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Abstract: In direct numerical simulations (DNS) of homogeneous isotropic turbulence, numerical
forcing is needed to achieve statistically stationary velocity fields. The Eulerian two-time correlation
tensor of the fluid velocity difference field, ∆u(r, t) = u(x + r, t)− u(x, t), characterizes the temporal
evolution of turbulent eddies whose sizes scale with separation r = |r|. In this study, we investigate
the effects of two spectral forcing schemes on the temporal decay of the Eulerian two-time corre-
lation of fluid velocity differences 〈∆u(r, t′)∆u(r, t)〉. Accordingly, DNS of homogeneous isotropic
turbulence were performed for two grid sizes, 1283 and 5123, corresponding to the Taylor micro-scale
Reynolds numbers Reλ ≈ 80 and 210, respectively. Statistical stationarity was achieved by employing
deterministic and stochastic spectral forcing schemes. In the stochastic scheme, one needs to specify
the time scale, Tf , of the Uhlenbeck–Ornstein (UO) processes that constitute the forcing. We consid-
ered four values of the UO time scale (Tf = TE/4, TE, 2TE, and 4TE) for each Reλ, where TE is the
large-eddy time scale obtained from the DNS run with deterministic forcing at the same Reλ. It is
seen that the correlations 〈∆u(r, t′)∆u(r, t)〉 obtained from the deterministic-forcing DNS runs decay
more slowly than those from stochastic-forcing DNS runs of all four Tf values. The slower decay of
correlations in deterministic DNS runs is more pronounced at larger separations and for higher Reλ.

Keywords: direct numerical simulation; isotropic turbulence; multiphase and particle-laden flows

1. Introduction

In Rani et al. [1] and Dhariwal et al. [2], we presented the development of analytical
closure model(s) for the unknown diffusion current in the probability density function
(PDF) kinetic equation describing the relative positions (r) and relative velocities (U) of
monodisperse high-Stokes-number particle pairs in isotropic turbulence. We showed that
in the limit of the Stokes number is Str � 1, and the diffusivity tensor characterizing the
diffusion current in the U-space is equal to 1/τ2

v multiplied by the time integral of the
Lagrangian correlation of the fluid velocity differences along particle pair trajectories. Here,
Str = τv/τr is the particle Stokes number based on the time-scale, τr, of eddies whose sizes
are of the order of pair separation, r, and τv is the particle viscous relaxation time. In [1,2],
analytical closure of the diffusivity tensor was achieved in two steps.

In the first step, the Lagrangian correlation in the diffusivity tensor was converted into
a Eulerian two-time correlation of the fluid velocity differences “seen” by particle pairs
whose separations remained essentially constant during timescales of O(τr), where τr is
the turnover time of eddies of size r. The Eulerian two-time correlation 〈∆u(r, t′)∆u(r, t)〉
can be evaluated using a DNS of the stationary isotropic turbulence. In the second step,
the diffusivity tensor was analytically closed by systematically converting the Eulerian
two-time correlation of the fluid velocity differences into Eulerian two-point correlations
of the fluid velocities, which could then be expressed in terms of the Fourier transforms
of the velocity spectrum tensor. The second step gives rise to two analytical diffusivity
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closures—one in which both pair separation (r) and pair center-of-mass position (x) remain
fixed during flow integral time scales and the other in which only r remains fixed. The
former closure is applicable in the Stokes number regime Str � 1 and StI � 1. Here
StI = τv/τI is the Stokes number based on the integral time scale, τI . In the latter, we relax
the StI � 1 requirement so that this closure is valid for Str � 1 and StI . 1. An important
feature of both closures is that they contain a single unique expression for the diffusivity
at pair separations spanning the entire spectrum of turbulence scales. This is in contrast
to prior closures that involved velocity structure functions with different forms for the
integral, inertial subrange, and Kolmogorov-scale separations (e.g., [3–5]). Using the latter
closure, which is applicable for Str � 1 and StI . 1, Rani et al. [1] and Dhariwal et al. [2]
evolved the Langevin equations, which are statistically equivalent to the Fokker–Planck
equation, for pair relative velocities and separations in stationary isotropic turbulence.

In Dhariwal et al. [2], we performed a detailed quantitative analysis of the three
diffusivity closure forms presented in [1]. Closure form 1 (or CF1) refers to the diffusivity
containing the time integral of the Eulerian two-time correlation of fluid velocity differences,
i.e., the time integral of 〈∆u(r, t′)∆u(r, t)〉. In CF1, we directly computed this correlation
using DNS of forced isotropic turbulence containing fixed (or stationary) particles and
integrated the correlation in time to yield the diffusivity. In closure forms 2 and 3 (CF2 and
CF3), we utilized the two diffusivity expressions (containing wavenumber integrations)
that were obtained in the second step mentioned above (CF3 being valid for StI . 1). In
both Rani et al. [1] and Dhariwal et al. [2], we presented an elaborate discussion of the
comparison of the three closure approximations. Therefore, in the following discussion, we
focus primarily on elucidating the background and motivation for the current study.

In Dhariwal et al. [2], an extensive comparative analysis of the three closure forms
of diffusivity was undertaken. The diffusivities were quantitatively compared with each
other as well as with the theory of Zaichik and Alipchenkov [3] and its refined form [4].
Langevin simulations of pair separations and relative velocities were performed using
each of the three closure forms. The statistics of particle-pair relative motion, including the
radial distribution function (RDF) and relative velocity moments, obtained from Langevin
simulations of the three closures were compared with each other as well as with the DNS
data. A key observation of Dhariwal et al. [2] was that closure form 1 (CF1) diffusivity was
significantly more sensitive to changes in the Taylor micro-scale Reynolds number, Reλ,
than the CF2 and CF3 diffusivities. We found that CF1 diffusivity showed a substantial
increase with Reλ at pair separations r & L, where L is the integral length scale. In contrast,
the closure form 2 (CF2) and closure form 3 (CF3) diffusivities showed only a marginal
decrease with Reλ at these separations.

The enhanced sensitivity of CF1 diffusivity to Reλ was also manifested in the relative
velocity variances of the particle pairs computed from Langevin simulations based on CF1.
At higher Reλ, it was observed that the variances obtained using the CF1 diffusivity were
significantly higher than the variances computed using DNS as well as those obtained
using CF2 and CF3. These trends were particularly pronounced for the smaller Stokes
numbers considered in that study. We had hypothesized (without explicit quantitative
evidence) that the increase in the CF1 diffusivity with Reλ may have been an artifact of the
deterministic forcing that was used to achieve the statistically stationary velocity fields in
the DNS runs. The deterministic forcing involved maintaining the turbulent kinetic energy
constant in time by resupplying the energy dissipated during a time step to a narrow
wavenumber band at small wavenumbers (or large scales). Our conjecture was that the
forcing artificially increased the temporal coherence of the large-scale eddies, particularly
as Reλ increased. The increased coherence led to higher magnitudes of the two-time
correlations of the relative fluid velocities (and thereby diffusivities) at separations that
scaled with the integral length scale.

The objective of the current study is to quantitatively investigate the above hypothesis.
Accordingly, we performed direct numerical simulations of forced isotropic turbulence
laden with disperse but fixed particles. Two types of forcing schemes were used to achieve
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statistical stationarity, namely, the deterministic forcing of Witkowska et al. [6] and the
stochastic forcing of Eswaran and Pope [7]. Both [6,7] apply forcing to the low-wavenumber
modes in the spectral space. However, forcing may also be applied in physical space as in
Lundgren [8] and Petersen and Livescu [9]. Lundgren [8] employed a linear forcing of the
form f = Qu, where Q = 〈ε〉/3u′2 is a constant. Here, 〈ε〉 is the mean dissipation rate, and
u′ is the root-mean-square velocity of the turbulence. The principal difference between the
Lundgren [8] scheme and those in [6,7] is that the former involves uniformly forcing all
wavenumbers, whereas the latter two apply forcing in a narrow range of wavenumbers in
the energy-containing range. Subsequently, Petersen and Livescu [9] extended the work
of Lundgren [8] to compressible isotropic turbulence, wherein separate solenoidal and
dilatational parts of the forcing term are necessary to achieve stationarity. Using DNS of
stationary isotropic turbulence, Rosales and Meneveau [10] compared the linear physical-
space forcing scheme of Lundgren [8] with the band-limited spectral forcing scheme.
Rosales and Meneveau [10] demonstrated that the temporal evolution of the turbulent
kinetic energy and energy spectrum computed using the forcing scheme of Lundgren [8]
are in good agreement with the corresponding statistics computed from a pseudo-spectral
DNS with the band-limited spectral forcing scheme. However, the integral length scale
computed using the Lundgren [8] forcing was found to be smaller than that evaluated
using the spectral forcing scheme. A consequence of the smaller integral length scale is that
for a given Reλ, the grid resolution requirements for the physical forcing are more stringent
than for spectral forcing. The other shortcoming of the physical forcing method is that it
generates highly oscillatory turbulence statistics, and simulations must be conducted for a
significantly longer time in order to attain a statistically stationary state [10].

In the current study, DNS were undertaken for two grid sizes (1283 and 5123) using
deterministic and stochastic forcing schemes. The Taylor micro-scale Reynolds number,
Reλ, was held nearly constant (varying by less than 3%) among the deterministic and
stochastic DNS runs for a given grid size. The nominal values of Reλ were ≈80 and 210
for the 1283 and 5123 grids, respectively. When employing the stochastic forcing scheme,
we also considered the effects of varying the correlation time scale, Tf , of the independent
Uhlenbeck–Ornstein (UO) processes that constitute the forcing. We considered four values
of Tf , ranging from TE/4 to 4TE, where TE is the large-eddy time scale obtained from the
DNS run with deterministic forcing for the same grid size. Our motivation for considering
this range of Tf values was to study whether the time scale of the stochastic forcing itself had
an effect similar to the deterministic forcing on the relative velocity correlations. Using the
statistically stationary DNS velocity fields, we computed the Eulerian two-time correlations
of the relative fluid velocities seen by fixed particles.

The paper is organized as follows. Section 2.1 presents a brief summary of closure
form 1 (CF1) for the diffusivity tensor. Section 2.2 discusses the computational aspects of the
direct numerical simulations, including the two types of forcing schemes used in the DNS
runs. Section 3 compares the Eulerian two-time correlations of the relative fluid velocities
obtained from DNS with deterministic and stochastic forcing schemes. We conclude by
summarizing our findings in Section 4.

2. Methodology
2.1. Diffusivity Closure

In Rani et al. [1], we showed that the governing equation for the probability density
function (PDF), Ω(r, U), of monodisperse particle pairs with Stokes numbers of Str � 1 is
of the Fokker–Planck form:

∂Ω
∂t

+∇r · (UΩ)− 1
τv
∇U · (UΩ)−∇U · (DUU · ∇U Ω) = 0 (1)

where τv is the particle viscous relaxation time, r and U are the pair separation and relative
velocity vectors, respectively, and DUU is the relative-velocity space diffusivity tensor
characterizing the diffusion current.
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In Closure Form 1 (CF1), which is the focus of the current study, the relative-velocity
space diffusivity DUU is given by

D[1]
UU(r) =

1
τ2

v

∫ 0

−∞
〈∆u(r, x, 0) ∆u(r, x, t) 〉dt (2)

where the integrand is the Eulerian two-time correlation of the relative fluid velocities with
both the pair separation, r, and pair center-of-mass position, x, held fixed. The relative
fluid velocity (or the fluid velocity difference), ∆u(r, x, t), is given as

∆u(r, x, t) = u(x +
r
2

, t)− u(x− r
2

, t) (3)

For isotropic turbulence, we can write the DUU tensor as

DUU,ij = DUU,⊥

(
δij −

rirj

r2

)
+ DUU,||

rirj

r2 (4)

where DUU,⊥ and DUU,|| represent the transverse and longitudinal components of DUU .

In Dhariwal et al. [2], D[1]
UU was evaluated by computing the transverse and longitudi-

nal components of the two-time correlation 〈∆u(r, x, 0) ∆u(r, x, t) 〉 from DNS of forced
isotropic turbulence with fixed particles and then integrating these in time.

2.2. Computational Details of DNS

Direct numerical simulations (DNS) of forced isotropic turbulence are performed
on a three-dimensional (3-D) periodic cubic box of length 2π using a pseudospectral
method. The 3-D computational domain is discretized into N3 grid points, with N equally
spaced mesh points in each spatial direction. A detailed description of the pseudospectral
algorithm used in this study can be found in [11,12].

The fluid velocity, u, is computed numerically by solving the governing Navier–Stokes
and continuity equations:

∂u
∂t

= −ω× u−∇
(

p/ρ f + u2/2
)
+ ν∇2u + f (5)

∇ · u = 0 (6)

where ω = ∇× u is the fluid vorticity, p is the pressure, ρ f is the fluid density, and f is the
external forcing function applied to achieve a statistically stationary turbulence.

We can transform Equations (5) and (6) into Fourier space and eliminate pressure
using the continuity equation to obtain(

∂

∂t
+ νk2

)
û = −

(
I − kk

k2

)
· ω̂× u + f̂ (7)

where k2 = k · k. It is computationally prohibitively expensive to directly evaluate the
convolution ω̂× u. Therefore, a pseudospectral approach is used where the product of
vorticty and velocity (ω× u) is first computed in physical space and then the result is
transformed back into the spectral space. The aliasing errors introduced by the pseu-
dospectral algorithm are eliminated by setting the fluid velocities in spectral space equal
to zero for wavenumbers satisfying k ≥ kmax, where k is the wavenumber magnitude and
kmax =

√
2N/3 is the highest wavenumber magnitude realized in the simulation.

The viscous stress term on the LHS of Equation (7) is handled exactly by multiplying
Equation (7) with the integrating factor, exp(νk2t). This results in the following equation:

∂

∂t
[

exp
(
νk2t

)
ûi
]
= RHSi exp

(
νk2t

)
, (8)
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where RHSi =
(
−δim + kikm

k2

)
εmjkF{ωjuk}, εmjkF{ωjuk} represents the convolution ω̂× u,

and εmjk is the Levi–Civita tensor.
The discretization of Equation (8) in time is accomplished using the second-order

Runge–Kutta (RK2) algorithm, giving

ûi
n+1 = ûi

n exp
(
− νk2t

)
+
{

RHSn
i exp

(
− νk2t

)
+ RHSn+1

i
}

(9)

where n is the the previous time-step level and h is the time-step size. To prevent convective
instabilities, the time-step size, h, is chosen such that the CFL number ≤ 0.5. Next, a brief
discussion of the two types of forcing schemes used in the current study is provided.

2.2.1. Deterministic Forcing

We employed the deterministic forcing scheme developed by Witkowska et al. [6].
In this scheme, the turbulent kinetic energy (TKE) dissipated during a time step is resup-
plied to the low wavenumbers or large scales of the turbulent kinetic energy spectrum, thus
maintaining the TKE constant throughout the simulation. Unlike the stochastic forcing
method, no explicit forcing term, f̂ , is added to the Navier–Stokes equations. Instead, the
fluid velocity components in the forced wavenumber band are scaled to compensate for
the energy dissipated during a given time step using the following formula:

û(κ, t + ∆t) = û(κ, t + ∆t)

√
1 +

∆Ediss(∆t)∫ κmin
κmin

E(κ, t + ∆t)dκ
∀ κ ∈ [κmin, κmax] (10)

where û(κ, t) is the velocity in spectral space, ∆Ediss is the total kinetic energy dissipated
during ∆t, and E(κ, t + ∆t) is the spectral turbulent kinetic energy in a wavenumber shell
with magnitude κ at time t + ∆t. In the current study, the velocity components in the range
κ ∈ (0,

√
2) were forced using Equation (10).

2.2.2. Stochastic Forcing

The second forcing scheme implemented in this study is the stochastic forcing method
of Eswaran and Pope [7]. As opposed to the deterministic forcing, in this method, an
explicit forcing term, f̂ , is added to Equation (7). The forcing term is non-zero only in
the wavenumber band κ ∈ (0,

√
2) and is evolved according to a vector-valued complex

Uhlenbeck–Ornstein (UO) process, b̂(κ, t), as shown below [13]:

b̂(κ, t + ∆t) = b̂(κ, t)

(
1− ∆t

Tf

)
+ θ

(
2σ2∆T

Tf

)1/2

(11)

where ∆t is the time step, θ is a vector of complex random numbers whose components
are drawn from a standard normal distribution, and σ2 and Tf are the variance and time-
scale, respectively, of the UO process. The stochastic process b̂(κ, t) has the following
properties [7]:

〈b̂(κ, t)〉 = 0 (12)

〈b̂(κ, t)b̂∗(κ, t + s)〉 = 2σ2 δij exp(−s/Tf ) (13)

where an asterisk denotes the complex conjugate. The forcing term, f̂ , in Equation (7) is the
projection of b̂(κ, t) onto the plane normal to κ:

f̂ = b̂(κ, t)− κκ · b̂(κ, t)/(κ · κ) (14)

In order to investigate the effects of the time scale, Tf , of stochastic forcing, four values
of Tf were considered (Tf = 4TE, 2TE, TE, and TE/4), where TE is the large-eddy turnover
time obtained from the DNS run with deterministic forcing at the same grid size.
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2.3. Relative Velocity Correlation in CF1

Computing the diffusivity, D[1]
UU , requires the correlation 〈∆u(r, x, 0) ∆u(r, x, t) 〉 as

input. This correlation was evaluated using DNS of forced isotropic turbulence with fixed
disperse particles. Two simulation parameters that impact the computed correlation are
the number of particles (thereby, pairs) and the bin size (∆r) for pair separations. The bin
size refers to the thickness of the radial shell spanning r− ∆r/2 to r + ∆r/2 within which
we search for pairs of separation r. An important consideration in determining the number
of particles is the need to obtain converged correlations at separations r ∼ η, where η is
a Kolmogorov length scale. In this regard, we varied the number of particles from 105 to
106. Although smooth statistics were obtained for 5× 105 particles, we used 106 particles
or ∼5× 1011 pairs for computing the two-time correlation. The “optimal” bin size for pair
separations is determined by balancing two competing requirements: the convergence of
statistics at r ∼ η and the reduction of statistical noise associated an insufficient bin size.
We considered bin sizes varying between η/20 and 2η and found that a bin size of η/8
satisfied the two constraints.

Evaluation of the two-time correlation of observed relative fluid velocities for nearly
half a trillion pairs is a highly computationally intensive process. We adopted the following
procedure to compute these correlations from DNS of isotropic turbulence with fixed
particles. Considering two snapshots of the flow separated by a time interval, τ, in a DNS
run, the longitudinal and transverse components of the product ∆u(r, x, t)∆u(r, x, t + τ)
for a particle pair were stored in the appropriate r bin and then averaged over all pairs
within a bin. Next, we averaged the two components over pairs of flow snapshots with
the same time separation, τ. For each value of τ, we averaged over 200 such pairs of flow
snapshots. The correlations at various separations were then integrated in time to yield the
DUU for CF1.

3. Results and Discussion

DNS of isotropic turbulence were undertaken using deterministic forcing (DF) and
stochastic forcing (SF) for Reλ ≈ 80 and 210 at the grid sizes of 1283 and 5123, respectively.
For each grid size, we performed one DNS run using DF and four DNS runs using SF. The
correlation time scale, Tf , of the Ornstein–Uhlenbeck processes in the (DNS + SF) simula-
tions were Tf = 4TE, 2TE, TE, and TE/4, where TE is the large-eddy turnover time obtained
from the (DNS + DF) case at the same Reλ. The four (DNS + SF) cases for a given Reλ will
be referred to as SF1, SF2, SF3, and SF4, in the same order as the aforementioned Tf values.
In each DNS run, initially, only the flow field was evolved until statistical stationarity was
reached. After stationarity was attained, the flow was seeded at random locations with
106 fixed (stationary) particles, and the simulation was started again. During this second
stage of the simulation, which lasted for about 15TE, the fluid velocity at each particle
location was stored at time intervals of about 2τη , where τη is the Kolmogorov timescale.
After the simulations were complete, the fluid velocities at the particle locations were
post-processed to compute the longitudinal and transverse components of the two-time
correlation 〈∆u(r, x, 0) ∆u(r, x, τ) 〉 for various separations of r, as described in Section 2.3.

In Figure 1, the longitudinal component of the Eulerian two-time correlation of fluid
velocity differences, i.e., 〈∆u(r, x, 0) ∆u(r, x, τ) 〉||, is plotted as a function of dimensionless
time separation, τ∗ = τurms/L for Reλ = 80, where L is the integral length scale and urms is
the root-mean-square fluctuating velocity. The correlations obtained from the deterministic
and stochastic DNS runs were compared at four separations (r/L = 0.56, 1.12, 2.24, and
3.36). In Figure 1a, at r/L = 0.56, the correlations obtained from the DF and SF runs are in
good agreement. For separations r > L, the DF correlation progressively increases relative
to the SF1–SF4 correlations. At r/L = 1.12, shown in Figure 1b, the DF correlation exceeds
the SF correlations around τ∗ = 5. In Figure 1c,d, for r/L = 2.24 and 3.36, respectively, the
DF correlation becomes greater than the SF correlations at τ∗ ≈ 3 and τ∗ < 2, respectively.
From these trends, it can be deduced that deterministic forcing has the effect of increasing
the temporal coherence of eddies larger than the integral length scale, L.
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The effects of DF and SF on the the transverse component 〈∆u(r, x, 0) ∆u(r, x, τ) 〉⊥
for Reλ = 80 are illustrated in Figure 2a–d. At the smallest separation of r/L = 0.56,
we note that DF has a smaller impact on 〈∆u(r, x, 0) ∆u(r, x, τ) 〉⊥ as compared to that
at larger separations. At r/L = 1.12, 2.24, and 3.36, we see in Figure 2b–d that the τ∗

at which the DF correlation exceeds the SF correlations are τ∗ ≈ 4, τ∗ < 3, and τ∗ < 1,
respectively, which are all smaller than the corresponding τ∗’s in Figure 1. Thus, the
transverse component of the two-time correlation shows the effects of DF even more
clearly than does the longitudinal component. Furthermore, in Figures 1 and 2, both the
longitudinal and transverse correlations for SF1–SF4 do not manifest any clear effects of
the variation in the Uhlenbeck–Ornstein time scale, Tf .

As Reλ is increased, there is greater separation among the energy-containing and
energy-dissipating scales. Hence, we expect to see a clearer illustration of the role of forcing
scheme at higher Reλ. The longitudinal correlations 〈∆u(r, x, 0) ∆u(r, x, τ) 〉|| for Reλ = 210
are presented in Figure 3a–d at r/L = 0.56, 1.12, 2.24, and 3.36, respectively. It is amply
evident that the DF longitudinal correlation is higher than the SF1–SF4 correlations (except
at small τ∗). For separations r > L, we see that the DF correlation significantly exceeds the
SF1–SF4 correlations. As shown in Figure 4, the transverse correlations exhibit the same
behavior as well. From Equation (2), it can be seen that larger values of the longitudinal
and transverse correlations result in enhanced diffusivity, D[1]

UU , particularly at higher Reλ.

(a) (b)

(c) (d)
Figure 1. R||(r, τ) = 〈∆u(r, x, 0) ∆u(r, x, τ) 〉|| as a function of dimensionless time separation,
τ∗ = τurms/L, for Reλ = 80. (a) r/L = 0.56, (b) r/L = 1.12, (c) r/L = 2.24, and (d) r/L = 3.36.
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(a) (b)

(c) (d)
Figure 2. R⊥(r, τ) = 〈∆u(r, x, 0) ∆u(r, x, τ) 〉⊥ as a function of dimensionless time separation,
τ∗ = τurms/L, for Reλ = 80. (a) r/L = 0.56, (b) r/L = 1.12, (c) r/L = 2.24, and (d) r/L = 3.36.

(a) (b)

Figure 3. Cont.
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(c) (d)
Figure 3. R||(r, τ) = 〈∆u(r, x, 0) ∆u(r, x, τ) 〉|| as a function of dimensionless time separation,
τ∗ = τurms/L, for Reλ = 210. (a) r/L = 0.56, (b) r/L = 1.12, (c) r/L = 2.24, and (d) r/L = 3.36.

(a) (b)

(c) (d)
Figure 4. R⊥(r, τ) = 〈∆u(r, x, 0) ∆u(r, x, τ) 〉⊥ as a function of dimensionless time separation,
τ∗ = τurms/L, for Reλ = 210. (a) r/L = 0.56, (b) r/L = 1.12, (c) r/L = 2.24, and (d) r/L = 3.36.



Fluids 2022, 7, 115 10 of 10

4. Conclusions

This study was motivated by the observations in [2] regarding the behaviour of the
three closure forms for the diffusivity tensor (CF1, CF2, and CF3) as the Reynolds number
was increased. We were particularly interested in understanding why the CF1 diffusivity
showed a significant increase with Reλ at separations r & L. It was conjectured in [2] that
this behaviour of CF1 was an artifact of the deterministic forcing scheme employed in the
DNS run to compute the Eulerian two-time correlation of the relative fluid velocities that
were an input to CF1.

To test this hypothesis, we performed a detailed investigation consisting of DNS runs
with both deterministic and stochastic forcing schemes at Reλ ≈ 80 and 210. For the
stochastic forcing runs, we also considered the effects of varying the forcing time scale,
Tf . A comparison of the Eulerian correlations from these simulations clearly establishes
the fundamental premise of this study. This behaviour of DF may be anticipated since it
involves, at every time step, the pumping of energy equal to the dissipated energy into the
scales in a narrow band of low wavenumbers. As a result, the large scales are essentially
kept from turning over for a longer duration than in a (DNS + SF) simulation, increasing
their temporal coherence.

Author Contributions: Conceptualization, S.L.R. and R.D.; methodology, S.L.R.; software, R.D.;
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