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Abstract: This theoretical paper focuses on the single-phase fluid flow through a granular porous
medium. The emphasis is on the Darcy flow regime (without free boundary) of a linear viscous
fluid in a saturated, deformable, homogeneous porous medium. The approach is developed at the
Darcy scale (also referred to as macroscale or phenomenological scale). Within this framework,
some discrete aspects of the flow model are highlighted, the governing equations are revisited, the
thermodynamic state functions are reconsidered, and the Darcy paradox is presented. The Darcy
paradox is illustrated for the isoshoric-isothermal flow of a viscous fluid in the liquid state, in a
homogenous porous medium. After some remarks about the intrinsic assumption of this kind of
flow, the governing equations are reduced to a well-known parabolic equation. According to this
equation, infinitesimal pressure disturbances diffuse at an infinite speed. To remove this paradox, a
mathematical model, based on the elementary scales method, is employed.

Keywords: single-phase flow; saturated porous media; classical continuum thermodynamics;
elementary scales; local thermodynamic equilibrium condition

1. Introduction

The phenomenological description of the fluid flow through porous media, which is
very attractive (e.g., [1–7]), can give rise to a variety of paradoxes. For instance, the viscous-
capillary paradox [8], which emerges in the context of multi-phase flow, or the paradox
involving viscous dissipation in non-Darcy flow regime [9]. Focusing on the single-phase
flow through a granular porous medium, a new paradox, called the Darcy paradox, is
presented. Taking a cue from this paradox, this paper examines some fundamental topics
of the fluid flow through porous media. The emphasis is on the Darcy flow regime (without
free boundary) of a linear viscous fluid in a saturated, deformable, homogeneous porous
medium. The porous medium deformation, which is regarded as a reversible quasi-static
process, is linked to the rigid grains rearrangement (the ratio between the bulk elastic
moduli of the fluid and the grains is assumed so small that the grains are modeled as rigid).
The theoretical approach is developed at the Darcy scale (also referred to as macroscale or
phenomenological scale): using the continuum approach [10], the heterogeneous medium
(the linear viscous fluid plus the porous medium) is replaced by a continuum medium,
the apparent fluid, consisting of apparent fluid particles. The apparent fluid flow is
described in terms of apparent field functions (e.g., density ρ, pressure p, velocity v,
temperature T, . . . ). In agreement with spatio-temporal continuity of the motion [11,12],
the method of homogenization assumes that all the field functions are regular functions of
both space r and time t. The continuity in space involves the continuum hypothesis: the
apparent fluid particles are, virtually, in one-to-one correspondence with the points of the
Euclidean space. The size of the apparent fluid particles coincides with the Representative
Elementary Volume (REV) dV. The REV, which is required for any continuous macroscopic
representation of the material systems, is large compared to the grains size and small
compared to the size of the flow domain [13]. According to this, the continuity in the space
implies that l

|dr| � 1, where l is a characteristic length of the material system, |dr| the
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elementary spatial scale (the REV scale). Within the framework of the Classical Continuum
Thermomechanics (CCT), the continuity in the time requires that tr

|dt| � 1, where tr is the
relaxation time (the interval time required to restore a Local Thermodynamic Equilibrium
(LTE) condition in place of a local thermodynamic non-equilibrium condition), |dt| the
elementary time scale. Within the framework of CCT:

• b(r± δr) = b(r) for |δr| < |dr| and b(t± δt) = b(t) for |δt| < |dt|, where b = b(r, t) is
the generic (scalar, vector or tensor) apparent field function;

• if |db| is the elementary scale of b, then b± δb = b for |δb| < |db|;
• the field functions are well defined in both r and t;
• the apparent fluid is in LTE condition.

From a thermomechanic point of view, the Darcy flow regime corresponds to the Lin-
ear Non-Equilibrium Regime (LNER). The LNER, which is characterized by small values
of ‖∇v‖ and |∇T|, is stable and regular: a perturbation of the mechanical and thermody-
namic state regresses during the evolution of the motion. In Fluid Mechanics, the LNER is
referred to as viscous flow regime. Within the framework of CCT, the thermomechanics
description of the Darcy flow regime is formulated using classical irreversible thermody-
namics, in addition to Newtonian mechanics. On this topic, in Section 2, the conservation
equations of mass, momentum, mechanical energy, internal energy, entropy are given, the
thermodynamics relationships are formalized, and the transport theorem and the Reynolds
theorem are illustrated. In Section 3, the general flow problem is reformulated for the
isochoric-isothermal flow of a viscous fluid, in the liquid state, in a homogenous porous
medium. Within this framework, the constitutive equations are examined, the momentum
equation is reduced to Darcy equation, and some intrinsic approximations and intrinsic
characteristics of the proposed model are discussed. After reducing the governing flow
equations to a well-known parabolic [10], Section 4 is devoted to illustrating and elucidating
the Darcy paradox: the parabolic equation shows infinitesimal pressure disturbances that
diffuse at an infinite speed. To remove this paradox, a mathematical model based on the
elementary scales method [14] is employed. According to this method, which is founded
on the introduction of other elementary scales next to |dr| and |dt|, the Darcy paradox is
only apparent. Finally, the conclusions are presented in Section 5.

2. General Conservation Equations

In this section, the general conservation equations for the Darcy flow regime (with-
out free boundary) of a linear viscous fluid in a saturated, deformable, homogeneous,
anisotropic porous medium are deduced. The porous medium deformation is linked to
rigid grains rearrangement which occurs during a reversible quasi-static process. Using the
method of homogenization, the linear viscous fluid and the porous medium are replaced
by a continuum medium, referred to as the apparent fluid. At the Darcy scale, the mass and
the momentum conservation equations which govern the apparent fluid flow are given
as [15]:

D
Dt

(ηρ) + ηρ∇ ·
(

v
η

)
= 0 (1)

ηρ
D
Dt

(
v
η

)
= −ηρ f −∇(ηp)−∇ · Tvis (2)

where η is the porosity; ρ the density; v the Darcy velocity; f = −g = −gêz = −g∇z,
with g the vector of gravitational acceleration, g = |g|, êz the unit vector in the vertical
direction, z the elevation; p the pressure; Tvis the viscous stress tensor. The apparent field
functions η, ρ, v, f , p, and Tvis, which refer to the apparent fluid, are regular functions of
both space r and time t. It should be stressed that η is linked to the granular porous medium,
ρ is the viscous fluid density, p is the viscous fluid pressure. The material derivative D/Dt
is given as:

Db
Dt

=
∂b
∂t

+∇b · v
η

(3)
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The continuity Equation (1) can be deduced by putting:

ηρdV = η′ρ′dV′ (4)

where ηρdV is the constant fluid mass in the material REV dV and:

η = η(r, t); ρ = ρ(r, t); dV = dV(r, t) (5)

η′ = η′(r′, t′) = η(r + dr, t + dt)

= η(r, t) +
∂

∂t
η(r, t)dt +

∂

∂r
η(r, t) · dr

= η(r, t) +
∂

∂t
η(r, t)dt +∇η(r, t) · dr

= η(r, t) +
∂

∂t
η(r, t)dt +∇η(r, t) · v

η
dt

(6)

ρ′ = ρ′(r′, t′) = ρ(r, t) +
∂

∂t
ρ(r, t)dt +∇ρ(r, t) · v

η
dt (7)

dV′ = dV′(r′, t′) = dV(r + dr, t + dt) (8)

r′ = r + dr = r +
v
η

dt (9)

With this setting, the following relationship holds:

db =
Db
Dt

dt =
∂b
∂t

dt +∇b · v
η

dt =
∂b
∂t

dt +
∂b
∂r
· dr (10)

The connection between dV and dV′ is expressed as:

dV′ =
(
detJ

)
dV = JdV (11)

where J is the jacobian matrix:

J =
∂r′

∂r
= ∇r′ = I +

(
∇v

η

)
dt (12)

and J the jacobian determinant:

J = detJ = det
[

I +
(
∇v

η

)
dt
]

(13)

If
∣∣∣∣∣∣(∇ v

η

)
dt
∣∣∣∣∣∣� 1, Equation (13) is well approximated as [16]:

J = 1 +
(
∇ · v

η

)
dt (14)

According to Equation (14) and by neglecting the higher-order infinitesimal, Equation (4)
reads as:

ηρ = ηρ +

[
∂

∂t
(ηρ) +∇(ηρ) · v

η
+

(
∇ · v

η

)
ηρ

]
(15)

Equation (15), with Equation (3), leads to the continuity Equation (1):

∂

∂t
(ηρ) +∇(ηρ) · v

η
+

(
∇ · v

η

)
ηρ =

D
Dt

(ηρ) + ηρ∇ ·
(

v
η

)
=

∂

∂t
(ηρ) +∇ · (ρv) = 0 (16)
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Formally, this line of reasoning assures that: ∀∇ v
η∃dt : tr

|dt| � 1 and
∣∣∣∣∣∣(∇ v

η

)
dt
∣∣∣∣∣∣� 1.

In an alternative way, the continuity equation can be deduced by putting:

D
Dt

(ηρdV) = dV
D
Dt

(ηρ) + ηρ
D
Dt

(dV) = 0 (17)

Equation (17) reduces to Equation (1) setting:

1
dV

D
Dt

(dV) = ∇ ·
(

v
η

)
(18)

Equation (2) can be deduced writing the integral momentum conservation equation
as:

D
Dt

∫
V

ηρ

(
v
η

)
dV =

∫
V

ηρ f dV −
∫

V
∇(ηp)dV −

∫
V
∇ · TvisdV (19)

where
∫

V ηρ
(

v
η

)
dV is the momentum of the fluid in the material volume V;

∫
V ηρ f dV the

external body force; −
∫

V ∇(ηp)dV −
∫

V ∇ · TvisdV the external surface forces. Using the
following identity:

D
Dt

∫
V

ηρ

(
v
η

)
dV =

∫
V

D
Dt

[
ηρ

(
v
η

)
dV
]
=

=
∫

V
ηρ

D
Dt

(
v
η

)
dV +

∫
V

v
η

D
Dt

(ηρdV) =
∫

V
ηρ

D
Dt

(
v
η

)
dV

(20)

being: ∫
V

v
η

D
Dt

(ηρdV) = 0 (21)

the integral momentum conservation Equation (19) becomes:∫
V

ηρ
D
Dt

(
v
η

)
dV =

∫
V

ρη f dV −
∫

V
∇(ηp)dV −

∫
V
∇ · TvisdV (22)

According to Equation (22), the (differential) momentum conservation equation is
given by Equation (2).

In line with these results, the transport theorem is expressed as:

D
Dt

∫
V

ηρbdV =
∫

V
ηρ

Db
Dt

dV (23)

while the Reynolds theorem is given as:

D
Dt

∫
V

ηρbdV =
∫

V

∂

∂t
(ηρb)dV +

∫
V
∇ ·

(
ηρb

v
η

)
dV =

=
∫

V

∂

∂t
(ηρb)dV +

∫
V
∇ · (ρbv)dV

(24)

In the Darcy flow regime, Equation (2) can be well approximated as:

ηρ f −∇(ηp)−∇ · Tvis = 0 (25)

being ηρ D
Dt

(
v
η

)
� 1 [17]. Under this hypothesis, the friction forces per unit volume,

−∇ · Tvis, can be expressed as (e.g., [15,18]):

−∇ · Tvis = −
v
η
· Z (26)
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where, according to the method of homogenization, the tensor Z depends on both the
viscous fluid and the porous medium. It should be stressed that, in agreement with the
constitutive Equation (26), the term − v

η · Z represents the friction forces per unit volume
related to the shape variation of the fluid particles:

− v
η
· Z = −(∇ · Tvis)shape (27)

while the friction forces related to the volume variation of the fluid particle vanish:

− (∇ · Tvis)volume = 0 (28)

In line with this, the momentum equation is given as:

ηρ f −∇(ηp)− v
η
· Z = 0 (29)

In agreement with Equation (29), the mechanical energy equation reads as follows:

ηρ
Dem

Dt
= ηρ

D
Dt

[
1
2

(
v
η

)2
+ ue

]
= ηρ

Due

Dt
= −∇(ηp) · v

η
− v

η
· Z · v

η
(30)

where em = 1
2

(
v
η

)2
+ ue is the mechanical energy per unit of mass; ηρ D

Dt

[
1
2

(
v
η

)2
+ ue

]
=

ηρ Due
Dt , being 1

2 ηρ D
Dt

(
v
η

)2
� 1; ηρ Due

Dt = ηρ f · v
η . Equation (30) is deduced from the inner

product of the momentum Equation (29) with v
η . To not overburden the discussion, only

the adiabatic flow is treated. With this setting, the basic conservation equations are gives as:

ηρ
Dui
Dt

= −ηp∇ ·
(

v
η

)
+

v
η
· Z · v

η
(31)

ηρT
Des

Dt
=

v
η
· Z · v

η
(32)

ηρcv̂
DT
Dt

=
v
η
· Z · v

η
− αTε∇ ·

(
v
η

)
(33)

ηρcp
DT
Dt

=
v
η
· Z · v

η
+ αT

D
Dt

(ηp) (34)

α
DT
Dt

= ∇ ·
(

v
η

)
+

1
ε

D
Dt

(ηp) (35)

where ui is the internal energy per unit of mass; es the entropy per unit of mass; α =

− 1
ηρ

[
∂

∂T (ηρ)
]
(ηp)

is the homolog of the thermal expansion coefficient; ε = 1
β the homolog of

the bulk modulus, with β = 1
ηρ

[
∂

∂(ηp) (ηρ)
]

T
the homolog of the isothermal compressibility

coefficient; cv̂ =
(

∂ui
∂T

)
(ρη)

the homolog of the constant volume specific heat; cp =
(

∂eh
∂T

)
(ηp)

the homolog of the constant pressure specific heat. The relationship between cv̂ and cp is
given as:

cp − cv̂ =
αTk̃ηρ

ηρ
=

Tα2ε

ηρ
(36)

where k̃ = 1
ηρ

[
∂

∂T (ηρ)
]
(ηρ)

= αε
ηρ is the homolog of the thermal pressure coefficient. From a

thermodynamics point of view, the term ηρ and ηp assume the meaning of the apparent
fluid state functions.
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Equation (35) can be deduced expressing the state equation in the form:

ηρ = ηρ(ηp, T) (37)

The comparison between the differential form of Equation (37):

d(ηρ) =

(
∂(ηρ)

∂(ηp)

)
T

d(ηp) +
(

∂(ηρ)

∂T

)
(ηp)

dT =
ηρ

ε
d(ηp)− ηραdT (38)

and the following Equation (obtained from Equations (1) and (10)):

d(ηρ) = −ηρ∇ ·
(

v
η

)
dt (39)

provides:

ηραdT =
ηρ

ε
d(ηp) + ηρ∇ ·

(
v
η

)
dt (40)

By simplifying and rearranging, Equation (40) reduces to Equation (35). Equations (33)
and (34) are the homologs of the energy equations with temperature as the dependent
variable [19].

The proposed line of reasoning allows expressing the classical thermodynamics rela-
tionships in the form:

dui = Tdes +
ηp

(ηρ)2 d(ηρ) (41)

deh = Tdes +
1

ηρ
d(ηp) (42)

de f = −esdT +
ηp

(ηρ)2 d(ηρ) (43)

deg = −esdT +
1

ηρ
d(ηp) (44)

where eh is the enthalpy per unit of mass, e f the Helmholtz free energy per unit of mass,
eg the Gibbs free energy per unit of mass. In agreement with the entropy Equation (32),
the term v

η · Z ·
v
η is the quadratic form that represents the irreversible transformation of

mechanical energy into internal energy. The Clausius-Duhem inequality assures that v
η · Z ·

v
η ≥ 0; consequently, Z is a symmetric, positive semi definite tensor [18,20]. According to
the proposed formulation, the flow problem is governed by the following equations:

D
Dt

(ηρ) + ηρ∇ ·
(

v
η

)
= 0 (45)

ηρ f −∇(ηp)− Z · v
η
= 0 (46)

ηρcp
DT
Dt

=
v
η
· Z · v

η
+ αT

D
Dt

(ηp) (47)

α
DT
Dt

= ∇ ·
(

v
η

)
+

1
ε

D
Dt

(ηp) (48)

where ηρ, v
η , ηp and T are unknown. The system equations are completed by the consti-

tutive Equation (which describes the relationship between the tensor Z, the viscous fluid
and the porous medium), by the auxiliary thermodynamics relationships α = α(ηp, T),
ε = ε(ηp, T), cp = cp(ηp, T), and by the appropriate initial and boundary conditions, which
depend on the problem under consideration.
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3. Darcy Equation

In this section, the general flow problem is reformulated for the isochoric-isothermal
flow of a viscous fluid, in the liquid state, in a homogenous porous medium.

For isothermal flow, the comparison between the continuity Equations (45) and (48),
rewritten as:

∇ ·
(

v
η

)
= −1

ε

D
Dt

(ηp) (49)

provides:
1

ηρ

D
Dt

(ηρ) =
1
ε

D
Dt

(ηp) (50)

According to Equation (10), Equation (50) reduced to the barotropic equation:

d(ρη)

ρη
=

d(ηp)
ε

(51)

For viscous fluid in the liquid state, the density ρ and the bulk modulus ε can be
assumed constant, ρ = constant, ε = constant, with ε� 1. With this setting, the continuity
Equation (45) and the barotropic Equation (51) are given as:

Dη

Dt
+ η∇ ·

(
v
η

)
= 0 (52)

dη

η
=

d(ηρ)

ε
(53)

Using Equation (3), Equation (52) reduces to the well-known continuity [10]:

∂η

∂t
+∇ · v = 0 (54)

As ε� 1, dη � 1, then:

d(ηp) = ηdp + pdη ' ηdp (55)

and Equation (53) can be approximated as:

dη

η
= η

dp
ε

(56)

Equation (55) must be considered to be intrinsic to the proposed model. About this,
in the static condition, the momentum Equation (46) reduces to:

ηρ f −∇(ηp) = ηρ∇(gz)−∇(ηp) = 0 (57)

Equation (57) provides the classic Stevin equation if and only if Equation (55) holds.
The adopted line of reasoning leads to reduce the momentum equation:

ηρ f −∇(ηp)− Z · v
η
= ηρ f − η∇p− Z · v

η
= 0 (58)

to the Darcy Equation (for anisotropic porous medium):

v = −K∇ϕ (59)

where K = ρgη2Z−1 is the permeability tensor, ϕ = z + p/(ρg) the apparent piezometric
head. As Z is symmetric, also K is symmetric, hence Kij = Kji, where Kij, which is the
generic component of K, depends on both the viscous fluid and the porous medium.
According to the proposed model, a correlation between the Kij variations and the η
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variations exists: as dη � 1 also dKij � 1, and Kij can be assumed constant, Kij = constant.
For a homogenous isotropic porous medium, Equation (59) reduces to the Darcy Equation
(for isotropic porous medium):

v = −k∇ϕ (60)

where k is the permeability coefficient, with k = constant. According to the proposed
formulation, the problem under consideration is governed by the following equations:

∂η

∂t
+∇ · v = 0 (61)

v = −k∇ϕ (62)

dη

η
= η

dp
ε

(63)

where η, v and p are unknown. The equations system is completed by the auxiliary equation
ϕ = z + p/(ρg); by the relationship which express k and ε as functions of the viscous fluid
and of the porous medium; and by the appropriate initial and boundary conditions.

According to the barotropic Equation (63), it follows that:

∂η

∂t
=

ρgη2

ε

∂ϕ

∂t
(64)

being ∂p
∂t = ρg ∂ϕ

∂t and ∂z
∂t = 0. The combination of Equations (61), (62) and (64) yields to the

well-known parabolic [10]:
S
T̃

∂ϕ

∂t
= ∇2 ϕ (65)

where S is the storativity, T̃ the trasmissivity, S
T̃ = ρgη2

kε

4. Darcy Paradox

For the sake of clarity, the Darcy paradox is highlighted with a focus on the unsteady
axisymmetric flow toward a fully penetrating well in a horizontal aquifer (Figure 1). The
following notation is used: r is the radial distance from the well center; H = ϕ(r, 0) the
initial piezometric head, Ω(r, t) = H − ϕ(r, t) the drawdown of the piezometric head;
b = constant the porous layer thickness; Q0 = constant the imposed well flow rate;
Q = Q(r, t) the porous flow rate. For the problem under consideration, Equation (65)
becomes:

S
T̃

∂ϕ

∂t
=

1
r

∂

∂r

(
r

∂ϕ

∂r

)
(66)

while the Darcy equation can be rewritten as:

Q = 2πTr
∂ϕ

∂r
(67)

where T̃ = constant is expressed as:
T̃ = bk (68)

and the continuity equation reads as:

∂Q
∂r

= 2πSr
∂ϕ

∂t
(69)

where S = constant is takes as:
S = bη2 ρg

ε
(70)
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Figure 1. Sketch of the problem.

The initial condition is given as:

Ω(r, 0) = 0 (71)

while, according to Equation (67), the boundary condition of Equation (66) is given as:

lim
r→0

r
∂ϕ

∂r
=

Q0

2πT̃
(72)

Using the Boltzmann transformation:

u =
Sr2

4T̃t
(73)

and following the Theis procedure [21], the drawdown Ω is expressed as:

Ω =
Q0

4πT̃
Ei(u) (74)

where Ei(u) is the integral exponential function:

Ei(u) =
∫ ∞

u

exp(−u)
u

du = −λ− log u + u− u2

2 · 2!
+

u3

3 · 3!
− . . . (75)

being:

λ = lim
m→∞

(
m

∑
n=1

1
n
− log m

)
' 0.577215 (76)

the Euler–Mascheroni constant.
According to Equation (74), for t > 0, and for any r 6= 0, Ω > 0. This leads to the

conclusion that the speed of diffusion of an infinitesimal drawdown signal is infinite (Darcy
paradox). To overcome the Darcy paradox, the elementary scales method is employed.
Along with |dr| and |dt|, the elementary drawdown |dΩ| is introduced. To define |dΩ| the
following procedure can be adopted. The continuity Equation (52), which can be rewritten
in the form:

dη + η∇ ·
(

v
η

)
dt = 0 (77)
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allows defining the elementary porosity scale |dη| as:

|dη| =
∣∣∣∣η∇ ·(v

η

)∣∣∣∣ (78)

On the other hand, the barotropic Equation (63), which can be rewritten in the form:

dη

η
= η

dp
ε

=
ηρg

ε
dϕ− ηρg

ε
dz (79)

allows defining the elementary scale of the piezometric head |dϕ| as:

|dϕ| =
∣∣∣∣dz +

ε

ρgη2 dη

∣∣∣∣ (80)

The elementary scale |dz| is, in turn, proportional to the REV scale |dr|. Due to
the link between Ω and ϕ, the elementary scale |dϕ| coincides to the elementary scale
|dΩ|. In line with the method of elementary scales, if |δΩ| < |dΩ|, Ω ± δΩ = Ω and,
consequently, the Darcy paradox is only apparent: for t < dt, Ω = 0; for t ≥ dt, ∃r̄: for
r > r̄, Ω < dΩ (Ω = 0).

5. Conclusions

This theoretical paper focuses on the single-phase fluid flow through a granular porous
medium. The emphasis is on the Darcy flow regime (without free boundary) of a linear
viscous fluid in a saturated, deformable, homogeneous porous medium. The approach is
developed at the Darcy scale. Within this framework:

• the governing equations are revisited;
• new apparent fluid state functions are introduced;
• the elementary scales method and the discrete aspects of the flow model are high-

lighted;
• the constrain imposed on the elementary temporal scale |dt| is defined (it is shown

that the dimensionless number
∣∣∣∣∣∣∣∣(∇v

η

)
dt
∣∣∣∣∣∣∣∣ is always evanescent);

• the Darcy paradox is presented.

The Darcy paradox is illustrated for the isoshoric-isothermal flow of a viscous fluid in
the liquid state, in a homogenous porous medium. In this context: an intrinsic assumption
of the proposed model, expressed by Equation (55), is highlighted; the basic equations are
reduced to the well-known parabolic Equation (65). According to this parabolic equation,
infinitesimal pressure disturbances diffuse at an infinite speed. To overcome this paradox,
a mathematical model based on the elementary scales method is employed. In agreement
with the obtained results, the Darcy paradox is only apparent. The theoretical analysis
proposed in this paper allows overcoming some intrinsic difficulties of the phenomeno-
logical model of the fluid flow through porous media. The theoretical refutation of the
Darcy paradox avoids the use of physical justifications which are similar to those proposed
by [22,23] to remove the Fourier paradox. Following [22,23], the Darcy law can be viewed
as a result of experimental observations; these observations are affected by the degree
of refinement of the measurement, and, consequently, the infinitesimal pressure distur-
bances cannot be experimentally observed; the bulk of the pressure disturbance, which is
physically significant, diffuses at a finite speed.
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