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Abstract: As micromixers offer the cheap and simple mixing of fluids and suspensions, they have
become a key device in microfluidics. Their mixing performance can be significantly increased by
periodically varying the inlet pressure, which leads to a non-static flow and improved mixing process.
In this work, a micromixer with a T-junction and a meandering channel is considered. A periodic
pulse function for the inlet pressure is numerically optimized with regard to frequency, amplitude
and shape. Thereunto, fluid flow and adsorptive concentration are simulated three-dimensionally
with a lattice Boltzmann method (LBM) in OpenLB. Its implementation is then combined with
forward automatic differentiation (AD), which allows for the generic application of fast gradient-
based optimization schemes. The mixing quality is shown to be increased by 21.4% in comparison
to the static, passive regime. Methodically, the results confirm the suitability of the combination of
LBM and AD to solve process-scale optimization problems and the improved accuracy of AD over
difference quotient approaches in this context.

Keywords: lattice Boltzmann method; computational fluid dynamics; micromixer; optimization;
automatic differentiation

1. Introduction

In micromixers, different fluid components are typically inserted through two different
inlets into one curved pipe. Mainly because of their simplicity, they have become a key
device in microfluidics [1]. The mixing is then prolonged mostly by advection and also by
diffusion. Since the channel geometry has a decisive effect on the overall efficiency of the
mixer, many different shapes and versions of this device have been suggested, studied and
compared [1–3], e.g., it has been observed that applying non-constant, pulsating external
energy sources (active mixing) can significantly increase the mixing efficiency [1]. In [4],
Glasgow and Aubry suggested pulsing the inlet flow rates periodically in time, which
improved the simulated mixing quality by factors of up to 3.9, measured similarly to
Danckwerts’ concept of mixing quality [5] for Péclet number Pe = 3000.

The many possible design options yield a need for numerical simulations and, even
more importantly, systematic optimization, in order to achieve the best possible results.
The mixing process inside passive micromixers has been researched via CFD simulations
by [6–8], among others. Rudyak and Minakov [9] conducted a fluid dynamic investigation
of mixers for a wide range of Reynolds numbers, with periodically varying inlet velocities
and a manual selection of the optimal pulse. They showed that the optimal frequency
seems to depend on the amplitude and that there is a strong non-linear dependence of the
total flow behavior on the Reynolds number. Among others, Maier et al. [10] presented a
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multi-component model including fluid flow, advection, diffusion and adsorption of La-
grange particles using the lattice Boltzmann method (LBM), and validated their simulations
by experiments.

Santana et al. [11] and S. Hossain et al. [12] used numerical optimization to improve
(geometrical) design features of static mixers. For this, Hossain et al. used surrogate
models based on three-dimensional simulations. Bockelmann et al. studied electrokinetic
micromixers with one inlet and pulsating electric potentials [13]. They used finite element
method (FEM) simulations and numerical optimization in order to find an optimally
pulsating electric potential, which yielded a performance improvement of almost 300%.
Since the Péclet numbers in this context are usually very high, which requires a high spatial
resolution, they used two-dimensional simulations on a slice though the midplane of the
domain. On the one hand, the particulate concentration field looks similar for slices at
different heights of a three-dimensional simulation with height-independent input data,
which may give reason to omit simulating the vertical component [14]. On the other hand,
three-dimensional effects, such as Dean vortices or secondary flow [3], that may have a
large impact on mixing can hardly be captured. To the best of the authors’ knowledge, no
study is available on the numerical optimization of the pulsation of micromixers based on
three-dimensional simulations.

The sensitivity of the objective functional with regard to the design variables, which is
necessary for any fast gradient-based numerical optimization method, can, in general, be
computed via sensitivity-based and adjoint methods [15]. For the first option, the state-of-
the-art (at least in the real world application) is the employment of differences quotients.
Alternatively, the forward mode of automatic differentiation (AD) has become popular
because of its generic approach and a higher accuracy compared to difference quotients.
Adjoint equations can be formulated both on a continuous and on a discrete basis, where
the latter has a close connection to the reverse mode of AD and therefore a high genericity
as an advantage. In the case of only a few design variables, sensitivity-based methods are
typically preferred because the implementation is much simpler while the computational
effort is not significantly higher [15].

As a result of the rather few design variables, we consider the forward mode of AD in
this work. The combination of forward AD and LBM has been reported in [16,17] and it
has later been applied, e.g., in [18,19], but, despite its advantages, it has not yet become a
standard design tool for real world applications, and a thorough validation of AD in the
context of CFD is still rare.

The goal of this work is the numerical optimization of a pulsating inlet pressure with
regard to the frequency, amplitude and phase profile, which has not been performed before.
Therefore, three-dimensional LBM-simulations of flow field and particulate concentration
are performed, coupled with the steepest descent/L-BFGS method for optimization. The
required gradients of the goal functional with regard to the optimization variables are
computed using forward AD. Both the usage of three-dimensional simulations for opti-
mization and the combination of LBM and forward AD are new in the context of micromix-
ing. Hence, the numerical properties of this novel approach are validated and presented
in detail.

The article is structured as follows: Our models and methods are introduced in
Section 2. Therefore, we consider the design of the micromixer that we have studied, the
physical modeling, LBM, the setup of the optimization problem, AD and some numerical
optimization issues. In Section 3, we present particular numerical studies. The simulation
of flow and its derivatives with regard to the design variables are explained and validated.
Finally, the results of the numerical optimization are presented.

2. Materials and Methods
2.1. Experimental Design

In this work, a micromixer with two inlets Γl , Γr, a T-junction, a meandering channel
Ω and one outlet Γout, as depicted in Figure 1, was considered, similar to the one that was
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studied in [10]. The channel has a cross section of 1.0× 10−3 m× 2.0× 10−3 m and a total
length of 2.7× 10−2 m. Through the left inlet Γl , the adsorptive (solved in the carrier fluid)
entered. Through the other inlet, the carrier fluid and particles were inserted. Multiple
deflections with a 90 degree angle enhanced the mixing quality.

27
mm

2 mm

1 mm

Γr

Γl

Γout

Figure 1. Geometry of the investigated micromixer. (Left): Below in the picture are the two inlets Γl ,
Γr and the T-junction. On the top, we find the outlet Γout. (Right): Dimensions of the channel in the
xy-plane on a grid with width 1 mm.

2.2. Fluid Flow Model

As in [10], we assume that the adsorptive material is dissolved in the carrier fluid. Its
concentration is assumed to be significantly higher than the concentration of the particle
component. Consequently, a one-way coupled two-phase flow model (carrier fluid +
adsorptive) is sufficient in order to evaluate the performance of the mixer, where the
fluid dynamics are described by an incompressible Navier–Stokes equation (NSE) and
the particulate concentration is modeled in an Euler approach by an advection–diffusion
equation (ADE). For a concise introduction into the physical model, we refer to [10,20]. The
material constants are listed in Section 3.1.

The laminar fluid flow was driven by a fixed velocity outflow, with pressure boundary
conditions at the inlets. Therefore, a Dirichlet fixed-velocity condition with a parabolic
profile was set at the outlet, as well as pressure boundary conditions at the two inlets. The
pressure at the second inlet varied periodically in time due to the inlet control. At the
channel walls, the fluid obtained a Dirichlet no-slip boundary condition.

All of this led to the following system of NSE

∇ · u = 0 in Ω,

∂tu− ν∆u +∇ · (u⊗ u)−∇p = 0 in Ω,

u = 0 on Γw,

uτ = 0, p = 0 on Γl ,

uτ = 0, p = p̃(t) on Γr,

uτ = 0, un = s(t)ũ(x) on Γout,

u = 0 for t = 0

(1)

on the time interval I = [0, T], for channel wall Γw, velocity u with tangential and normal
components uτ , un on the boundary, kinematic viscosity ν = 10−6 m2/s, kinematic pressure
p, a prescribed pressure function p̃ and a rectangular parabolic profile ũ at the outlet. Lastly,
s denotes a start-up coefficient that scales smoothly from 0 to 1. Precisely, we set

s(t) :=
{ 1

2 [sin(tπ/t1 − π/2) + 1] if t < t1,
1 else

in order to obtain the start-up interval length t1 := 0.6 s.
The relative mass concentration of adsorptive particles ϕ was described by an ADE,

whereas the concentration ϕ was fixed to 1 at the inlet as a Dirichlet boundary condition,
and a Neumann impermeability condition was set at the second inlet and on the channel
walls. At the outlet, free outflow was expected. We obtained
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∂t ϕ− D∆ϕ +∇ · (ϕu) = 0 in Ω,

∂n ϕ = 0 on Γw ∪ Γr ∪ Γout,

ϕ = 1 on Γl ,

ϕ = 0 for t = 0

(2)

on the interval I = [0, T], for concentration ϕ and diffusion coefficient D = 10−9 m2/s.

2.3. Discretization with a Lattice Boltzmann Method

The fluid flow and the adsorptive concentration were simulated with lattice Boltzmann
methods (LBM). These mesoscopic methods have their physical origin in the Boltzmann
equation, which describes the evolution of particle distributions in the phase space. By a
coupled discretization of space and time, the LBM were obtained, where fluid populations
at grid nodes with certain discrete velocities are simulated. This resulted in matrix-free
numerical schemes that consisted of collision steps (purely local at each mesh point) and
streaming steps (almost local, only neighboring nodes are involved). The macroscopic
quantities’ density, velocity, pressure, etc., could then be computed as moments of the fluid
populations (cf. [21]). Beginning with NSE, many variants have been designed in order to
solve, e.g., the ADE, multi-component flows and chemically reacting flows numerically.
For the NSE and ADE, the schemes with the BGK collision operator (due to Bhatnagar,
Gross and Krook [22]) have been proven to be second-order consistent for diffusive scal-
ing (∆t ∼ ∆x2 → 0) via asymptotic expansion [16,21,23]. Due to their inherent locality,
LBM offer good parallelization properties [24], which make them attractive, especially for
large-scale simulations. For a concise introduction into LBM, we recommend the book of
Krüger et al. [21].

In this work, the LBM with BGK collision operator and D3Q19 stencil was applied for
the NSE. For the ADE, the advection diffusion BGK collision [21] was supplemented with a
D3Q7 stencil and first-order equilibrium operator, as well as a first-order upwind scheme
for stabilization [20,25].

Since particle distributions are simulated instead of the macroscopic variables, the
classical macroscopic boundary conditions have to be adapted for LBM in order to prescribe
incoming populations at the boundary nodes. In this work, we utilized typical formulations
that correspond to the macroscopic conditions as stated in (1) and (2). Thus, we used a
fullway bounce-back rule at the channel walls for both NSE and ADE [21] as a homogeneous
Dirichlet/Neumann boundary condition, respectively. A fixed velocity boundary condition
according to [26] was set for the NSE at the outlet and a pressure boundary condition due
to [27] for the NSE was used at the inlets. Discrete in- and outflow conditions for the ADE
were set according to [28] and [20], respectively.

2.4. Optimization Setup

In the optimization process, a phase function p̃(t) in (1) was determined, such that
the mixing quality at the outlet is maximized. The discrete versions of the governing
Equations (1) and (2) were treated as side conditions [29].

For the periodic part of the phase function p̃(t), two different approaches were fol-
lowed: a composite cosine function and a smooth approximation of a square wave. The
first one is defined as

pcoscomp(t) :=

 a cos( 2π(t mod tp)
dtp

) if t mod tp ≤ dtp,

a cos( 2π(t mod tp)

(1−d)tp
) else,

(3)

where the free variables amplitude a ∈ R+, period length tp ∈ R+ and phase differ-
ence d ∈ (0, 1) have to be optimized (cf. Figure 2) [29]. Via defining the continuous
modulo-Operator as x mod y := x−maxl∈Z,ly<x ly, it is differentiable in both arguments
almost everywhere.
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0

1 tp ε
a

d · tp

Figure 2. Cosine (blue), composite cosine pcoscomp(t) (red) and smoothed square wave pssqw(t)
(green, with larger ε for visualization).

The smoothed square wave is defined as

pssqw(t) :=


a sin(π(t mod tp)/ε) if t mod tp ≤ 1

2 ε,
a if 1

2 ε < t mod tp ≤ dtp − 1
2 ε,

−a sin(π(t mod tp)− dtp/ε) if dtp − 1
2 ε < t mod tp ≤ dtp +

1
2 ε,

−a if dtp +
1
2 ε < t mod tp ≤ tp − 1

2 ε,
a sin(π(t mod tp − tp)/ε) else,

(4)

with parameters a, tp, d as above and fixed smoothing interval length ε := 1.0× 10−2 s
(cf. Figure 2). Independent of regularity questions concerning the well-posedness of the
NSE (1), smoothing the classical square wave is necessary for a gradient-based optimization
with regard to tp.

In order to achieve a smooth start-up up to time t2 := 1.0 ∈ [0, T], we then used

p̃(t) :=


0 if t ≤ t1,

a
2 cos

(
2π(t−t1)

t2−t1

)
− a

2 if t1 < t ≤ t2,
pcoscomp(t) else

or a respective version for pssqw in the NSE (1).
For both pulse functions, the amplitude a needs to be bounded from above so that no

backflow happens through the inlets. Technical limitations and how much pressure can be
applied at the inlets were not considered in this study.

There are several approaches to evaluate the mixing quality; we followed Danckwerts’
concept of segregation intensity [5], where the variance of concentration ϕ is compared
to the variance of the concentration of a fully segregated composition. Since we could
expect almost periodic flow, the averaged mixing quality over one time period [T − tp, T]
was considered. We defined average concentration E(ϕ) :=

ffl T
T−tp

ffl
Γout

ϕ(t, x) dx dt, vari-

ance σ2(ϕ) :=
ffl T

T−tp
‖ϕ(t, ·)− E(ϕ)‖2

L2(Γout)
dt and finally the segregation intensity

J(ϕ) :=
σ2(ϕ)

E(ϕ)(1− E(ϕ))
. (5)

of concentration ϕ on the time interval [T − tp, T]. The mixing quality could then be
defined as

J̃(ϕ) = 1−
√

J(ϕ), (6)

according to [30]. In this work, the segregation intensity was minimized, which is equivalent
to a maximization of the mixing quality.

2.5. Automatic Differentiation

The accuracy of numerical derivatives computed with difference quotients cannot be
increased arbitrarily by reducing the step size, but, due to rounding errors, it rises if the
steps width goes below a certain optimal value [31]. In double precision (accuracy ∼10−16),
this optimum is known to be h ≈ 10−8 for forward (FDQ) and h ≈ 10−5 for central
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difference quotients (CDQ), where, typically, 8 and 6 digits are lost, respectively. This issue
can be avoided with AD methods.

With AD, it is possible to evaluate partial derivatives of numerical functions at given
points. AD can be applied in two different modes, the forward and the reverse mode,
where the forward mode has been shown to be well-suited and more easily applicable for
large programs and a limited number of optimization parameters [19]. Hence, the forward
version was applied in this work and will be introduced briefly. The interested reader is
referred to the concise introduction by Griewank and Walther [32].

Together with the value of any variable x ∈ R, the values of its partial derivatives
with regard to parameters α1, . . . , αn are stored. Therefore, instead of a real number, x is
considered as a tuple

[
x, ∂x

∂α1
, . . . , ∂x

∂αn

]
∈ Rn+1. Hence, the parameters αi themselves can

be written as (αi, 0, . . . , 0, 1, 0, . . . , 0) with derivative ∂αi
∂αi

= 1 at the i-th component. Any
arithmetic operation of two variables is then applied to the values and to their partial
derivatives, according to the basic derivation rules, e.g., the result of a multiplication x · y
is then [

x, ∂x
∂α1

, . . . , ∂x
∂αn

]
·
[
y, ∂y

∂α1
, . . . , ∂y

∂αn

]
=
[

xy, x ∂y
∂α1

+ y ∂x
∂α1

, . . . , x ∂y
∂αn

+ y ∂x
∂αn

]
.

In the framework of the open source CFD library OpenLB [33,34], AD was imple-
mented via operator overloading in C++: for every arithmetic operation, the corresponding
operation for the data type ADf<double,n> that stores value as well as partial derivatives
was implemented. All functions and classes were templatized with regard to the underly-
ing primitive data type so that they can be instantiated using the data type ADf<double,n>
and then can yield function values as well as their partial derivatives.

The correct implementation of the ADf-type and its methods was guaranteed via unit
tests. For a benchmark test (validation of AD-computed sensitivities), see Section 3.2.

2.6. Numerical Optimization

The computation of the variance σ2(ϕ) relies on the average E(ϕ), which can only be
computed at the end of the time interval. In order to avoid the need for storing the spatial
concentration data for the computation of σ2(ϕ), we replaced E(ϕ) by the average integral
over the penultimate time period. A comparison (see Table 1) shows that the difference
between these versions is low and that the trends of the two versions are the same.

Table 1. Average concentration E(ϕ) over the two last time periods of length tp and relative difference
between these values, for varying of tp.

Period Length tp in s E(ϕ) over [T − 2tp, T − tp] E(ϕ) over [T − tp, T] Relative Difference

0.5 0.2188 0.2277 0.0392
0.6 0.2161 0.2271 0.0484
0.7 0.2132 0.2264 0.0582
0.8 0.2099 0.2255 0.0692
0.9 0.2060 0.2243 0.0818

The spatial integrals in the definitions of E(ϕ), σ(ϕ) were computed according to a
first order quadrature rule (midpoint scheme) by summing the respective arguments for
each mesh point, weighted by the voxel size. Accurate derivatives of the time integrals
with regard to the period length tp are essential for the optimization with regard to tp, i.e.,
we need to capture the exact interval length, despite its limits not coinciding in general
with discrete time steps. With a composite trapezoidal rule with summation over the
discrete time steps and constant extrapolation for estimating the integral arguments at the
interval bounds, we obtained sufficiently accurate values, as well as consistent derivatives
(computed with AD).

Optimization was then executed utilizing the common steepest descent and the L-BFGS
algorithms, with Armijo and Armijo-Wolfe-Powell step conditions, respectively [35,36].
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3. Results
3.1. Simulation

The simulations were performed within the open source LBM-library OpenLB [33,34],
employing the numerical methods specified in Section 2.3. The process parameters cor-
respond to phosphate or ink diluted in water. They are similar to [10] and are shown
in Table 2, where the Reynolds number is computed on the basis of the characteristic
velocity and the hydraulic diameter. For the outflow, a parabolic profile with maximum
velocity 3.32× 10−2 m/s is implemented. At the first inlet, the pressure is fixed to the
characteristic pressure. At the second inlet, the pressure agrees with this value for a static,
passive micromixer and fluctuates by p̃(t) around the characteristic pressure in the active,
instationary case.

Table 2. Process parameters.

Parameter Value

Char. velocity U 3.32× 10−2 m/s
Hydraulic channel diameter L 0.00133 m

Reynolds number Re 44.1
Mass diffusivity D 1.0× 10−9 m2/s

Fluid density ρ 1000 kg/m3

Viscosity ν 1.0× 10−6 m2/s
Péclet number Pe 44,156

Since multiple simulation runs are essential for the numerical optimization, a careful
choice and not too large of a resolution is desirable. While a perfectly stable simulation
could be achieved with ∆x = 15.83µm, ∆t = 47.69µs, a precise capturing of the trend of
the objective could be achieved with a significantly lower numerical effort; see Figure 3.
Since the minimizers agree very well for different resolutions, the choice of ∆x = 36.94µm,
∆t = 111.3µs seems appropriate, which yields a lattice relaxation time of 0.7745.

0.6 0.8 1

0.32

0.34

0.36

Period length tp [s]

O
bj

ec
ti

ve
J(

ϕ
)

Figure 3. Selection of resolution. Segregation intensity for ∆x = 36.9 µm ( ) and ∆x = 27.7 µm ( )
and varying period length tp, with a = 1.2, d = 0.5 and acoustic scaling (∆t ∼ ∆x). Although the
values depend on the resolution, trend and location of the minimizer are identical for both curves.

Convergence with regard to the resolution ∆x, ∆t is checked for several quantities:
the average velocity magnitude at the first inlet and t = 4 s, y1 := ‖u(x, 4)‖L2(Γl)

, the
L2-norm of the concentration at the outlet at t = 4 s, y2 := ‖ϕ(x, 4)‖L2(Γout)

and the average
concentration and variance over the time interval [3.4 s, 4.0 s], E(ϕ) and σ2(ϕ). These four
quantities have been computed for different resolutions from ∆x = 36.94µm, ∆t = 111.3µs
to ∆x = 12.31µm, ∆t = 37.09µs in acoustic scaling (∆t ∼ ∆x). The resulting relative errors
with regard to the finest resolved simulation are shown in Figure 4. They show convergence
of both fluid flow and concentration simulation.
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10−4.8 10−4.7 10−4.6 10−4.5 10−4.4
10−2

10−1

100

O(1)

O(2)

∆x

re
l.

er
ro

r
of

y i

Figure 4. Grid independency study (simulations). Relative errors of y1 = ‖u(x, 4)‖L2(Γl)
( ),

y2 = ‖ϕ(x, 4)‖L2(Γout)
( ), E(ϕ) ( ), σ2(ϕ) ( ) with regard to the finest resolved simulation.

3.2. Simulation of Sensitivities

Next to the simulations themselves, the computation (simulation) of sensitivities has
to be validated. This is carried out for various quantities of interest: fluid flow simulation
and adsorptive simulation at both a fixed time and integrated over time.

First, the convergence of AD-computed sensitivities with regard to the resolution
is checked for the quantities y1, y2, E(ϕ), σ2(ϕ) as in the previous section, where the
temporal integration domain for E(ϕ) and σ2(ϕ) has been defined to [4.0 s −tp, 4.0 s].
The relative errors of the tp-sensitivities with regard to the finest resolved simulation are
shown in Figure 5. Again, convergence becomes visible, where the convergence order of the
sensitivities is similar to the convergence order of the corresponding values (see Figure 4).

10−4.8 10−4.7 10−4.6 10−4.5 10−4.4
10−2

10−1

100 O(1)

O(2)

∆x

re
l.

er
ro

r
of

dy
i

dt
p

Figure 5. Grid independency study (sensitivities). Relative errors of sensitivity of y1 = ‖u(x, 4)‖L2(Γl)

( ), y2 = ‖ϕ(x, 4)‖L2(Γout)
( ), E(ϕ) ( ), σ2(ϕ) ( ) with regard to tp at tp = 0.6 and the finest

resolved simulation.

As a benchmark experiment, AD-computed sensitivities of different quantities of
interest with regard to the control variables tp, a and d are computed and compared to FDQ
and CDQ of different step size h.

At the fixed time t = 4 s, we consider the L2-norms of velocity u and concentration
ϕ over Γl and Γout, respectively. As expected, the difference quotients converge to the
AD-computed sensitivities as the step size h decreases (see Figure 6). The error stagnates
at h ≈ 10−8 for FDQ (half of the machine precision) and h ≈ 10−6 for CDQ (one third of
the machine precision), which can be explained by the well-known loss of accuracy that is
observed for the numerical evaluation of difference quotients [31].
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10−10 10−9 10−8 10−7 10−6 10−5
10−16

10−13

10−10

step size h

Figure 6. Accuracy of AD and DQ. Numerical error between difference quotients and AD-sensitivities
of y1 = ‖u(x, t = 4)‖L2(Γl)

(FDQ /CDQ ) and y2 = ‖ϕ(x, t = 4)‖L2(Γout)
(FDQ /CDQ ) with regard

to the period length tp = 0.6 s, evaluated at t = 4.0 s. Blue color corresponds to FDQ, red to CDQ.

Furthermore, the integrals of ϕ and σ2(ϕ) over the outlet Γout and the time interval
[4 s −tp, 4 s] are considered. We observe convergence of the difference quotients as the step
size decreases (see Figure 7). The maximal accuracy has already been reached at around
h ≈ 10−6 (h ≈ 10−5 for CDQ), which is probably due to a further loss of accuracy due to
the time integration (the values for the different time steps have been added sequentially
and a similar loss could be observed for the integration of analytical functions).

10−8 10−7 10−6 10−5 10−4 10−3
10−12

10−8

10−4

step size h

Figure 7. Accuracy of AD and DQ. Gap between difference quotients and AD-sensitivities of average
concentration computed over the time interval [4 s −tp, 4 s] with regard to period length tp = 0.6 s
(FDQ /CDQ , blue color), phase difference d = 0.5 (FDQ /CDQ , red color) and amplitude a = 0.5
(FDQ /CDQ , green color). Circles correspond to FDQ, triangles to CDQ. For the CDQ-sensitivity
with regard to tp, the number of time steps in the temporal integration domain changes if h > 10−5,
which introduces another source of numerical error and gives explanation for the outlier.

For all of these examples, the trends of the computed errors are those that are typically
observed for the errors between difference quotients and exact or AD derivatives, so we
consider the AD sensitivity computation as validated. The rather large residual error
between AD and FDQ/CDQ, even for the optimal step sizes, can be interpreted as due to
the limited applicability of FDQ/CDQ in this context and due to the accuracy gain by the
utilization of AD. Another methodical aspect is that, with AD, the evaluation of an optimal
step width becomes unnecessary.

3.3. Optimization

In addition to the global trend of the objective with regard to the variation of the
period length (see Figure 3), the overall trends with regard to the amplitude and phase
difference are computed; see Figure 8. For all of these variables of interest, the dependence
of the objective is either monotone or convex; hence, the global optimization problem
seems well-posed.



Fluids 2022, 7, 144 10 of 14

0.2 0.4 0.6 0.8
0.4

0.42

0.44

0.46

0.48

Amplitude a/Phase difference d

O
bj

ec
ti

ve
J(

ϕ
)

Figure 8. Influence of design parameters. Segregation intensity for ∆x = 36.9 µm and varying
amplitude/phase difference. Squares: tp = 0.8 s, d = 0.5, a is varied. Circles: tp = 0.8 s, a = 0.7,
d is varied.

In particular, the monotone influence of the amplitude allows us to exclude this vari-
able from numerical optimization, since its optimal choice is the maximal value, where no
backflow happens at the inlets and a dependence of this value on the other free parameters
does not seem relevant. Hence, numerical optimization has to be executed only with regard
to the period length and phase difference, while the (almost optimal) choice a = 0.5 is fixed.

The optimization is then executed until the L2-norm of the gradient
(

dJ
dtp

, dJ
dd

)
is less

than 6× 10−6 and the relative change in the controlled parameters is less than 10−6. For
the composite cosine phase function pcoscomp, we find the optimum J(ϕ) = 0.432266 at
tp = 0.7635904 s, d = 0.4986677. In addition, the value of J(ϕ) satisfied convergence in the
sense that it changed by less that 10−10 in the last iteration step. The resulting optimum
corresponds to an improved mixing quality of 14.3% over the static execution. Plots of
velocity magnitude and adsorptive concentration are shown in Figures 9–11.

For the smoothed square wave phase function pssqw, the optimum is found at
J(ϕ) = 0.402634 with tp = 0.7985104 s, d = 0.6528243 and smoothing width ε = 0.01.
Again, the objective changes by less than 10−10 in the last optimization step. The improve-
ment in mixing quality compared to static execution is 21.9%. For a smaller smoothing
width ε = 10−3 in the definition of pssqw, the optimization becomes unstable. The probable
cause is due to the gradient of the phase function not being resolved accurately then. On
the one hand, the difference in the objectives is less than 0.01%. Thus, the size of ε is not
really relevant for practical purposes. On the other hand, the slightly smaller objective
for smaller ε, as well as the comparison of the results for pssqw and pcoscomp, fits to the
expectation that higher concentration gradients increase the overall mixing performance.

Figure 9. Flow velocity magnitude on a horizontal slice through the center of the channel. With
composite cosine pulsation, at t = 7.4 s (left) and t = 7.8 s (right).
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Figure 10. Adsorptive concentration on a horizontal slice through the center of the channel. Static
regime (left), with composite cosine pulsation, at t = 7.4 s (middle) and t = 7.8 s (right).

Figure 11. Adsorptive concentration at the outlet. With composite cosine pulsation, at t = 7.4 s (top)
and t = 7.8 s (bottom).

4. Discussion

It is noticeable that the established performance improvements via (optimal) pulsation
differ quite largely among different studies (see [4,9,13]). We explain this by different
underlying flow regimes, where the Reynolds and Péclet numbers vary by factors of ten
and more. Indeed, in [9], a strong dependence of the (optimal) mixing quality on the
Péclet and Reynolds number was found. Hence, a systematic investigation of this relation,
including the numerical optimization of parameters, may be interesting to consider.

As an extension, the proposed methods may be applied to optimize features of the
mixer geometry, which likely offers strong potential for a performance increase. Moreover,
more advanced mixers, such as those using a fluid oscillator, may be considered.

5. Conclusions

In this work, a new approach for the numerical optimization of the pulsation of a
micromixer has been presented and thoroughly validated. It is based on fluid flow and
particle concentration simulations with LBM and the forward mode of AD for computing the
derivatives. It is shown that both methods are well-suited for solving large-scale problems,
i.e., their combination allows us to simulate partial derivatives of flow quantities with a
very good accuracy. The approach is generic in the sense that flow simulation, AD and
optimization algorithms are independent of each other, which allows us, e.g., to exchange
the mixer geometry or to apply the same methods and framework to an entirely different
application case. For the micromixer, the optimized pulsation results in a performance
improvement of 21.9% with regard to the segregation intensity of the static run.
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Nomenclature
Abbreviations:
AD Automatic differentiation
ADE Advection–diffusion equation
BGK Bhatnagar–Gross–Krook
CDQ Central difference quotient
CFD Computational fluid dynamics
FDQ Forward difference quotient
FEM Finite element method
LBM Lattice Boltzmann methods
NSE Navier–Stokes equations
Constants, parameters and variables:
∆t, ∆x temporal and spatial resolution
Γl , Γr, Γout, Γw boundary of the domain (left inlet, right inlet, outlet, wall)
Ω flow channel
ε smoothing width for pssqw(t)
ν kinematic viscosity
ϕ relative mass concentration of adsorptive particles
ρ fluid density
σ2(ϕ) variance of ϕ at the outlet over [T − tp, T]
D diffusion coefficient
E(ϕ) average of ϕ at the outlet over [T − tp, T]
J(ϕ) segregation intensity at the outlet over [T − tp, T]
J̃(ϕ) mixing quality at the outlet over [T − tp, T]
I temporal simulation interval
L hydraulic channel diameter
Pe Péclet number
Re Reynolds number
T max. simulation time
U char. fluid velocity
a amplitude of inlet phase function
d phase difference in inlet phase function
h step width for FDQ/CDQ
p kinematic pressure
p̃(t) time-dependent pressure at the right inlet
pcoscomp(t) periodic inlet phase function: composite cosine
pssqw(t) periodic inlet phase function: smoothed square wave
s(t) start-up function for velocity at the outlet
t temporal coordinate
t1, t2 start-up time for outflow and pressure pulse, resp.
tp period length of inlet phase function
u, uτ , un fluid velocity (3D vector, tangential to the boundary, normal to the boundary)
ũ velocity profile at the outlet (normal component)
x spatial coordinates
y1 L2-norm of u at the left inlet at t = 4
y2 L2-norm of ϕ at the outlet at t = 4
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23. Gruszczyński, G.; Dzikowski, M.; Wołłk, Ł.Ł. On recovering the second-order convergence of the lattice Boltzmann method with

reaction-type source terms. arXiv 2021, arXiv:2107.03962.
24. Schornbaum, F.; Rüde, U. Extreme-Scale Block-Structured Adaptive Mesh Refinement. SIAM J. Sci. Comput. 2018, 40, C358–C387.

[CrossRef]
25. Courant, R.; Isaacson, E.; Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Commun.

Pure Appl. Math. 1952, 5, 243–255. [CrossRef]
26. Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A. Straight velocity boundaries in the lattice Boltzmann method. Phys.

Rev. E 2008, 77, 056703. [CrossRef] [PubMed]
27. Latt, J. Hydrodynamic Limit of Lattice Boltzmann Equations. Ph.D. Thesis, Université de Genève, Genève, Switzerland, 2007.
28. Skordos, P.A. Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E 1993, 48, 4823–4842. [CrossRef]

[PubMed]
29. Mangold, J. Optimierung Eines Statischen Mischers Mittels Kontrolle der Eingangsströmung. Bachelor’s Thesis, Karlsruhe

Institute of Technology, Karlsruhe, Germany, 2019.
30. Bothe, D.; Stemich, C.; Warnecke, H.J. Fluid mixing in a T-shaped micro-mixer. Chem. Eng. Sci. 2006, 61, 2950–2958. [CrossRef]
31. Sauer, T. Numerical Analysis, 2nd ed.; Featured Titles for Numerical Analysis; Pearson: London, UK, 2011.

http://doi.org/10.10 07/978-0-387-68424-6_7
http://dx.doi.org/10.1016/j.ces.2004.11.033
http://dx.doi.org/10.3390/mi11050455
http://www.ncbi.nlm.nih.gov/pubmed/32349452
http://dx.doi.org/10.1039/B302569A
http://www.ncbi.nlm.nih.gov/pubmed/15100792
http://dx.doi.org/10.1007/BF03184936
http://dx.doi.org/10.3390/app8122458
http://dx.doi.org/10.1088/1757-899X/932/1/012006
http://dx.doi.org/10.1063/5.0022898
http://dx.doi.org/10.3390/mi5040886
http://dx.doi.org/10.1016/j.camwa.2018.08.066
http://dx.doi.org/10.1016/j.snb.2018.10.089
http://dx.doi.org/10.1016/j.cej.2010.02.002
http://dx.doi.org/10.1063/1.4722000
http://www.ncbi.nlm.nih.gov/pubmed/22712034
http://dx.doi.org/10.5445/IR/1000019481
http://dx.doi.org/10.1137/1.9780898718720
http://dx.doi.org/10.1016/j.compfluid.2012.07.026
http://dx.doi.org/10.1007/s00158-017-1708-2
http://dx.doi.org/10.1016/j.camwa.2021.02.016
http://dx.doi.org/10.1016/j.jocs.2016.03.013
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1137/17M1128411
http://dx.doi.org/10.1002/cpa.3160050303
http://dx.doi.org/10.1103/PhysRevE.77.056703
http://www.ncbi.nlm.nih.gov/pubmed/18643191
http://dx.doi.org/10.1103/PhysRevE.48.4823
http://www.ncbi.nlm.nih.gov/pubmed/9961167
http://dx.doi.org/10.1016/j.ces.2005.10.060


Fluids 2022, 7, 144 14 of 14

32. Griewank, A.; Walther, A. Evaluating Derivatives, 2nd ed.; Society for Industrial and Applied Mathematics (SIAM): Philadelphia,
PA, USA, 2008. [CrossRef]

33. Krause, M.J.; Avis, S.; Kusumaatmaja, H.; Dapelo, D.; Gaedtke, M.; Hafen, N.; Haußmann, M.; Jeppener-Haltenhoff, J.; Kronberg,
L.; Kummerländer, A.; et al. OpenLB Release 1.4: Open Source Lattice Boltzmann Code; Zenodo: Genève, Switzerland, 2020.
[CrossRef]

34. Krause, M.J.; Kummerländer, A.; Avis, S.J.; Kusumaatmaja, H.; Dapelo, D.; Klemens, F.; Gaedtke, M.; Hafen, N.; Mink, A.; Trunk,
R.; et al. OpenLB—Open source lattice Boltzmann code. Comput. Math. Appl. 2021, 81, 258–288. [CrossRef]

35. Geiger, C.; Kanzow, C. Numerische Verfahren zur Lösung Unrestringierter Optimierungsaufgaben; Springer: Berlin, Germany, 1999.
36. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput.

1995, 16, 1190–1208. [CrossRef]

http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.5281/zenodo.4279263
http://dx.doi.org/10.1016/j.camwa.2020.04.033
http://dx.doi.org/10.1137/0916069

	Introduction
	Materials and Methods
	Experimental Design
	Fluid Flow Model
	Discretization with a Lattice Boltzmann Method
	Optimization Setup
	Automatic Differentiation
	Numerical Optimization

	Results
	Simulation
	Simulation of Sensitivities
	Optimization

	Discussion
	Conclusions
	References

