef] [PubMed]

37. Taira, K.; Brunton, S.L.; Dawson, S.T.M.; Rowley, C.W.; Colonius, T.; McKeon, B.J.; Schmidt, O.T.; Gordeyev, S.; Theofilis, V.;
Ukeiley, L.S. Modal Analysis of Fluid Flows: An Overview. AIAA J. 2017, 55, 4013–4041. [CrossRef]

38. Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems;
Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2016.

39. Carvalho, V.; Pinho, D.; Lima, R.A.; Teixeira, J.C.; Teixeira, S. Blood Flow Modeling in Coronary Arteries: A Review. Fluids 2021,
6, 53. [CrossRef]

40. Kutz, J.N. Deep Learning in Fluid Dynamics. J. Fluid Mech. 2017, 814, 1–4. [CrossRef]
41. Milano, M.; Koumoutsakos, P. Neural Network Modeling for Near Wall Turbulent Flow. J. Comput. Phys. 2002, 182, 1–26.

[CrossRef]
42. Fukami, K.; Fukagata, K.; Taira, K. Super-Resolution Reconstruction of Turbulent Flows with Machine Learning. J. Fluid Mech.

2019, 870, 106–120. [CrossRef]
43. Xie, Y.; Franz, E.; Chu, M.; Thuerey, N. TempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow.

ACM Trans. Graph. 2018, 37, 1–15. [CrossRef]
44. Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; Yu, R. Towards Physics-Informed Deep Learning for Turbulent Flow Prediction.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York,
NY, USA, 6–10 June 2020; pp. 1457–1466.

45. Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the
Incompressible Navier-Stokes Equations. J. Comput. Phys. 2021, 426, 109951. [CrossRef]

46. Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualiza-
tions. Science 2020, 367, 1026–1030. [CrossRef]

47. Yin, M.; Zheng, X.; Humphrey, J.D.; Karniadakis, G.E. Non-Invasive Inference of Thrombus Material Properties with Physics-
Informed Neural Networks. Comput. Methods Appl. Mech. Eng. 2021, 375, 113603. [CrossRef] [PubMed]

48. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-Informed Neural Networks for High-Speed Flows. Comput. Methods Appl.
Mech. Eng. 2020, 360, 112789. [CrossRef]

49. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review.
Acta Mech. Sin. 2022, 37, 1727–1738. [CrossRef]

50. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.;
Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

http://doi.org/10.1098/rsif.2019.0355
http://www.ncbi.nlm.nih.gov/pubmed/31409236
http://doi.org/10.1016/j.compbiomed.2021.104962
http://www.ncbi.nlm.nih.gov/pubmed/34715552
http://doi.org/10.1115/1.1993665
http://www.ncbi.nlm.nih.gov/pubmed/16248308
http://doi.org/10.1007/s10439-010-9901-0
http://www.ncbi.nlm.nih.gov/pubmed/20087775
http://doi.org/10.1115/1.4038751
http://www.ncbi.nlm.nih.gov/pubmed/29238826
http://doi.org/10.1038/s41598-020-66225-0
http://doi.org/10.1007/s11517-008-0359-2
http://doi.org/10.1063/5.0055600
http://doi.org/10.1016/j.cma.2019.112623
http://doi.org/10.1146/annurev-fluid-010719-060214
http://doi.org/10.1073/pnas.2101784118
http://www.ncbi.nlm.nih.gov/pubmed/34006645
http://doi.org/10.2514/1.J056060
http://doi.org/10.3390/fluids6020053
http://doi.org/10.1017/jfm.2016.803
http://doi.org/10.1006/jcph.2002.7146
http://doi.org/10.1017/jfm.2019.238
http://doi.org/10.1145/3197517.3201304
http://doi.org/10.1016/j.jcp.2020.109951
http://doi.org/10.1126/science.aaw4741
http://doi.org/10.1016/j.cma.2020.113603
http://www.ncbi.nlm.nih.gov/pubmed/33414569
http://doi.org/10.1016/j.cma.2019.112789
http://doi.org/10.1007/s10409-021-01148-1
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026


Fluids 2022, 7, 197 14 of 15

51. Liang, L.; Kong, F.; Martin, C.; Pham, T.; Wang, Q.; Duncan, J.; Sun, W. Machine Learning-Based 3-D Geometry Reconstruction
and Modeling of Aortic Valve Deformation Using 3-D Computed Tomography Images. Int. J. Numer. Method. Biomed. Eng. 2017,
33, e2827. [CrossRef]

52. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571.

53. Pouch, A.M.; Wang, H.; Takabe, M.; Jackson, B.M.; Gorman, J.H.; Gorman, R.C.; Yushkevich, P.A.; Sehgal, C.M. Fully Automatic
Segmentation of the Mitral Leaflets in 3D Transesophageal Echocardiographic Images Using Multi-Atlas Joint Label Fusion and
Deformable Medial Modeling. Med. Image Anal. 2014, 18, 118–129. [CrossRef]

54. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

55. Taebi, A.; Roudsari, B.; Vu, C.; Cherry, S.; Roncali, E. Hepatic Arterial Tree Segmentation: Towards Patient-Specific Dosimetry for
Liver Cancer Radioembolization. J. Nucl. Med. 2019, 60 (Suppl. 1), 122.

56. Huang, K.; Krügener, M.; Brown, A.; Menhorn, F.; Bungartz, H.-J.; Hartmann, D. Machine Learning-Based Optimal Mesh
Generation in Computational Fluid Dynamics. arXiv 2021, arXiv:2102.12923.

57. Zhang, Z.; Jimack, P.K.; Wang, H. MeshingNet3D: Efficient Generation of Adapted Tetrahedral Meshes for Computational
Mechanics. Adv. Eng. Softw. 2021, 157–158, 103021. [CrossRef]

58. Chen, X.; Liu, J.; Gong, C.; Li, S.; Pang, Y.; Chen, B. MVE-Net: An Automatic 3-D Structured Mesh Validity Evaluation Framework
Using Deep Neural Networks. Comput. Des. 2021, 141, 103104. [CrossRef]

59. Xu, Z.; Chen, X.; Chi, L.; Liu, J.; Gong, C. A Mesh Quality Discrimination Method Based on Convolutional Neural Network.
In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, China,
27–29 June 2020; pp. 481–486.

60. Chen, X.; Liu, J.; Pang, Y.; Chen, J.; Chi, L.; Gong, C. Developing a New Mesh Quality Evaluation Method Based on Convolutional
Neural Network. Eng. Appl. Comput. Fluid Mech. 2020, 14, 391–400. [CrossRef]

61. Liang, L.; Mao, W.; Sun, W. A Feasibility Study of Deep Learning for Predicting Hemodynamics of Human Thoracic Aorta.
J. Biomech. 2020, 99, 109544. [CrossRef] [PubMed]

62. Liu, M.; Liang, L.; Sun, W. Estimation of in Vivo Constitutive Parameters of the Aortic Wall Using a Machine Learning Approach.
Comput. Methods Appl. Mech. Eng. 2019, 347, 201–217. [CrossRef] [PubMed]

63. Cilla, M.; Pérez-Rey, I.; Martínez, M.A.; Peña, E.; Martínez, J. On the Use of Machine Learning Techniques for the Mechanical
Characterization of Soft Biological Tissues. Int. J. Numer. Method. Biomed. Eng. 2018, 34, e3121. [CrossRef]

64. Luo, Y.; Fan, Z.; Baek, S.; Lu, J. Machine Learning-Aided Exploration of Relationship between Strength and Elastic Properties in
Ascending Thoracic Aneurysm. Int. J. Numer. Method. Biomed. Eng. 2018, 34, e2977. [CrossRef]

65. Liang, L.; Liu, M.; Martin, C.; Sun, W. A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate
of Finite-Element Analysis. J. R. Soc. Interface 2018, 15, 20170844. [CrossRef]

66. Itu, L.; Rapaka, S.; Passerini, T.; Georgescu, B.; Schwemmer, C.; Schoebinger, M.; Flohr, T.; Sharma, P.; Comaniciu, D. A Machine-
Learning Approach for Computation of Fractional Flow Reserve from Coronary Computed Tomography. J. Appl. Physiol. 2016,
121, 42–52. [CrossRef]

67. Sklet, V. Exploring the Capabilities of Machine Learning (ML) for 1D Blood Flow: Application to Coronary Flow. Master’s Thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2018.

68. Sarabian, M.; Babaee, H.; Laksari, K. Physics-Informed Neural Networks for Improving Cerebral Hemodynamics Predictions.
arXiv 2021, arXiv:2108.11498.

69. Tran, D.M.; Nguyen, M.T.; Lee, S.-W. Machine Learning Based Evaluation of Functional Index for Coronary Lesion Severity.
In Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, Phu Quoc Island, Vietnam,
2–4 February 2018; ACM Press: New York, NY, USA, 2018; pp. 1–4.

70. Li, G.; Song, X.; Wang, H.; Liu, S.; Ji, J.; Guo, Y.; Qiao, A.; Liu, Y.; Wang, X. Prediction of Cerebral Aneurysm Hemodynamics With
Porous-Medium Models of Flow-Diverting Stents via Deep Learning. Front. Physiol. 2021, 12, 1513. [CrossRef]

71. Gharleghi, R.; Samarasinghe, G.; Sowmya, A.; Beier, S. Deep Learning for Time Averaged Wall Shear Stress Prediction in Left
Main Coronary Bifurcations. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI),
Iowa City, IA, USA, 3–7 April 2020; pp. 1–4.

72. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta-
tion. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 77–85.

73. Li, G.; Wang, H.; Zhang, M.; Tupin, S.; Qiao, A.; Liu, Y.; Ohta, M.; Anzai, H. Prediction of 3D Cardiovascular Hemodynamics
before and after Coronary Artery Bypass Surgery via Deep Learning. Commun. Biol. 2021, 4, 99. [CrossRef]

74. Randles, A.P.; Kale, V.; Hammond, J.; Gropp, W.; Kaxiras, E. Performance Analysis of the Lattice Boltzmann Model Beyond
Navier-Stokes. In Proceedings of the IEEE 27th International Symposium on Parallel and Distributed Processing, Cambridge,
MA, USA, 20–24 May 2013; pp. 1063–1074.

http://doi.org/10.1002/cnm.2827
http://doi.org/10.1016/j.media.2013.10.001
http://doi.org/10.1016/j.advengsoft.2021.103021
http://doi.org/10.1016/j.cad.2021.103104
http://doi.org/10.1080/19942060.2020.1720820
http://doi.org/10.1016/j.jbiomech.2019.109544
http://www.ncbi.nlm.nih.gov/pubmed/31806261
http://doi.org/10.1016/j.cma.2018.12.030
http://www.ncbi.nlm.nih.gov/pubmed/31160830
http://doi.org/10.1002/cnm.3121
http://doi.org/10.1002/cnm.2977
http://doi.org/10.1098/rsif.2017.0844
http://doi.org/10.1152/japplphysiol.00752.2015
http://doi.org/10.3389/fphys.2021.733444
http://doi.org/10.1038/s42003-020-01638-1


Fluids 2022, 7, 197 15 of 15

75. Yevtushenko, P.; Goubergrits, L.; Gundelwein, L.; Setio, A.; Heimann, T.; Ramm, H.; Lamecker, H.; Kuehne, T.; Meyer, A.;
Schafstedde, M. Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical
Modelling of Hemodynamics. IEEE J. Biomed. Heal. Inform. 2021, 26, 1815–1825. [CrossRef] [PubMed]

76. Morales, X.; Mill, J.; Juhl, K.A.; Olivares, A.; Jimenez-Perez, G.; Paulsen, R.R.; Camara, O. Deep Learning Surrogate of Computa-
tional Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage. In International Workshop on Statistical Atlases
and Computational Models of the Heart; Springer: Cham, Switzerland, 2020; pp. 157–166.

77. Taebi, A.; Vu, C.T.; Roncali, E. Estimation of Yttrium-90 Distribution in Liver Radioembolization Using Computational Fluid
Dynamics and Deep Neural Networks. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4974–4977.

78. Taebi, A.; Vu, C.T.; Roncali, E. Prediction of Blood Flow Distribution in Liver Radioembolization Using Convolutional Neural
Networks. In Biomedical and Biotechnology; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 5.
[CrossRef]

79. Logg, A.; Mardal, K.-A.; Wells, G. (Eds.) Automated Solution of Differential Equations by the Finite Element Method; Springer:
Berlin/Heidelberg, Germany, 2012.

80. Rutkowski, D.R.; Roldán-Alzate, A.; Johnson, K.M. Enhancement of Cerebrovascular 4D Flow MRI Velocity Fields Using Machine
Learning and Computational Fluid Dynamics Simulation Data. Sci. Rep. 2021, 11, 10240. [CrossRef] [PubMed]

81. Liang, L.; Liu, M.; Martin, C.; Elefteriades, J.A.; Sun, W. A Machine Learning Approach to Investigate the Relationship between
Shape Features and Numerically Predicted Risk of Ascending Aortic Aneurysm. Biomech. Model. Mechanobiol. 2017, 16, 1519–1533.
[CrossRef] [PubMed]

82. Yu, Y.; Zhang, S.; Huang, J.; Metaxas, D.; Axel, L. Sparse Deformable Models with Application to Cardiac Motion Analysis. In
International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2013; pp. 208–219.

83. Love, B.A.; Fischer, G.W.; Stelzer, P.; Fuster, V. Aortic Coarctation in the Adult. In Pediatric and Congenital Cardiology, Cardiac
Surgery and Intensive Care; Springer: London, UK, 2014; pp. 2521–2549.

84. Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; del Nido, P.; Fasules, J.W.; Graham, T.P.;
Hijazi, Z.M.; et al. ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease. J. Am. Coll. Cardiol.
2008, 52, e143–e263. [CrossRef] [PubMed]

85. Markl, M.; Brendecke, S.M.; Simon, J.; Barker, A.J.; Weiller, C.; Harloff, A. Co-Registration of the Distribution of Wall Shear Stress
and 140 Complex Plaques of the Aorta. Magn. Reson. Imaging 2013, 31, 1156–1162. [CrossRef] [PubMed]

86. Zhu, H.; Zhang, J.; Shih, J.; Lopez-Bertoni, F.; Hagaman, J.R.; Maeda, N.; Friedman, M.H. Differences in Aortic Arch Geometry,
Hemodynamics, and Plaque Patterns Between C57BL/6 and 129/SvEv Mice. J. Biomech. Eng. 2009, 131, 121005. [CrossRef]

87. Miles, K.A.; Lee, T.-Y.; Goh, V.; Klotz, E.; Cuenod, C.; Bisdas, S.; Groves, A.M.; Hayball, M.P.; Alonzi, R.; Brunner, T. Current Status
and Guidelines for the Assessment of Tumour Vascular Support with Dynamic Contrast-Enhanced Computed Tomography.
Eur. Radiol. 2012, 22, 1430–1441. [CrossRef]

88. Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O. 4D Flow MRI. J. Magn. Reson. Imaging 2012, 36, 1015–1036.
[CrossRef]

89. Plein, S.; Bloomer, T.N.; Ridgway, J.P.; Jones, T.R.; Bainbridge, G.J.; Sivananthan, M.U. Steady-State Free Precession Magnetic
Resonance Imaging of the Heart: Comparison with Segmented k-Space Gradient-Echo Imaging. J. Magn. Reson. Imaging 2001, 14,
230–236. [CrossRef]

90. Ferdian, E.; Suinesiaputra, A.; Dubowitz, D.J.; Zhao, D.; Wang, A.; Cowan, B.; Young, A.A. 4DFlowNet: Super-Resolution 4D
Flow MRI Using Deep Learning and Computational Fluid Dynamics. Front. Phys. 2020, 8, 138. [CrossRef]

91. Miyanawala, T.P.; Jaiman, R.K. An Efficient Deep Learning Technique for the Navier-Stokes Equations: Application to Unsteady
Wake Flow Dynamics. arXiv 2017, arXiv:1710.09099.

92. Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.C.; Guo, Y. Model Identification of Reduced Order Fluid Dynamics Systems
Using Deep Learning. Int. J. Numer. Methods Fluids 2018, 86, 255–268. [CrossRef]

93. Lye, K.O.; Mishra, S.; Ray, D. Deep Learning Observables in Computational Fluid Dynamics. J. Comput. Phys. 2020, 410, 109339.
[CrossRef]

94. Lee, S.; You, D. Prediction of Laminar Vortex Shedding over a Cylinder Using Deep Learning. arXiv 2017, arXiv:1712.07854.
95. Lee, S.; You, D. Data-Driven Prediction of Unsteady Flow over a Circular Cylinder Using Deep Learning. J. Fluid Mech. 2019, 879,

217–254. [CrossRef]
96. Zhou, Y.; He, Y.; Wu, J.; Cui, C.; Chen, M.; Sun, B. A Method of Parameter Estimation for Cardiovascular Hemodynamics Based

on Deep Learning and Its Application to Personalize a Reduced-order Model. Int. J. Numer. Method. Biomed. Eng. 2022, 38, e3533.
[CrossRef]

97. Guo, X.; Li, W.; Iorio, F. Convolutional Neural Networks for Steady Flow Approximation. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
ACM Press: New York, NY, USA, 2016; pp. 481–490.

98. Ku, D.N. Blood Flow in Arteries. Annu. Rev. Fluid Mech. 1997, 29, 399–434. [CrossRef]
99. Taebi, A.; Janibek, N.; Goldman, R.; Pillai, R.; Vu, C.T.; Roncali, E. On the Impact of Injection Distance to Bifurcations on Yttrium-90

Distribution in Liver Cancer Radioembolization. J. Vasc. Interv. Radiol. 2022, 33, 668–677.e1. [CrossRef]

http://doi.org/10.1109/JBHI.2021.3116764
http://www.ncbi.nlm.nih.gov/pubmed/34591773
http://doi.org/10.1115/imece2020-24475
http://doi.org/10.1038/s41598-021-89636-z
http://www.ncbi.nlm.nih.gov/pubmed/33986368
http://doi.org/10.1007/s10237-017-0903-9
http://www.ncbi.nlm.nih.gov/pubmed/28386685
http://doi.org/10.1016/j.jacc.2008.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19038677
http://doi.org/10.1016/j.mri.2013.05.001
http://www.ncbi.nlm.nih.gov/pubmed/23773622
http://doi.org/10.1115/1.4000168
http://doi.org/10.1007/s00330-012-2379-4
http://doi.org/10.1002/jmri.23632
http://doi.org/10.1002/jmri.1178
http://doi.org/10.3389/fphy.2020.00138
http://doi.org/10.1002/fld.4416
http://doi.org/10.1016/j.jcp.2020.109339
http://doi.org/10.1017/jfm.2019.700
http://doi.org/10.1002/cnm.3533
http://doi.org/10.1146/annurev.fluid.29.1.399
http://doi.org/10.1016/j.jvir.2022.03.006

	Introduction 
	Methods 
	Deep Learning for Fluid Mechanics 
	Hemodynamics Applications 
	Hemodynamics of Aorta 
	Cerebral Hemodynamics 
	4D Flow Magnetic Resonance Imaging 

	Discussion and Future Directions 
	Conclusions 
	References

