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Abstract: High efficiency thrust generating foils are extensively being researched for potential use as
thrusters in micro air vehicles and biomimetic autonomous underwater vehicles. Here, we propose a
simple reduced order model for prediction of thrust generation attributes of foils that are pitched
either continuously or intermittently in a periodic and possibly asymmetric fashion. Our model
accounts for the distinct thrust contributions from added mass, leading edge suction, quasi steady
and wake terms, all deduced from a rigorous generalization of linearized potential theory to foils
undergoing small amplitude multimodal flapping motion. Additionally, the model relies on Bone-
Lighthill boundary layer thinning hypothesis to account for the pitching motion induced increase
in the drag force exerted on the foil. We derive generic forms of the thrust coefficient for prescribed
multimodal pitching motions and specifically in the limit of large reduced frequencies, demonstrate
a convergence to rather simplified scaling laws that are functions of just the Reynolds number and
Strouhal number based on root mean square of the foil’s trailing edge velocity. Comparisons with
previously reported experimental and simulation-based investigations demonstrate that the scaling
laws capture the influence of imposed pitch on thrust generation characteristics over a range of
pitching waveforms ranging from sinusoidal to square or triangular-shaped waveforms and also
waveforms corresponding to intermittent pitching. The generalized relations derived in our work and
the asymptotic scaling laws deduced from them are applicable to a wide spectrum of self-propulsion
enabling and thrust producing waveforms including the ones that can potentially be employed in
burst and coast swimming.

Keywords: biolocomotion; flying and swimming; flapping foils

1. Introduction

Airfoils are well known for their lift-enhancing and drag-minimizing attributes [1,2].
The highly streamlined shape of an airfoil is designed to prevent flow separation and the
concomitant increase in the drag force. Remarkably, airfoils posses an equally exceptional
thrust generating capability as well. Specifically, airfoils undergoing a prescribed rotational
pitch and/or lateral oscillation have been shown to generate substantial thrust via mecha-
nisms related to added mass and leading edge suction mechanics. Both these mechanisms
have been argued to play an important role in the locomotion of natural swimmers as
well [3,4]. In fact the body cross section of swimming fishes bears a striking resemblance
with the streamlined shape of typical airfoils [4–6]. For natural swimmers minimization
of energetic cost of locomotion is of paramount importance. The morphological similarity
between a streamlined foil and fish fin is therefore, a likely indicator of an energy optimality
across artificial and natural locomotory-performance-maximizing thrusters. The foregoing
viewpoint has been the subject of intense scrutiny over the last few decades. The viewpoint
has also motivated investigations into the similarity in the wake patterns and the universal-
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ity of the Strouhal number range over which natural swimmers locomote and oscillating
foils produce thrust at peak propulsive efficiency [7,8].

For the reasons mentioned above, and also for potential deployment as high-efficiency
thrusters in micro air vehicles and biomimetic autonomous underwater vehicles, it is
important to quantify and optimize the thrust generation characteristics of foils undergoing
prescribed oscillatory motion. The typical parametric space that must be spanned for
a complete characterization of propulsive attributes and a subsequent determination of
the optimal parameters is generally quite vast, even for the simplest of the prescribed
kinematics. For instance pitching with a prescribed sinusoidal oscillation about a given
pivot location alone leads to a three-dimensional parametric space comprised of the pitching
amplitude, the Reynolds number for the incoming flow, and the Strouhal number that can
be thought of as an appropriately non-dimensionalized forcing frequency. The parametric
space grows rapidly once variations in the pitching waveform (multimodal non-sinusoidal
waveforms) and pivot location are allowed as well. Variations in pitching waveform are
important in their own right and have been shown to induce significant changes to the
peak in the thrust production and the maximum achievable energetic efficiency [9–11].
A simulation-based or experimental sweep of the enormously vast parametric is complex
and overly detailed especially since the propulsive attributes are of principal interest.
Reduced order models that through a simpler description of the flow facilitate a direct and
rapid means of estimating the key quantities of interest (mean thrust, mean power and
efficiency) are hence particularly desirable.

In this work we develop a reduced order model which by incorporating the essential
features of the flow past oscillating foils, provides a significantly simpler and yet, deeply
insightful description of the propulsive attributes of thrust generation from foils undergo-
ing continuous or intermittent rotational pitch. Our model is built upon a generalization
of the classical linear theory [12,13]. The theory was originally developed for foils un-
dergoing small amplitude single-mode rotary oscillations in an otherwise undisturbed
uniform free-stream. Our generalization extends the theory’s applicability to multimodal
pitching waveforms. Since the theory relies on potential flow analysis, our model nat-
urally incorporates the sources of thrust that are of an inviscid origin. To account for
the viscous resistance arising out of the thin boundary layers that are formed over the
foil’s surface, we supplement our generalized linear theory with an analysis of the vis-
cous effects. Our analysis of viscous effects relies on the Bone-Lighthill boundary layer
thinning hypothesis [14–16] to account for the foil motion induced increase in the hy-
drodynamic resistance. In the large reduced frequency our model predicts a remarkable
convergence to relatively simple and appealing scaling laws for the mean thrust and power
coefficients. As shown in Sections 3 and 4, when expressed in terms of appropriate param-
eters, the thrust generation characteristics of foils undergoing continuous sinusoidal and
non-sinusoidal, and intermittent pitching, as reported in numerous previously published
experimental and computational investigations spanning a wide range of Strouhal and
Reynolds numbers, exhibit a striking convergence to simple scaling laws, in complete
accordance with our model predictions.

Our present modeling approach considers thrust and drag as distinct entities with
principally inviscid and purely viscous origins, respectively. Our model is thus distinct from
the models that focus solely on the thrust generation aspects while completely disregarding
the enhancement in viscous resistance brought about by an oscillatory foil motion [17–19].
This enhanced viscous resistance determines the crucial transition from a drag-producing
to a thrust-generating state [20,21]. Most importantly, the enhanced viscous resistance
has been argued to be a principal determinant of the energy-optimal thrust-producing
state in which an oscillating foil generates thrust at the highest propulsive efficiency [22].
Our model accounts for both the thrust generated and the enhanced viscous resistance,
and therefore our model predictions of the thrust generation characteristics include the
specifics of the drag-thrust transition (or equivalently the self-propelled state) as well as
the peak in the propulsive efficiency of thrust generation.
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In the limit of large reduced frequency and for sufficiently large Strouhal numbers,
our model predicts a Strouhal number squared dependence for the mean thrust produced
from a single-mode sinusoidal pitching. Similar Strouhal number squared dependence of
the mean thrust has been intuitively argued to arise from the fluid’s inertial response to the
time periodic pitching motion imposed on the foil [3,11,20]. Scaling laws that express the
mean thrust and power coefficients in terms of the Strouhal number and reduced frequency
were developed by Floryan et al. [23]. Subsequently, simplified forms of these scaling law
relations were proposed by Floryan et al. [22]. For flapping foil motions that resemble the
oscillatory gaits employed by natural swimmers. The model proposed by Floryan et al. [22]
involves free parameters. The dependence of the free parameters on the Reynolds number,
the pitching amplitude and the foil thickness was analyzed by Senturk and Smits [24].

A key distinction between the above cited previous works and our present approach
lies in our rigorous treatment of the inviscid thrust generation mechanics through a gener-
alization of the linear theory. The rigor allows for an identification of the distinct origins of
thrust and crucially the reduced frequency range over which a convergence to the scaling
laws including the one that relates the mean thrust to the square of the Strouhal number,
is anticipated. We note here that the model for a self-propelled pitching foil proposed
in the work of Moored and Quinn [17] relied on linear theory based prediction of the
thrust generated from an imposed sinusoidal pitching motion. However, pitching induced
enhancement in the viscous resistance was disregarded in the analysis of Moored and
Quinn [17]. Note further that our own previous work on translationally free and con-
strained self-propelled foils that are pitched sinusoidally about their quarter cord makes
use of linear theory to account for the distinct origins of thrust [25]. However, the focus
of this earlier work of ours was on the self-propelling state, or equivalently the drag to
thrust transition. Most importantly only single-mode pitching waveforms corresponding
to prescribed sinusoidal temporal variations were considered in our previous work [25] as
well as in the publications by Moored and Quinn [17] and Fernandez-Feria and Sanmiguel-
Rojas [18]. In contrast, our present work generalizes the central idea of utilizing linear
theory and Bone-Lighthill boundary layer thinning hypothesis to deduce the mean thrust,
to multimodal non-sinusoidal pitching waveforms. The principal focus of our present work
is on deducing generalized mean thrust and power coefficients for multimodal waveforms
over a wide range of Strouhal numbers and an exhaustive comparison with the existing liter-
ature over the entire regime of drag-producing and thrust-generating pitching parameters,
including the parameters that result in a self-propelled state (drag-thrust transition).

This paper is organized as follows. The configuration consisting of uniform flow
past a pitching foil is described in Section 2. Our modeling approach is described in Sec-
tion 3. This includes a detailed description of the generalized linear theory for multimodal
pitching waveforms and also the complete details of the procedure adopted for theoretical
estimation of thrust and viscous resistance (Sections 3.1 and 3.2). An exhaustive compar-
ison of our model predictions with a wide set of previously reported experimental and
computational results on thrust generation characteristics of pitching foils is presented in
Section 4. The principal conclusions from our work are summarized in Section 5.

2. The Configuration

The setup we analyzed consisted of a uniform flow of an incompressible fluid past
a foil that is pitched about a fixed pivot location. A schematic of the setup is shown in
Figure 1. The uniform free-stream velocity is given by U∞i, where i denotes the unit vector
in the x-direction. The foil’s cord length is denoted using c with its time-dependent angular
position indicated using θ(t), where t denotes the time. The pitching waveforms that are
of interest are periodic and possibly non-sinusoidal. To this end, we consider a general
time-periodic imposed rotational pitch such that θ(t) = θ(t + jT), where T denotes the
time period and j is an integer. The angular location can therefore be expressed in terms of
a multi-modal expansion of the form
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θ(t) =
N

∑
n=1

θneinωt, (1)

where ω = 2π f , with f = T−1 as the oscillation frequency and θ = Re
(
θ
)
. Here, Re(z)

denotes the real part of a complex variable z. We represent the amplitude of θ(t) by θ0.
The set of allowable pitching waveforms given by the Equation (1) encompasses

intermittent rotational pitch wherein a limited-duration rotary oscillation is imposed on
the foil for only a fraction of the time period. Over the remaining portion of the time
period, the foil is held stationary and undergoes no motion. The Reynolds number for the
flow Re = U∞c/ν, where ν = µ/ρ denotes the kinematic viscosity of the fluid, ρ and µ
being the density and the dynamic viscosity of the fluid, respectively. Besides Reynolds
number, the Strouhal number St = f A/U∞ is an important non-dimensional parameter for
characterization of the pitching foil flow configuration. Here, A denotes the peak-to-peak
excursion of the trailing edge of the foil.

x

s=0s=-b s=b

y

Figure 1. Schematic depicting the uniform flow past a foil that undergoes an oscillatory rotational
pitch about the pivot point P. The foil’s angular position is indicated with θ(t). The length coordinate
s ranges from −b to b from the leading to the trailing edge of the foil, where b = c/2. The coloured
contours illustrate the instantaneous vorticity distribution for a prototypical flow that ensues from
the oscillatory motion of a foil pitched sinusoidally about its quarter chord with an angular amplitude
θ0 = 5◦ at a frequency that leads to Re = 105 and St = 0.1. Here, blue and yellow contours indicating
negatively and positively signed vorticity levels.

3. The Model

At high Reynolds numbers, the uniform flow past a pitching foil is highly unsteady
and separated. The vortical regions associated with this flow consist of the thin boundary
layer regions that are formed in the immediate neighborhood of the oscillating foil’s surface,
and a wake region formed downstream of the foil (see Figure 1 for a prototypical flow at
Re = 105 and St = 0.1 for a NACA0012 foil pitched sinusoidally about the quarter chord
with a). Depending on the pitching parameters, the wake region can potentially consist of
either a von Karman, or a reverse von Karman, or a chaotic distribution of the shed vortices.
The effect of viscosity is thus localized to the boundary layer and wake regions, elsewhere
the flow is primarily inviscid. From a reduced order modeling perspective, the effective
confinement of the viscous effects and principally inviscid character of the flow provides an
opportunity to model the flow using inviscid models for separated flow past sharp edged
bodies [26–29].

For the specific configuration of flow past a pitching foil, simple inviscid models that
rely on a linearized potential flow theory based description of the unsteady flow [12,13,30]
are of particular interest as they lead to especially insightful closed form expressions
for the key quantities of interest. The linear theory for the flow that ensues from the
pitching action of the foil relies on a rather simple description in which the slender and
streamlined foil is assumed to be infinitesimally thin and hence replaceable by a flat plate.
In our model we assume that the thrust generated from the pitching motion of the foil
is principally of an inviscid character. Our estimate of this thrust is based on the linear
theory for small amplitude pitching motions. Our model for the flow therefore relies
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on simplifications that are similar to the ones invoked in linear theory. In essence, we
model small pitching oscillations of a foil-equivalent flat plate of length c. We define the
semi-chord length b = c/2, and set the origin to coincide with the center of the foil so that
the foil, or equivalently the flat plate itself extends from −b to b.

Like in the linear theory, we allow a jump in the tangential velocity component
across the foil surface through a bound vortex sheet that coincides with the foil-equivalent
flat plate. The bound vortex sheet therefore resides all along the flat plate s ∈ [−b, b],
where s denotes the length coordinate. We enforce continuity of the normal velocity
component across the flat plate forcing it to match the foil’s prescribed wall-normal motion.
Additionally, like in linear theory, we employ a minimal model for the wake vorticity.
Herein, we assume that the wake to be a straight line extension of the foil surface over
the length coordinate s ∈ (b, ∞). We note here that more realistic modeling of the wake
through vortex sheet topologies that mimic the high-Reynolds-number wake vorticity
distribution closely is possible and has in fact been pursued in the recent work of Fernandez-
Feria [31,32]. Our choice of a minimal wake model that is aligned perfectly with the
foil-equivalent flat plate is inspired by its simplicity and its analytical tractability.

3.1. The Cycle-Averaged Thrust

Our principal interest is in the determination of the mean thrust generation charac-
teristics of the pitching foil. The mean thrust can be directly estimated from the cycle
average of the streamwise component of the normal force exerted on the foil. For small
oscillations, the normal force and the lift force experienced by the foil are nearly the same.
We therefore first attempt to estimate the lift force from our linear theory inspired modeling
approach described in the foregoing section. To estimate the lift force, we first determine
the instantaneous vortex impulse in the normal direction, i.e., in a direction perpendicular
to the chordwise direction. The total vortex impulse in the chord-normal-direction can be
expressed as the sum of the individual contributions from the vorticity distribution along
the foil and in the wake as follows

Iy(t) = −ρ

b∫
−b

γ(s, t)sds− ρ

∞∫
b

γ(s, t)sds (2)

where, γ(s, t) denotes the time-dependent vortex sheet strength along the foil-equivalent
flat plate and in the wake. Furthermore, γ(s, t) = γ1(s, t) + γ0(s, t), with γ0(s, t) arising
purely from the contribution of the foil motion to the bound vortex sheet and, γ1(s, t)
representing the wake contribution to the vortex sheet strength. Denoting the net circulation
by Γ(t), we have Γ(t) = Γ0(t) + Γ1(t), where Γ0(t) denotes the quasi-steady part with Γ1(t)
representing the wake contribution to foil circulation. Thus, we have

Γ0(t) =
b∫
−b

γ0(s, t)ds, and (3)

Γ1(t) =
b∫
−b

γ1(s, t)ds =
∞∫

b

√
s + b
s− b

γ(s, t)ds−
∞∫

b

γ(s, t)ds. (4)

The lift force is related to the derivative of vorticity-impulse as follows

L(t) =
dIy

dt
= −ρ

d
dt

b∫
−b

γ0(s, t)sds + ρU∞Γ0(t) + ρU∞b
∞∫

b

γ(s, t)√
s2 − b2

ds, (5)

where the first term on the right hand side of Equation (5) is the added-mass or reactive
contribution to lift (LR(t)), the second term the quasi-steady contribution (LQS(t)), and the
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last term arises from the explicit dependence of the lift on the wake vorticity distribution.
This last term is represented by LW(t). Thus, the total lift L = LR + LQS + LW . For ease of
representation, we define a circulatory lift as LC = LQS + LW .

For a foil undergoing rotational pitch about a pivot location sa = ba (scaled location
sa/b = a), the foil’s surface velocity is given by

v(s, t) = U∞θ(t) + θ̇(t)[s− ab] (6)

where a dot represents derivative with respect to time. Next, using Equations (5) and (6) it
can be shown that

Γ0(t) = −2πb
[

U∞θ(t)− bθ̇(t)
(

a− 1
2

)]
, (7)

LR(t) = −πρb2[U∞ θ̇(t)− abθ̈(t)
]
. (8)

The net circulation on the foil is given by

Γ(t) = Γ0(t) + Γ1(t), (9)

where from the Kelvin’s circulation theorem and (4) we arrive at

dΓ(t)
dt

= −γ(b, t)U∞

d
dt

(
Γ0(t) +

∫ ∞

b
γ(s, t)

[√
s + b
s− b

− 1

]
ds

)
= −γ(b, t)U∞ (10)

Substituting (1) in (7), we obtain

Γ0(t) =
N

∑
n=1

Gneinωt, where Gn = −2πb
[

U∞θn − b
(

a− 1
2

)
inωθn

]
. (11)

We analyze the flow at times that are sufficiently longer than the timescale associated
with the decay of the initial transients related to an impulsive start of the foil and the
uniform flow. For such times, without any loss in generality, the wake vorticity assumes
the form [13]

γ(s, t) =
N

∑
n=1

gneinω(t− s
U∞ ). (12)

Substituting Equations (11) and (12) in (10) we obtain

d
dt

 N

∑
n=1

Gneinωt +
N

∑
n=1

∞∫
b

gn

(√
s + b
s− b

− 1

)
einω(t− s

U∞ )ds

 = −U∞

N

∑
n=1

gneinω(t− b
U∞ ) (13)

⇒ inωGn + inω

∞∫
b

gn

(√
s + b
s− b

− 1

)
e−inω s

U∞ ds = −Ugne−inω b
U∞ ∀n (14)

⇒ gn =
Gn

U∞
inω einω b

U∞ +

∞∫
b

(√
s + b
s− b

− 1

)
e−inω s

U∞ ds

, n = 1, 2, . . . , N. (15)

Next, identifying the specific terms in the above expression (15) with the Bessel’s
functions of the first and second kind [33] we obtain

gn =
Gn

bπ
2 [(Y0(nk) + J1(nk)) + i(J0(nk)−Y1(nk))]

(16)
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where the reduced frequency k =
2π f b
U∞

. Substituting Equation (16) in (12) and evaluating

the third term on the right hand side of (5) we deduce

LW = ρU∞b
∫ ∞

b

N
∑

n=1
gneinω(t− s

U∞ )

√
s2 − b2

ds

=
2ρU∞

π

N

∑
n=1

∞∫
b

Gneinωte−inω s
U∞

Y0(nk) + J1(nk) + i(J0(nk)−Y1(nk))
1√

s2 − b2
ds

=
2ρU∞

π

N

∑
n=1

Gneinωt

Y0(nk) + J1(nk) + i(J0(nk)−Y1(nk))

∞∫
b

e−inω s
U∞

√
s2 − b2

ds

= −ρU∞

N

∑
n=1

Gneinωt(Y0(nk) + i J0(nk))
Y0(nk) + J1(nk) + i(J0(nk)−Y1(nk))

. (17)

Moreover,

LQS = ρU∞Γ0 = ρU∞

N

∑
n=1

Gneinωt, (18)

and

LC = LQS + LW

= ρU∞

N

∑
n=1

Gneinωt
[

J1(nk)− iY1(nk)
Y0(nk) + J1(nk) + i(J0(nk)−Y1(nk))

]

= ρU∞

N

∑
n=1

Gneinωt

([
J1(nk)(Y0(nk) + J1(nk))−Y1(nk)(J0(nk)−Y1(nk))

(Y0(nk) + J1(nk))2 + (J0(nk)−Y1(nk))2

]
−

i

[
(Y1(nk)Y0(nk) + J1(nk)J0(nk))

(Y0(nk) + J1(nk))2 + (J0(nk)−Y1(nk))2

])

= ρU∞

N

∑
n=1

GneinωtC(nk), (19)

where C(nk) = F(nk) + iG(nk) is the Theodorsen’s function [30]:

F(nk) =

[
J1(nk)(Y0(nk) + J1(nk))−Y1(nk)(J0(nk)−Y1(nk))

(Y0(nk) + J1(nk))2 + (J0(nk)−Y1(nk))2

]
(20)

G(nk) = −
[

(Y1(nk)Y0(nk) + J1(nk)J0(nk))

(Y0(nk) + J1(nk))2 + (J0(nk)−Y1(nk))2

]
(21)

The net lift force exerted on the foil is therefore given by

L = LR + LC = −πρ∞b2[U∞ θ̇(t)− abθ̈(t)
]
+ ρU∞

N

∑
n=1

GneinωtC(nk), (22)

where Gn is given by the expression (11).
Having estimated the lift force exerted on the foil, we are now in a position to deduce

the instantaneous thrust force exerted on the foil-equivalent flat plate. The net thrust force
experienced by the foil is given by [12],

T = Re[L]Re[θ] + πρ(Re[S])2, (23)
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where the leading edge suction term S is given by

S =

√
b
2

(
bθ̇ +

LC

ρπU∞b

)
(24)

Normalizing the above expression (24), we obtain the following for the thrust coeffi-
cient per unit span CT :

CT =
2T

ρU2
∞c

=
2

ρU2
∞c

[
Re[L]Re[θ] + πρ(Re[S])2

]
=

2Re[LR]

ρU2
∞c

Re[θ] +
2Re[LC]

ρU2
∞c

Re[θ] +
2π

U2
∞c

(Re[S])2. (25)

We next deduce explicit expressions for each of the reactive, circulatory and suction
terms that appear in the above expression. A normalization of the reactive component of
the lift force given by the expression (8) yields

CR
L =

2Re[LR]

ρU2
∞c

=
−2πρb2

ρU2
∞c

Re[U∞ θ̇(t)− abθ̈(t)]

=
πb2ω2

U2
∞

N

∑
n=1

[
nU∞

ωb
θn sin(nωt)− n2aθn cos(nωt)

]

= πk2
N

∑
n=1

[
nθn

k
sin(nωt)− n2aθn cos(nωt)

]
(26)

From the above expression we deduce the reactive thrust coefficient as follows:

CR
T = CR

L Re[θ] = πk2

{
N

∑
n=1

[
nθn

k
sin(nωt)− n2aθn cos(nωt)

]}
×

N

∑
n=1

θn cos(nωt) (27)

Proceeding in a similar way and normalizing the expression (19) we obtain the follow-
ing for the circulatory contribution to the lift coefficient:

CC
L =

2Re[LC]

ρU2
∞c

=
2

U∞c

N

∑
n=1

Re[GnC(nk)einωt]

= 2πk
N

∑
n=1

(
− cos(nωt)

[
F(nk)θn

k
+ nθn

(
a− 1

2

)
G(nk)

]
+ sin(nωt)

[
F(nk)

{
−nθn

(
a− 1

2

)}
+ G(nk)

{
θn

k

}])
, (28)

so that the circulatory contribution to the thrust coefficient:

CC
T = CC

L

N

∑
n=1

θn cos(nωt). (29)

Using expression (24) for S we obtain the following for the leading edge suction
contribution to the thrust coefficient:

CLS
T =

2πρ(Re[S])2

ρU2
∞c

=
π

U2
∞b

(Re[S])2 =
π

U2
∞b

(√
b
2

[
bRe[θ̇] +

Re[LC]

πρUb

])2

=
π

U2
∞b

(√
b
2

[
−bω

N

∑
n=1

nθn sin(nωt) +
CC

L
π

])2

=
π

2

(
−k

N

∑
n=1

nθn sin(nωt) +
CC

L
π

)2

(30)
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The net thrust coefficient:

CT = CR
T + CC

T + CLS
T , (31)

so that the cycle-averaged thrust coefficient

CT =
1
T

T∫
0

CTdt =
1
T

T∫
0

(
CR

T + CC
T + CLS

T

)
dt = CR

T + CC
T + CLS

T . (32)

The reactive contribution to the mean thrust coefficient is given by

CR
T =

1
T

T∫
0

CR
T dt

=
πk2

T

T∫
0

[
N

∑
n=1

(
−n2aθn

)
cos(nωt) +

(
nθn

k

)
sin(nωt)

][
N

∑
n=1

θn cos(nωt)

]
dt

= −πk2

2

N

∑
n=1

an2θ2
n (33)

Similarly, the circulatory contribution to the mean thrust coefficient assumes the
following form

CC
T =

1
T

T∫
0

CC
T dt = πk

N

∑
n=1

θn

[
−F(nk)

(
θn

k

)
+ G(nk)

(
−nθn

(
a− 1

2

))]
(34)

In a similar fashion, we deduce the contribution to the mean thrust coefficient from
the leading edge suction as follows

CS
T =

1
T

T∫
0

CS
Tdt =

π

2T

T∫
0

[
−k

N

∑
n=1

nθn sin(nωt) +
CC

L
π

]2

dt

= πk2
N

∑
n=1

[(
−nθn

2
+ F(nk)

{
−nθn

(
a− 1

2

)}
+ G(nk)

{
θn

k

})2

+

(
−F(nk)

{
θn

k

}
+ G(nk)

{
−nθn

(
a− 1

2

)})2
]

. (35)

The above expressions for the mean thrust coefficient hold for generic multimodal
pitching waveforms. These expressions clearly indicate that the mean thrust coefficient
depends explicitly on the reduced frequency k. Over majority of the positive-thrust-yielding
parametric space the pitching is intense enough for the reduced frequency k to far exceed
unity. We therefore analyze the detailed expressions listed above in the specific limit of
asymptotically large reduced frequency (k � 1). For k � 1, we have F(nk) ≈ 1

2 while
G(nk) ≈ 0 so that the mean thrust assumes the following simplified form:

CT = −π

2

N

∑
n=1

θ2
n −

πak2

2

N

∑
n=1

n2θ2
n + πk2

N

∑
n=1

θ2
n

{[
−n

2
− n

2

(
a− 1

2

)]2
+

[
1
2k

]2
}

= πk2
N

∑
n=1

n2θ2
n

{(
1
4
+

a
2

)2
− a

2

}
= πk2

(
1− 2a

4

)2 N

∑
n=1

n2θ2
n. (36)

Thus, in the asymptotic limit of large reduced frequency, the mean thrust coefficient
assumes a considerably simpler form. Moreover, the term ∑ n2θ2

n can be immediately
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identified with the magnitude of the imposed rotational pitch θ̇. Since the magnitude of the
rotational pitch is directly correlated with the magnitude of the foil’s trailing edge velocity,
we next attempt to express the mean thrust coefficient in terms of the magnitude of the
foil’s trailing edge speed.

For a foil undergoing periodic rotational pitch, the root mean square velocity of the
trailing edge of the foil is given by[

VT.E.
rms

]2
=

1
T

∫ T

0

[
rp θ̇
]2dt (37)

where rp denotes the distance from the pivot point to the trailing edge. Thus,
rp = (1− a)b = (1− a)c/2 and therefore

VT.E.
rms =

(1− a)c
2

√
1
T

∫ T

0

[
θ̇
]2dt =

π(1− a) f c√
2

√√√√ N

∑
n=1

n2θ2
n. (38)

We next define a Strouhal number based on the root mean square velocity of the
trailing edge as follows

Strms =

√
2

π

VTE
rms

U∞
. (39)

Substitution of the expressions (38) in (39) yields

Strms =
(1− a) f c

U∞

√√√√ N

∑
n=1

n2θ2
n =

k(1− a)
π

√√√√ N

∑
n=1

n2θ2
n. (40)

Combining the expressions (40) and (36) we deduce

CT =
π3

16

(
1− 2a
1− a

)2
St2

rms (41)

Thus, in the limit k� 1, our generalization of the linear theory yields a remarkably
simplified expression that captures the influence of variations in pitching amplitude, fre-
quency, waveform and the pivot location on the mean thrust generated from the rotary
foil oscillations.

3.2. The Viscous Resistance

Our linear theory inspired analysis of the multimodal pitching is expected to reliably
predict the mean thrust generated from small amplitude rotary oscillations. However,
the analysis certainly does not account for the frictional drag that originates from the
boundary layers formed over the oscillating foil. As noted in several previous works,
the frictional drag is quite significant and, owing to a reduction in the boundary layer
thickness, rises substantially with the intensity of the pitching motion. At a self-propelled
state, the viscous drag is exactly balanced by the thrust and therefore the viscous resistance
is a key determinant of the self-propelled state or equivalently the drag-thrust transition
point. Most importantly, the viscous drag has been argued to be a principal determinant of
the optimum thrust-producing state at which a pitching foil generates thrust at the highest
propulsive efficiency [22].

For the reasons noted above, we place particular emphasis on incorporating the skin
friction related hydrodynamic resistance in our overall estimation of the mean thrust.
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To this end, we appeal to the Bone-Lighthill boundary layer thinning hypothesis [14] and
express the cycle-averaged drag force exerted on the foil as follows [11,15,16,20]:

D = ρU2
∞c C(0)

D

√
|UN |
U∞

, (42)

where |UN | denotes the mean absolute value of the normal foil velocity [16] with C(0)
D as

the drag coefficient associated with a foil held stationary in a uniform free stream that is
aligned perfectly with the stationary foil’s chordwise direction. We set C(0)

D ∼ Re−0.56 in
accordance with previous works [20], where the exponent of −0.56 is quite close to the
exponent of −0.5 that is anticipated from the skin friction arising out of a planar laminar
boundary layer. The slight deviation from the scaling exponent of −0.5 corresponding to a
planar laminar boundary layer is attributable to the geometric differences between a flat
plate and a finite-thickness foil. We also note here that the exponent of Re is expected to be
significantly higher for a high-Reynolds-number turbulent boundary layer. Nevertheless,
the exponent of −0.5 for a laminar boundary layer has been observed to represent the
Reynolds number dependence of the drag coefficient over a reasonably wide range of
Reynolds numbers [20,34].

For the specific configuration under investigation, proceeding as in our previous
work [11], |UN | ∼ VTE

rms so that

|UN |
U∞

∼ VTE
rms

U∞
∼ Strms, (43)

from which we deduce

CD =
D

ρU2
∞c

= αRe−0.56
√

Strms, (44)

where α is a drag-determining parameter. We set α = 24 throughout the remainder of
this paper, in accordance with our previous work on self-propelled foils that are pitched
sinusoidally [25].

Having derived an explicit form for the inviscid thrust and the viscous drag, we are
now in a position to estimate the effective thrust generated from the oscillatory motion of
the pitching foil. Combining the expressions (41) and (44) we deduce

Ce f f
T =

π3

16

(
1− 2a
1− a

)2
St2

rms − αRe−0.56
√

Strms. (45)

In what follows, we make direct comparisons between the predictions from (45) and
the previously reported mean thrust coefficients deduced from experiments and detailed
simulations. For notational simplicity, we denote the effective thrust using CT throughout

the forthcoming sections with the understanding that CT is in fact Ce f f
T and thus fully

incorporates the finite viscous resistance that arises from the laminar boundary layer
formed over the pitching foil.

4. Comparisons with Experiments and Detailed Simulations

In this section we compare the thrust generation characteristics predicted from our
linear theory and boundary layer thinning hypothesis inspired model for pitching foils
with the previously reported experimental and computational results spanning a wide
spectrum of relevant parameters. In Figure 2 we present a comprehensive comparison of
our theoretical predictions with the previously published results for a range of pitching
amplitudes, Reynolds and Strouhal numbers and pitching waveforms. Our theoretical
estimate (45) suggests an effective collapse of the mean thrust coefficient with Strms. We
therefore recast the dataset from each of the prior investigations and express them in terms
of a mean thrust coefficient and the root-mean-square-Strouhal number dependence.
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To begin with, we note that a re-expression of the dependence of mean thrust coeffi-
cient on pitching parameters in terms of CT-Strms relation leads to a remarkable collapse of
the discrete data set from several previous works on multimodal non-sinusoidal [9,10,35]
as well as single-mode sinusoidal pitching waveforms [20,24,36,37]. Specifically, we find
that for a given pivot location (a) and Reynold number Re, the thrust coefficients for square-
shaped, triangular-shaped and sinusoidal pitching waveforms very nearly converge to a
single trend line in the CT − Strms space. The convergence indicates that the CT − Strms rela-
tion is relatively insensitive to the variations in pitching amplitude θ0, in perfect agreement
with our theoretical prediction (45). Most importantly, our key prediction that the entire
influence of variations in pitching waveform on the thrust generation characteristics can
be captured through a single parameter, namely the modified root-mean-square Strouhal
number Strms, is well-supported by the past experimental and computational findings.

(a)

Re= 13500, a = −1/ 2
(NACA0012 foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

, , : θ0 = 7.5◦

, , : θ0 = 5.0◦

, , : θ0 = 2.5◦

(b)
Van Buren et al. 2017
Re= 4870, a = −1

(Tear drop foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

, , : θ0 = 15◦

, , : θ0 = 13◦

, , : θ0 = 11◦

, , : θ0 = 9◦

, , : θ0 = 7◦

, , : θ0 = 5◦

, , : θ0 = 3◦

(c)
Balla 2017

θ0 = 15.0◦, a = −1/ 2
(NACA0012 foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

, , : Re= 16800
, , : Re= 14000
, , : Re= 11200
, , : Re= 8400
, , : Re= 7000
, , : Re= 5600
, , : Re= 4200

(d)

a = −1/ 2
(NACA0012 foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

: Mackowski et al. 2015,θ0 = 16◦, Re= 16600
: Mackowski et al. 2015,θ0 = 8◦, Re= 16600
: Mackowski et al. 2015,θ0 = 4◦, Re= 16600
: Mackowski et al. 2015,θ0 = 2◦, Re= 16600
: Bohl et al. 2009,θ0 = 2◦, Re= 12600

Lu et al. 2013

Figure 2. Cont.
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(e)
Senturk and Smits 2019
θ0 = 8.0◦, a = −1/ 2

(NACA0012 foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

: Re= 32000
: Re= 16000
: Re= 8000
: Re= 4000
: Re= 2000
: Re= 1000
: Re= 500

(f)
Das et al. 2016

θ0 = 5.0◦, a = −1/ 2
(NACA0012 foil)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Strms

C T

: Re= 2000
: Re= 1500
: Re= 1250
: Re= 1000
: Re= 750
: Re= 500

Figure 2. Mean thrust coefficient CT as a function of the root mean square Strouhal number Strms.
Differentially shaped symbols represent single-mode sinusoidal ( ), and multimodal triangle-shaped
( ) and square-shaped ( ) pitching waveforms. Solid lines represent predictions from the Reynolds
number and pivot location specific CT - Strms relation (45). Color variations are used to distinguish
between cases associated with distinct Re and θ0. In panel (a) theoretical predictions are compared
with two-dimensional computational results of Lu et al. [9] for a NACA0012 foil pitched about its
quarter chord at Re = 13,500 and at three distinct pitching amplitudes. Panels (b–f) depict similar
comparisons with previously published results. Panel (b) depicts comparison with the experimental
results of Van Buren et al. [10] for a tear drop shaped foil pitched about its leading edge at Re = 4870
and seven distinct pitching amplitudes, panel (c) with the experimental results of Balla [35] for
a NACA0012 foil pitched about its quarter chord at a fixed angular amplitude of θ0 = 15◦ and
seven distinct Re, and panel (d) with the experimental results of Mackowski and Williamson [36] at
Re = 16,600 and Bohl and Koochesfahani [37] at Re =12,600 for a NACA0012 foil pitched sinsusoidally
about its quarter chord. Panels (e,f) compare the theoretical prediction (45) with the computational
results of Senturk and Smits [24] and Das et al. [20], respectively, for a NACA0012 foil pitched
sinsusoidally about its quarter chord over a range of Re and a fixed angular amplitude (θ0 = 8◦ and
θ0 = 5◦ in Senturk and Smits [24] and Das et al. [20], respectively).

Our theoretical prediction (45) is itself in reasonable quantitative agreement with the
discrete data set from the prior investigations [9,10,35–37]. Specifically, we find that our pre-
dictions capture the variations of CT with Strms for a single choice of the drag-determining
parameter α = 24 that is kept uniformly the same across the entire set of discrete data set
and the parametric space of Re, θ0 and pitching waveform. The deviations between our
theoretical predictions and the discrete data set shown in Figure 2 are attributable to the ge-
ometric disparity between the finite-thickness foil shapes utilized in previous experimental
and computational investigations (Lu et al. [9,35,36] and Balla [37] use a NACA0012 foil
while Van Buren et al. [10] employ a tear-drop shaped foil) and the foil-equivalent flat-plate
assumption we made in arriving at the result (45). We emphasize here that our theoretical
analysis and the prediction (45) are strictly valid only for small amplitude pitching motions.
The slight θ0 dependence evidenced in Figure 2b for a tear drop shaped foil pitched about its
leading edge is most likely a consequence of finite amplitude effects that are unaccounted
for in our present theoretical setup.

Besides the mean thrust coefficient, the power expended in generating the mean thrust
is a crucial metric that eventually determines the feasibility of utilizing pitching foils for
oscillatory thrust generation in artificial systems. The mean power expended in sustaining
the pitching motion of the foil is directly linked to the cycle-average of the product of the
moment experienced by the foil and the angular velocity of the foil. The corresponding
mean power coefficient CP obtained by a normalization of the mean power with ρU3

∞c
has been shown to exhibit a cubic dependence on Strouhal number in several previous
works [8,11,20,25,36]. Given the outcome of our analysis of the mean thrust coefficient,
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it is then natural to expect that the pitching waveform induced variations in the power
coefficient could likely be explained through a possibly simple CP − Strms relationship.

To test the foregoing expectation, we reexpressed the power coefficients from the
previous works of Lu et al. [9], Van Burenin et al. [10], Balla [35] and Mackowski and
Williamson [36] in terms of Strms. The CP − Strms dependence that emerges from this
reexpression is depicted in Figure 3, We find that the discrete data set from all the previous
investigations [9,10,35–37] converge remarkably well to a cubic scaling law of the form CP ∼
St3

rms. Thus, pitching waveform induced variations to the thrust generation characteristics
and energetics of pitching foils are both quite well represented by Strms.

C p ∼ St3
rms

0.05 0.1 0.2 0.4 1.0

10−2

10−1

100

101

Strms

C P

Triangle-shaped
Van Buren et al. 2017
Sinusoidal
Van Buren et al. 2017
Square-shaped
Van Buren et al. 2017
Triangle-shaped
Lu et al. 2013
Sinusoidal
Lu et al. 2013
Square-shaped
Lu et al. 2013
Triangle-shaped Balla 2017
Sinusoidal Balla 2017
Square-shaped Balla 2017
Sinusoidal
Senturk and Smits 2019
Sinusoidal
Das et al. 2016

Figure 3. Mean power coefficient Cp as a function of the root mean square Strouhal number Strms for
periodically pitched foils. The symbols used to distinguish between different cases are exactly the
same as in Figure 2. The solid line represents a cubic power law fit through the discrete data set.

The interest in burst-and-coast mode of swimming [38] has inspired recent investi-
gations into the thrust generation characteristics of foils undergoing intermittent oscilla-
tions [39,40]. An advantage of our analysis of foils undergoing prescribed multimodal
rotational pitch is that it readily applies to intermittent pitching as well. To demonstrate
this, in Figure 4 we compare our theoretical prediction (45) and the scaling law CP ∼ St3

rms
with the mean thrust and power coefficients for a tear drop shaped foil undergoing inter-
mittent pitching as reported in Floryan et al. [40]. We find that for a wide range of pitching
amplitudes and duty cycles, the discrete data set from Floryan et al. [40] is in near perfect
agreement with our predictions. We may therefore conclude that the predictions from our
theoretical analysis are applicable to intermittent pitching waveforms as well.

The discrete data set for the mean thrust and power coefficients associated with
sinusoidal or triangle/square-shaped waveforms and intermittent pitching are thus in
good agreement with our theoretical prediction (45) and the cubic power-law scaling
CP ∼ St3

rms. It is then reasonable to expect that the agreement will extend to the propulsive
efficiency of thrust generation as well. The propulsive efficiency η = CT/CP is well-known
to be a concave function of the Strouhal number [8], specifically the propulsive efficiency is
negative in the drag-producing regime of low Strouhal numbers and rises sharply attaining
positive values for Strouhal numbers larger than a transition number of Sttr

rms. Precisely
at the transition Strouhal number Sttr

rms the mean thrust vanishes identically (CT = 0) and
a self-propelled state is established. For Strms > Sttr

rms, η increases attaining a maximum
and then decreases with a further increase in Strms. The maximum in the propulsive
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efficiency ηmax and the corresponding Strouhal number Stmax
rms are of particular interest as

they represent optimum conditions that lead to a maximization of energetic efficiency.

Re = 8000, a = −1
(Tear drop shaped foil)

(a)

Theoretical prediction (45)

0 0.2 0.4 0.6 0.8

0

1

2

Strms

C
T

(b)

Cp ∼ St3
rms

0.05 0.1 0.2 0.4 1.0
10−3

10−2

10−1

100

101

Strms

C
P

DC = 0.2 DC = 0.3 DC = 0.4 DC = 0.5 DC = 0.6 DC = 0.7 DC = 0.8 DC = 0.9 DC = 1.0

θ0 = 15◦

θ0 = 10◦

θ0 = 5◦

Figure 4. Mean thrust and power coefficients CT and CP as a function of the root mean square
Strouhal number Strms for foils undergoing prescribed intermittent rotational pitch with duty cycles
(DC) ranging from 0.2 to 1.0 and angular amplitudes θ0 = 5◦, 10◦ and 15◦. Discrete points are taken
from the experimental investigation of Floryan et al. [40] for a tear drop shaped foil pitched about
its leading edge at Re = 8000. Distinct symbols and colors are used to distinguish between cases
associated with distinct DC and θ0, respectively. The solid line in the left panel (a) represents the
theoretical prediction (45) while the one in the right panel (b) is a cubic power law fit.

The ratio of the mean thrust coefficient given by the expression (45) and the mean
power coefficient CP = 40 St3

rms readily yields an estimate for the propulsive efficiency η.
By a maximization of this theoretical estimate with respect to Strms we deduce the following
for the maximum propulsive efficiency:

ηmax = 2.95× 10−3
(

1− 2a
1− a

) 10
3

Re0.37, (46)

with the corresponding Strouhal number:

Stmax
rms = 9.86

(
1− a

1− 2a

) 4
3

Re−0.37 = 1.84 Sttr
rms. (47)

In Figure 5a we depict a comparison of the prediction (46) from our theoretical
analysis with the maximum attainable propulsive efficiency deduced from previously
reported experimental and computational investigations. We observe that the ηmax pre-
dicted from (46) compares favorably with the maximum propulsive efficiency reported in
previous works [9,10,20,24,36,41] over the range 1 ≤ Re ≤ 104. The corresponding Strouhal
number Stmax

rms at which the maximum in propulsive efficiency is attained is compared with
the previous investigations in Figure 5b. The comparison also includes the drag-to-thrust
transition Strouhal number Sttr

rms. We find that like ηmax, both Sttr
rms and Stmax

rms compare
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favorably with the prior experimental and computational investigations over the range
1 ≤ Re ≤ 104.

(a)

Theoretical prediction (46)

100 101 102 103 104 105
0

0.1

0.2

0.3

Re

η
m

ax

ηmax (b)

Theoretical prediction (47)

100 101 102 103 104 105
0.1

0.5

1

5

Re

St
m

ax
rm

s
,S

ttr rm
s

Sttr
rms

Stmax
rms

, , : Das et al. 2016 , , : Senturk and Smits 2019 , : Xiao and Liao 2009
, , : Lu et al. 2013 , , : Mackowski and Williamson 2015 : Bohl and Koochesfahani 2009

Figure 5. Maximum propulsive efficiency ηmax (panel (a)) and, the corresponding Strouhal number
Stmax

rms at which maximum efficiency is achieved and the drag-to-thrust transition Strouhal number
Sttr

rms (panel (b)) as a function of Re. Discrete points are taken from the previous experimental and
computational investigations as indicated in the legend above. The symbols ( ), ( ) and ( ) represent
ηmax, Stmax

rms and Sttr
rms, respectively, with the colors used to distinguish the discrete dataset from

each of the prior experimental and computational investigations. Multiple similarly colored and
shaped symbols are used to represent discrete dataset corresponding to a similar Re but distinct θ0.
Bohl and Koochesfahani [37] focus on drag-to-thrust transition and their reported dataset does not
include mean thrust or efficiency. Xiao and Liao [41] target thrust maximization and the Strouhal
number range investigated in their computational work is beyond the Strouhal number Sttr

rms for the
drag-to-thrust transition. The solid line in the left panel (a) represents the theoretical prediction (46).
The solid and dashed lines in the right panel (b) are obtained from the theoretical predictions (47).
Note that theoretical predictions are expected to hold only over a limited Re range for which the
boundary layer remains laminar and therefore, the solid and the dashed lines extend only upto a
finite Re.

We note here that our predictions (46) and (47) rely intrinsically on the Bone-Lighthill
boundary layer thinning hypothesis and a laminar boundary layer assumption which we
used in arriving at the expression (44) for the cycle-averaged drag coefficient. At sufficiently
large Reynolds numbers we expect a transition from a laminar to a turbulent boundary
layer. The corresponding high-Reynolds-number drag coefficient C(0)

D is expected to exhibit
weaker dependence on Re and eventually become independent of the Reynolds number.
For such high Reynolds number scenarios we expect that a transition to a Re-independent
C(0)

D will lead to a mean thrust that is independent of the Reynolds number. Consequently,
at sufficiently high Reynolds number we expect a departure from the Re dependence
indicated by the expressions (46) and (47) and anticipate ηmax, Sttr

rms and Stmax
rms to eventually

become independent of the Reynolds number. This expectation is consistent with our
earlier observations on a saturation in the peak propulsive efficiency of thrust generating
foils that are pitched sinusoidally about their quarter chord [20]. The expectation is also
consistent with the fact that the Strouhal number range over which undulatory natural
swimmers cruise at high Re is particularly narrow and can essentially be viewed as being
independent of the Reynolds number [3,6,8,42,43].
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5. Conclusions

To conclude we presented a linearized potential flow theory and Bone-Lighthill bound-
ary layer thinning hypothesis inspired model for prediction of thrust generation from foils
that are pitched periodically in a possibly asymmetric and intermittent fashion about a fixed
pivot point. The model allows for a rigorous identification of the various sources of the
thrust, specifically, the added mass related contribution, the leading edge suction, and the
quasi steady and wake contributions. In the specific limit of large reduced frequency, we
showed that a dependence of the mean thrust coefficient on the Strouhal number based
on the root mean square of the trailing edge velocity effectively accounted the pitching
waveform induced variations. The mean thrust and power coefficients from several previ-
ously reported investigations on foils undergoing single-mode sinusoidal or multi-mode
non-sinusoidal/ intermittent pitching showed a remarkable convergence with respect to
the root mean square Strouhal number, in complete agreement with our model prediction.
Over the range 1 ≤ Re ≤ 104, the power law variation of the maximum achievable en-
ergetic efficiency and, the power laws for the drag-to-thrust transition Strouhal number
and the Strouhal number for propulsive efficiency maximization were all in reasonable
agreement with a range of prior computational and experimental investigations on sinu-
soidally, non-sinusoidally, and intermittently pitched foils. Our results highlight the utility
of reduced-order predictive models in enabling a simple and insightful description of the
oscillatory thrust generation characteristics of rotationally pitched foils.
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