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Abstract: The paper presents two methods to improve the efficiency of supersonic flow simulation
using arbitrarily shaped unstructured grids. The first method promotes increasing the numerical
solution convergence rate and is based on the geometric multigrid method for initialization of the
flow field. The method is used to obtain the initial field of distributed physical quantity values,
which maximally corresponds to the converged solution. For this purpose, the problem simulation is
performed on a series of coarse grids beginning from the coarsest one in this series. Upon completion
of simulations, the solution obtained is interpolated to a finer grid and used for initialization of
simulations on this grid. The second method allows increasing the numerical solution accuracy and
is based on statically adapting the computational grid to the flow specifics. The static adaptation
algorithm provides automatic refinement of the computational grid in the region of specific features
of flow, such as shock waves typical for supersonic flows. This algorithm provides a better description
of the shock-wave front owing to the local grid refinement, with the local refinement region being
automatically selected. Results of using these methods are demonstrated for the two supersonic
aerodynamics problems: the simulation of the bow shock strength at a given distance under axially
symmetric body Seeb-ALR and a mock-up aircraft Lockheed Martin 1021. It is shown that in both
cases, the numerical solution convergence rate is increased owing to the use of the geometric multigrid
method for initialization and a higher quality and a higher accuracy of solution is gained owing to
the local grid refinement (using static adaptation means) near the shock-wave front.

Keywords: supersonic flow; aerodynamics; simulation; performance; unstructured grid; multigrid
solvers; adaptive grids

1. Introduction

The necessity of simulating supersonic flows often occurs when solving external
aerodynamics problems for the needs of aircraft and space-and-rocket industries. In
problems of a high practical value, as a rule, an object of interest has complex geometry and,
therefore, the use of unstructured computational grids built with the cutoff method [1,2] is
preferred to solve such problems. Structured computational grids are also used, however,
less frequently, because the grid generation procedure for these problems is too long and
labor intensive [3–5]. Note that supersonic flows are characterized by complex physical
processes and computational models should be detailed to a maximum extent for properly
reproducing them. In this case, a computational model in use may have tens of millions of
cells, thereby considerably increasing the requirements of computing resources [5]. Thus,
the selection of a mathematical model for supersonic flows raises the acute problem of
accelerating the numerical solution convergence and increasing its accuracy without high
increments (by several times) in loads for compute resources.

Fluids 2022, 7, 136. https://doi.org/10.3390/fluids7040136 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7040136
https://doi.org/10.3390/fluids7040136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-3247-0835
https://orcid.org/0000-0003-4554-0513
https://doi.org/10.3390/fluids7040136
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7040136?type=check_update&version=1


Fluids 2022, 7, 136 2 of 17

Special methods developed to reduce time expenditures are known. The algebraic and
geometric multigrid methods are widely used to solve systems of linear algebraic equations
(SLAE) obtained owing to the discretization of the basic gas dynamic
equations [3,4,6]. The review of using these methods can be found in [3,4]. Both the
algebraic and geometric multigrid methods are used at each step of the iterative problem
solution process. However, it is possible to speed up the solution process by using an
additional algorithm to initialize the computational domain in the initial stage of the com-
putational procedure. The initialization algorithm allows generating a flow near an object,
when the initial disturbance propagates in the computational domain. The best effect of
this procedure (an increased convergence rate of solution and an improved stability) [7,8]
is gained in the simulation of flows with shock-wave processes.

The geometric multigrid method [3,4,9] is the way to introduce the computational
domain initialization procedure. The idea of this method consists in generating a series of
coarse grids on the base of the original grid, which are used to solve the problem till the
complete convergence of numerical solution. The problem solution process starts with the
use of the coarsest grid. Coarse grids have a lesser number of cells in comparison with the
original basic grid and, therefore, they provide a higher convergence rate of solution. Then,
the solution obtained is interpolated to a finer grid and, as a result, to the original basic
grid, and is used as the initialization before the simulation. Thus, the time spent to gain
the solution convergence is reduced owing to the use of the initial distribution of the gas
dynamic quantity values, which is close to a maximum extent to the final solution.

To improve the numerical solution accuracy, different schemes of a higher order of
approximation [3,4,9,10] are used, as a rule. In addition, the solution accuracy can be im-
proved by using a finer grid model leading to an increased load on computational resources.
One of the efficient methods to increase the grid resolution is the local refinement of the
grid model [11–15]. Since most problems in industry are simulated using unstructured
grids, there is a need in the development of an algorithm of automatically refining cells in
such grids.

As it is known, the method of dynamically adaptable grids [11–13,16] is used to create
a higher local concentration of cells, which allows automatically refining the grid (on the
base of the obtained solution) in those regions only, for which such local refinement is
required. The main idea of the method of adaptive grids consists in decreasing the size of
cells by incorporating additional cells. Such approach allows refining a certain part of the
computational grid without any changes in the smooth solution domain.

The paper describes the approach to simulating supersonic flows based on the multi-
grid initialization to increase the convergence rate of numerical solution in combination
with the static adaptation of the computational grid to improve the solution accuracy. The
static adaptation method uses the faced-based model of memory that allows efficiently
using it on unstructured grids [15]. The approach described in the paper has been imple-
mented in the LOGOS software package [1,2,5,9,16–18], the Russian software package for
engineering analysis.

The efficiency of using this approach is demonstrated in the paper by solving two
problems of supersonic flows: the simulation of the bow shock strength at a given distance
under axially symmetric body Seeb-ALR, and the simulation of a model aircraft Lockheed
Martin 1021 [19].

2. Basic Equations

To describe an unsteady viscous gas flow, the Navier-Stokes equation system [20] is
used, its conservative form in Cartesian coordinates looks like

∂W
∂t

+
∂(Fe − Fµ)

∂x
+

∂(Ge −Gµ)

∂y
+

∂(Ee − Eµ)

∂z
= H (1)
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where W is a vector of conservative variables, Fe(W), Ge(W), E(We) and
Fµ(W,∇W), Gµ(W,∇W), Eµ(W,∇W) are vectors of convective and diffusive flows, re-
spectively, and H (W, ∇W) is a source.

For laminar flows, vectors W, Fe, Ge, Ee, H have the form:

W =


ρ

ρu
ρv
ρw
ρE

 , Fe =


ρu

ρu2 + p
ρuv
ρuw
ρuH

, Ge =


ρv

ρuv
ρv2 + p

ρvw
ρvH

, Ee =


ρw

ρuw
ρvw

ρw2 + p
ρwH

, H =


0
0
0
0
0

, (2)

Fµ =


0

τxx
τxy
τxz

qx + uτxx + vτxy + wτxz

, Gµ =


0

τyx
τyy
τyz

qx + uτyx + vτyy + wτyz

, Eµ =


0

τzx
τzy
τzz

qx + uτzx + vτzy + wτzz

. (3)

here, the common designations are used: ρ is density, u, v, w are the velocity vector compo-
nents, p is pressure, E = ε + u2+v2+w2

2 is the specific total energy, H = ε+p⁄ρ+(u2 + v2 + w2/2)
is the specific total enthalpy, and ε is the specific internal energy. The equation system is
closed by the caloric and thermal equations of state:

ρ = mp/RT, ε = CV T (4)

To describe turbulent flows, Equation (1) is supplemented with model equations of
turbulence [20–23].

For the discretization of Equation (1), the method of finite volumes is used, which is
based on the integration of original differential equations (written in their divergent form)
with respect to a control volume. Control volumes (cells of the grid) are arbitrarily shaped
polyhedrons with an arbitrary number of faces, in general case, covering the computational
domain without gaps and overlaps. A general view of a cell in an arbitrary unstructured
grid is shown in Figure 1.
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3. The Multigrid Method for Starting Initialization 
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3. The Multigrid Method for Starting Initialization

The main problem in the simulation of supersonic and hypersonic flows consists
in providing the numerical solution stability at the shock-wave generation time, when a
disturbance passes over a uniform initial field. To maintain the numerical solution stability,
it is required to perform calculations using appropriate parameters characterized by a lower
rate of convergence (for example, small Courant number) [3,4]. In case of the multigrid
initialization, however, this stage is simulated using a series of coarse grids with more stable
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numerical schemes of the first order of accuracy [7]. The disturbance set on the boundary
more quickly passes over the computational domain in a coarse grid in comparison with
the original grid and results in a steady-state solution. Further, with the change-over to a
finer grid, the solution obtained is specified. So, at the time of starting the solution process
on the original grid the field of distributed physical quantities is close to a maximum extent
to the final solution and the flow has the shaped structure.

3.1. Generation of Coarse Grids

Prior to generating a series of coarse grids on the base of the original grid dimensions
of the computational domain are determined—a sizing box is constructed (Figure 2).
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Figure 2. A sizing boxes.

The size of cells is set for each grid coarsening level. Basing on the given size of cells, a
uniform grid is built in the sizing box. Cells of the original grid, which central points have
got into one, or another coarse grid’s cell, comprise a macro cell of the coarse level. One
macro cell may have several thousands of cells of the original grid (Figure 3), depending
on the cell size of the coarse level.
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Such a coarse grid-generating algorithm leads to the occurrence of macro cells, whose
volume is many times smaller than the given cell volume, possibly, due to the problem
geometry specifics, or positions of interprocessor interfaces. To provide almost the same
size and volume of cells in the coarse grid, the merging of macro cells is performed for cells,
whose volume is 10 times smaller than the preset volume. Merging with the nearest macro
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cell is performed. Thus, at each grid level macro cells consisting of the original grid cells
are generated.

With the change-over to a finer grid level, the size of cells of the previous level
is halved. The maximum number of grid levels proposed by the algorithm authors is
seven (7); however, it may be reduced depending on the minimum number of cells of the
original grid comprising one macro cell.

3.2. An Algorithm of Solving a Problem on a Series of Coarse Grids

At each level of coarsening, the problem of reaching the steady flow regime is solved.
The viscous compressible gas flow is simulated with the explicit difference scheme. A maxi-
mum number of iterations and a maximum value of residual should be set as a termination
criterion for the problem simulation at the current grid level. The computational algorithm
for the problem of reaching the steady flow regime at each level is, as follows:

1. Grids of the current level are built according to the given size of cells.
2. To build a coarse-level grid, a list of cell faces of the original grid, which are faces of

macro cells of the current grid level, is generated.
3. On each internal face, the convective flow calculation with the Roe method [20,24,25],

as well as the diffusion flow calculation [3,4,20] are carried out.
4. On each external face of original grid’s cells, flows are calculated according to the

imposed boundary condition.
5. For all macro cells of the current grid level, the explicit scheme [3,4] is used to calculate

the new value of parameters and, at the same time, the calculated values are copied to
all cells of the original grid.

6. Interprocessor communications are performed.
7. The computation termination criterion is verified at the given level of coarsening.
8. The termination criterion is verified for the multigrid initialization procedure. With

the maximum 7th grid coarsening achieved, or with a minimum number of cells of
the original grid less than 50, the basic loop with respect to grid levels is terminated.

9. Then, the iterative process of solving the problem on the original grid runs.

4. The Static Adaptation Method

One of the efficient methods improving the grid resolution in the region of shock
waves is the local refinement of the computational grid. For this purpose, the method of
adaptive grids is often used. As was demonstrated in practice, to solve problems using
unstructured grids, it is preferable to use adaptive grids, in which the grid refinement is
performed owing to the incorporation of additional cells [11–16].

4.1. An Algorithm of Refining Cells

The algorithm of refining cells is based on the partitioning faces of the original grid
cell [16]. Let us consider the algorithm using a hexahedral cell as an example.

To form new faces, it is required to add new nodes at the central point of each face, at
the midpoint of each edge (Figure 4a) of the original cell, and at the central point of the cell.
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As a result, instead of the original cell, we have eight cells of the first adaptation level.
This algorithm can be also generalized to cells having the shape of a convex polyhedron.
Figure 4b illustrates the example of partitioning such a cell.

The adaptation algorithm can be applied once again to the first level grid, if necessary,
and, therefore, we obtain a grid of the second level of adaptation. The number of subsequent
levels is limited only by the minimum cell size to be achieved by partitioning. Thus, a
new adaptive grid with local refinement regions is built. Note that with the change-over
to a grid of the next adaptation level, the solution obtained at the previous level is used
as initialization that allows reducing the computation time on the new grid. To apply the
adaptation algorithm, it is necessary to identify regions for the local grid refinement and,
for this purpose, the adaptation criteria are used [16].

4.2. Computational Grid Adaptation Criteria

For automatically determining regions of shocks waves emerging, for example, in a
supersonic flow, one of the appropriate criteria is function (5) based on the gradient value
of a gas dynamic quantity (density, pressure, and velocity) [16].

f = (Vcell)
2/3 · |∇F| (5)

where Vcell is the cell volume, ∇F is the gas dynamic quantity gradient.
Quantity (Vcell)

2/3 in expression (5) is used to evaluate the geometric cell size and
allows considering the dependence of the value of criterion f on the cell volume. In
combination with the gradient value of gas dynamic quantity a maximum value of criterion
f would be achieved in cells having the largest volume and a high gradient value and this
would provide getting into the local refinement region of large cells with strong changes
in gas dynamic quantities. A minimum value of criterion f is typical for the region with
smooth variations in values of gas dynamic quantities and achieved in cells having the
smallest volume and a low gradient value, and, as a result, such cells will be eliminated
from the local refinement region. In the present paper, density, or pressure are used as gas
dynamic quantity F.

For example, an attached shock occurs in a supersonic flow in a channel with a wedge
and leads to the generation of the shock-wave flow structure (Figure 5).
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Figure 7 shows an adaptive grid resulting from the use of the adaptation algorithm,
the refinement region is selected according to the pressure-based criterion.
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5. Numerical Tests

The algorithms described above are implemented in the LOGOS software package,
the engineering analysis software product developed to solve conjugate 3D problems of
heat-and-mass transport with convection, aerodynamics, and hydrodynamics on parallel
computers [1,2,5,9,16–18].

5.1. Simulation of a Supersonic Flow around an Axially Symmetric Body (Seeb-ALR)

The problem simulates a viscous compressible gas flow around a body with axial
symmetry. The body geometry is illustrated in Figure 8. Its length L is 17.667 inches
(0.44 m) and its diameter is 1.4 inches (0.035 m) [26].
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Results of the simulation were compared with the data obtained in the experiment
with the mock-up model of object in aerodynamic tube NASA Ames 9 × 7 Supersonic
Wind Tunnel. In this experiment, the normalized variation in static pressure along the
characteristic line under the object at a distance of 0.54 m was estimated (Figure 9) [26].
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Figure 9. The experiment layout.

According to the experiment, the flow around the body had Reynolds number
6.42 × 106 and the following parameters of the incoming flow: Mach number 1.6, tem-
perature 273 ◦K, molecular viscosity 1.85 × 10−5 kg/(m·s), and pressure 1 atm. The flow
attacked at a zero angle.

To simulate the given problem with the LOGOS software package, an unstructured
computational grid of truncated hexahedrons having 2.5 million cells (Figure 10) was
generated, the size of cells was 0.025 m at the grid core and 0.006 m in the refinement block.
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Figure 10. Computational domain. (a) general view, (b) closeup.

The object size in the computational grid corresponds to the model size used in the
experiment with flow in aerodynamic tube. There is a prismatic layer—0.005 m long and
15 cells thick—near the object surface. The outer boundary of the computational domain is
at a significant distance (10 m) to the object to avoid its effect on the flow simulation results.

To reproduce conditions of the experiment, the “free flow” boundary condition with
appropriate parameters was set on the outer boundary of the computational domain. The
object surface was a “rigid wall”.

The problem of reaching the steady flow regime was solved. The mathematical model
of solution is based on the use of the coupled-type solver, multigrid initialization, an implicit
difference scheme, AUSMPW scheme for flows with convection, and Spalart–Allmaras
model of turbulence.

The multigrid initialization gave the solution shown in Figure 11. Further, this solution
was used for simulations on the basic grid.
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Figure 11. Mach number field, initialization.

The steady flow problem was solved, the solution obtained is illustrated in Figure 12.
One can see that in the given flow regime a shock wave moving away from the object

parts is generated in the flow (a so-called N-wave). With the use of multigrid initialization,
400 iterations were required to achieve the solution convergence, while simulations without
multigrid initialization required 550 iterations. As a result, the multigrid initialization
provided a 20% speedup with regard to the time spent for it. Figure 13 shows the example
plot of drag convergence (Fx).
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Figure 13. Drag convergence.

Table 1 shows the time spent for each calculation session.

Table 1. Calculation time.

Calculation Method Initialization Calculation Time
before Convergence Total Time

With multigrid
initialization 40 s 400 s (1 iteration—1 s) 440 s

Without multigrid
initialization – 550 s (1 iteration—1 s) 550 s

Then, the basic grid adaptation was performed using the pressure-based criterion. The
solution obtained on the first-level adaptive grid is shown in Figure 14.

Then, simulations on grids of the second and third levels of adaptation were performed.
Figure 15 shows the solution obtained and the third-level adaptive grid.

To generate grids of adaptation levels 1, 2, and 3, a typical size of cells in the local
refinement region was 0.003 m, 0.0015 m, and 0.0005 m, respectively.

According to results of each numerical test, the normalized static pressure variation
along the characteristic line under the object at a distance of 0.65 m was estimated (see
scheme in Figure 16) [26].
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Figure 16. Result estimation scheme.

Normalization was performed with respect to pressure Pref (1 atmosphere) from the
outer boundary. Curves for calculated results in comparison with experimental results are
given in Figure 17.
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Figure 17. Normalized variation of static pressure.

Curves in the figure above show that owing to the adaptation algorithm, the solution
obtained is more accurate and approaches the experimental data, and this allows the stating
of the grid convergence. Owing to the local grid refinement, the shock-wave front region is
resolved to a higher accuracy. Adaptation levels following the 3rd level did not give any
specification of results.

Characteristic features of grids used in simulations are represented in Table 2.

Table 2. Characteristic features of computational grids.

Grid Number of Cells

Basic grid 2.5 million
Grid of the 1st adaptation level 4.9 million
Grid of the 2nd adaptation level 21.4 million
Grid of the 3rd adaptation level 67.5 million

So, the problem solution results allow making the following conclusions:

1. The method of preliminary multigrid initialization provides up to a 20% increase in
the solution convergence rate.

2. The static adaptation algorithm provides efficient automatic generation of a computa-
tional model and allows the grid convergence of solution to be gained.

5.2. Simulation of Supersonic Flow around a Model of Aircraft Lockheed Martin 1021 (LM1021)

The problem considers a viscous compressible gas flow around a model aircraft
Lockheed Martin 1021. The object geometry is illustrated in Figure 18. Its length L equals
22.365 inches (0.569 m) and its wing spread is 8.055 inches (0.205 m).
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Figure 18. A model objects.

Simulation results were compared with the data obtained in the experiment with a
flow around a model object in aerodynamic tube NASA Ames 9 × 7 Supersonic Wind
Tunnel. The normalized variation in static pressure along the characteristic line under
the object at a distance of 0.53 m [14] was estimated similarly to the previous problem
(Figure 19) [26].
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appropriate parameters was set on the outer boundary of the computational domain. The 

object surface was a “rigid wall”. 

The problem of reaching the steady flow regime was solved. The mathematical model 

of the solution is based on the use of the coupled-type solver, multigrid initialization, an 
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Allmaras model of turbulence. 
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Figure 19. The experiment layout (LM1021).

According to the experiment, the flow around the body had Reynolds number
8.1 × 106 and the following parameters of the incoming flow: Mach number 1.6, tem-
perature 273 ◦K, molecular viscosity 1.85 × 10−5 kg/(m·s), and pressure 1 atm. The flow
angle of attack was 2.1◦.

To solve this problem with the LOGOS software package, an unstructured computa-
tional grid of truncated hexahedrons with 4.5 million cells (Figure 20) was generated, a
typical cell size was 0.02 m at the grid core and 0.005 m in the refinement block.
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Figure 20. Computational domain (LM1021), (a) general view, (b) closeup.

The object size in the computational grid corresponds to the model size used in the
experiment with flow in aerodynamic tube. There is a prismatic layer—0.005 m long and
15 cells thick—near the object surface. The outer boundary of the computational domain is
at a significant distance (15 m) to the object to avoid its effect on the flow simulation results.

To reproduce conditions of the experiment, the “free flow” boundary condition with
appropriate parameters was set on the outer boundary of the computational domain. The
object surface was a “rigid wall”.

The problem of reaching the steady flow regime was solved. The mathematical model
of the solution is based on the use of the coupled-type solver, multigrid initialization, an
implicit difference scheme, AUSMPW scheme for flows with convection, and the Spalart–
Allmaras model of turbulence.

The use of the multigrid initialization gave the solution shown in Figure 21. The
solution was further used in simulations on the basic grid.

The problem of reaching the steady-state flow regime was solved, the solution shown
in Figure 22 below was obtained.

With the multigrid initialization, 355 iterations were required to achieve convergence
of solution, while the required number of iterations without the multigrid initialization was
500. As a result, a 20% speedup was provided by the multigrid initialization with regard to
the time spent for it. As an example, Figure 23 presents the drag convergence plot (Fx).
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Figure 23. Drag convergence (LM1021).

Table 3 shows the time spent for each calculation session.

Table 3. Calculation time (LM1021).

Calculation Method Initialization Calculation Time before
Convergence Total Time

With multigrid
initialization 46.44 s 366.36 s (1 iteration—1.032 s) 412.8 s

Without multigrid
initialization – 516 s (1 iteration—1.032 s) 516 s
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Further, the two-level adaptation of the basic grid was performed using the criterion
described above. Typical sizes of cells in adaptation areas were 0.0025 m and 0.001 m
for levels 1 and 2, respectively. The solution obtained on the second-level adaptive grid
(Figure 24) is shown in Figure 25. Further refinement of the computational model did not
lead to changes in the solution and this indicates to the grid convergence of the solution.
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According to results of each numerical test, the normalized variation in static pressure
along the line under the object at a distance of 0.53 m was estimated, the result estimation
scheme is shown in Figure 26 [26].

Normalization was performed with respect to pressure Pref (1 atmosphere) from the
outer boundary. Curves for simulation results are given in Figure 27. The result obtained
on the basic grid cannot describe pressure extremum positions in a series of pressure peaks
in the afterbody (the range from 1.2 to 1.4 m in Figure 27). This can be explained by an
insufficient grid resolution near the shock-wave front. The disturbance propagating from
the object dissipates and its strength decreases in cells of the given size. After the adaptation
algorithm has been used, the computational grid in the shock-wave region became finer
and gave results, which were much closer to the experimental data.
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Characteristics of grids used in the numerical simulation are represented in Table 4.

Table 4. Characteristics of computational grids (LM1021).

Grid Number of Cells

Basic grid 4.5 million
Grid of the 1st adaptation level 10 million
Grid of the 2nd adaptation level 52.2 million

The given problem solution, results allow making the following conclusions:

1. The method of preliminary multigrid initialization allows increasing the solution
convergence rate up to almost 20%;

2. The static adaptation algorithm provides efficient generation of a computational model
that allows obtaining a more accurate solution owing to the local grid refinement in
the shock-wave region and gaining the grid convergence of solution.

6. Conclusions

The paper considers the method of increasing the convergence rate of solution and the
method of improving the solution accuracy for the class of supersonic flow problems. The
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speedup is gained owing to the solution approximation by solving the problem on a series
of coarse grids. The solution accuracy improvement is achieved owing to the generation of
local refinement blocks by means of the algorithm of adaptively incorporated grids.

The multigrid initialization algorithm is based on solving a problem on a series of
coarse grids. The mathematical model is based on the explicit approximation of Navier–
Stokes equations and schemes of a lower order of accuracy. The solution obtained on each
grid from the series of grids is interpolated to the next one, which is a finer grid, and is
used as initialization on it.

The static adaptation algorithm is based on partitioning cells of the original grid to
build a local refinement region. The refinement region is selected according to the criterion
value, which is calculated with respect to the density, or pressure gradient value.

The application of these two algorithms is demonstrated by the example of two flow
problems characterized by the supersonic flow and presence of shock waves in the flow. It
was found that with the preliminary multigrid initialization a 20% increase in the solution
convergence rate may be gained.
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