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Abstract: In the current paper, a new formula for calculating boundary layer quantities—such as
the boundary layer thickness, friction coefficients, and the boundary layer profile—for a flat plate
is presented. The formula is based on the power-law approach and represents a generalisation of
the 1/7 power-law to a more extensive Reynolds number range. In addition to the derivation and
the theoretical background, the main focus is on the comparison with various experimental data
from the literature. The good agreement of the data shows that this approach allows for precise
predictions of boundary layer quantities for a flat plate with zero-pressure gradients. Especially for
estimating boundary layers along with large vehicles such as trains, ships, or aeroplanes, the formula
offers added value in terms of accuracy compared to previously existing approaches, such as the
1/7 power-law.
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1. Introduction

Even though, currently, the determination of boundary layer quantities by means of
empirical or semi-empirical formulae is not as important as it was a few decades ago due to
the possibilities offered by numerical simulations, there are many applications where such
formulae are used. Examples are the correct dimension of experimental or numerical setups
and validation of their results. Especially in applications where the development of the
boundary layer is crucial for the flow pattern, a formula-based estimation of the boundary
layer quantities is essential for the design of experimental and numerical simulations and
scaling of the results (e.g., the flow around roof elements on trains [1] or at the rear of a
vehicle and the associated effect on the slipstream [2]).

Currently, the so-called 1/7 power law is usually used for such analyses [3]. However,
especially for vehicles where the vehicle length x and speed U result in very high Reynolds
numbers Rex ≡ x ·U/ν (with ν being the fluid’s kinematic viscosity), significant deviations
of the measured boundary layer parameters from those calculated with the 1/7 power-law
can be observed [4]. In the past, this was mainly attributed to 3D effects or flow detachment
at the rather blunt vehicle shapes but can also be observed for today’s aerodynamically
optimized high-speed trains. As shown in [4], a much better agreement is achieved when a
1/n power-law with n > 7 is used, where the value of n depends on the Reynolds number
Rex. Although this finding is by no means new [5], it is still little or not at all taken into
account in vehicle aerodynamics.

One reason for this could be that even for the simple case of a flow over a flat plate, at
first glance—more than 100 years after the introduction of Prandtl’s approaches to boundary
layer theory—there is no agreement on how this flow can be correctly approximated. In
recent decades, there have been heated debates about utilising a power-law or logarithmic
approach [6,7].

The power approach describes the relationship of the dimensionless boundary layer
quantities u+ and y+ as follows:

u+ = Cpow
(
y+
)α (1)
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with empiric constants Cpow and α, whereby in the formulation

u+ = k
(
y+
)1/n (2)

with empirical quantities k and n is used. Here, u+ represents the near-wall velocity
normalised with the shear stress velocity uτ :

u+ =
u(x, y)
uτ(x)

(3)

and y+ the dimensionless wall distance:

y+ =
yuτ

ν
(4)

u(y) is the local velocity, y the distance to the wall, and uτ is defined as

uτ =

√
τw

ρ
(5)

with wall shear stress τw and fluid density ρ. All quantities considered are averaged
over time.

With the logarithmic approach, the relationship between u+ and y+ is

u+ =
1
κ

log
(
y+
)
+ Clog (6)

with κ and Clog being determined empirically. It seems certain that both approaches cannot
be considered as independent of the Reynolds number [6,8]. As an example, in Figure 1,
Clog and k are plotted over the Reynolds number Reθ ≡ θ · U /ν, where θ represents the
momentum thickness (often also referred to as δ2).

Figure 1. Power-law parameter k and logarithmic law parameter Clog plotted over the Reynolds num-
ber with corresponding linear fit (solid lines), according to the data provided by Barenblatt et al. [9]
and Buschmann and Gad-el-Hak [6].

The present work does not aim to settle the debate about a correct approach. However,
since the power-law approach seems to cover the boundary layer profile in the outer layer
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somewhat better than the logarithmic approach [6], this approach will be used in the
following to derive a new formula for determining boundary layer quantities.

In [4], the formulae for the boundary layer thicknesses δ (often referred to as δ99),
δ1, θ (or δ2) and the friction coefficient c f were derived using the power-law approach as
a function of n and k. In the present paper, the relationship of n and k to the Reynolds
number, as given in the literature, is to be used directly to obtain a formula for the boundary
layer quantities that depends exclusively on the Reynolds number. This corresponds to an
extension of the validity of the 1/7 power-law to a more comprehensive range of Reynolds
numbers. Subsequently, the results are compared with experimental data available from
the literature.

2. Method

In [6,9], n and k values are presented, which were determined independently based
on different experimental data, but mainly on those of Österlund [10]. As shown in [6,11],
the profiles of flat plate flow and pipe flow differ, so only the values determined for a flat
plate with zero-pressure gradients will be used in this study. As can be seen in Figure 1,
there is good agreement between the results determined by [6,9]. These results are used for
the following analysis.

To reduce the influence of the laminar-turbulent transition or other upstream effects,
boundary layer analyses are usually based on the Reynolds number Reθ , which refers to the
momentum thickness. However, such an approach is not suitable for predicting boundary
layer quantities since the momentum thickness is unknown in the first place. Therefore, for
practical reasons, the Reynolds number Rex is used as a reference in the following. Besides,
as shown in [12], the relationship between Rex and Reθ is similar for most data (see also
Section 3.1). Furthermore, the investigations by Marusic [13] have shown that for perfect
comparability of measurement data, the use of Reθ is also not sufficient, since, for example,
the transition itself (e.g., type of tripping tape) also influences the development of the
turbulent boundary layer. However, such effects cannot and should not be considered here.

For the n and k values given by [6,9], the relation Rex = 88.855 · Re1.2088
θ , determined

from Österlund’s data [10], applies. Based on this, the following applies for n and k:

n = 0.676 log(Rex)− 3.331 (7)

k = 0.697 log(Rex)− 2.296 (8)

These relations now shall be used to calculate the boundary layer quantities only
depending on the Reynolds number. The flow profile within the boundary layer follows
from Equations (2)–(4)

u(x, y)
uτ(x)

= k
(

yuτ(x)
ν

)1/n
(9)

and for the transition of boundary layer flow to the undisturbed flow

U
uτ(x)

= k
(

δ(x)uτ(x)
ν

)1/n
(10)

Dividing Equation (9) by (10) leads to the well-known boundary layer profile

u(x, y)
U

=

(
y

δ(x)

)1/n
(11)

The displacement thickness δ1 and momentum thickness θ can be derived from con-
servation laws. Using Equation (11) gives

δ1(x) =
∫ ∞

0

[
1 − u(x, y)

U

]
dy (12)
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=
δ(x)
n + 1

(13)

θ(x) =
∫ ∞

0

u(x, y)
U

[
1 − u(x, y)

U

]
dy (14)

=
n δ(x)

(n + 1)(n + 2)
(15)

The wall shear stress τw is related to θ by

τW(x) = ρU2 dθ(x)
dx

(16)

Combined with the relation from Equation (5), the boundary layer thickness can now
be calculated by

δ(x) =

[
C
(

1
k

) 2n
n+1
] n+1

n+3

x Re
− 2

n+3
x (17)

with

C =
(n + 3)

n
(

1 − n+1
n+2

) (18)

Using Equations (15)–(17) this leads to

τW(x) = ρU2C− 2
n+3

(
1
k

) 2n
n+3

Re
− 2

n+3
x (19)

The local friction coefficient c f then is calculated by

c f (x) =
τW

ρ
2 U2

(20)

The frictional drag coefficient CD, f results from integrating the local friction coefficient
over the plate length L:

CD, f =
1
L

∫ L

0
c f (x)dx (21)

According to Equations (16) and (20) this gives

CD, f (L) = 2
θ

L
(22)

= 2 C− 2
n+3

(
1
k

) 2n
n+3

Re
− 2

n+3
L

(
n + 3
n + 1

)
(23)

To replace n and k, the boundary layer quantities are expressed as

δi
x
= Ai(Rex) · ReBi(Rex)

x (24)

and
c f = Ac f (Rex) · Re

Bc f (Rex)
x (25)

For δ, for example, this gives

Aδ =

 (n + 3)

n
(

1 − n+1
n+2

)
(1

k

) 2n
n+1

 n+1
n+3

(26)
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and
Bδ = − 2

n + 3
(27)

Using Equations (7) and (8), Aδ and Bδ can thus be interpolated as shown in Figure 2:

Aδ = 2.341 · Re−0.116
x (28)

Bδ = −0.509 · Re−0.061
x (29)

Figure 2. Aδ over Rex according to Equations (7), (8), and (26) (circles) and logarithmic fit (blue line).

Substituting this into Equation (24) then yields

δ

x
= 2.341 · Re(−0.116−0.509·Re−0.061

x )
x (30)

All other quantities can be determined in the same way.

3. Results and Discussion

With the approach presented, the following boundary layer equations can be deter-
mined. In the following, the equations presented in Table 1 are compared with experimental
data. Only data for (approximately) zero-pressure-gradient flat plate boundary layers de-
termined with appropriate measurement techniques (hotwire, laser Doppler velocimetry)
were selected for comparison. Comparable data from direct numerical simulations at
corresponding Reynolds numbers are unknown to the author.
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Table 1. Boundary layer formulae.

Quantity Formula

boundary layer thickness δ
x = 2.341 · Re(−0.116−0.509·Re−0.061

x )
x

displacement thickness δ1
x = 0.917 · Re(−0.191−0.509·Re−0.061

x )
x

momentum thickness θ
x = 0.550 · Re(−0.174−0.509·Re−0.061

x )
x

local friction coefficient c f = 0.714 · Re(−0.160−0.509·Re−0.061
x )

x

friction drag coefficient CD, f = 1.1 · Re(−0.174−0.509·Re−0.061
L )

L

velocity profile u(x,y)
U =

(
y

δ(x)

) 1
0.676 log (Rex )−3.331

form parameter H = δ1
θ = 1.668 · Re−0.017

x

3.1. Boundary Layer Thickness

Figure 3 compares the formulae given in Table 1 to the experimental data for the
boundary layer thicknesses δ, δ1, and θ, and the form parameter H. Unsurprisingly, the
best agreement results for the data are found in the work of Österlund [10], since the values
n and k result from these data. In [10], δ95 is calculated instead of δ99, which is why the data
are excluded from the comparison. The 1/n power-law seems to better fit the experimental
data than the 1/7 power-law. Nevertheless, a final evaluation is difficult because the
experimental data show large deviations in the boundary layer thicknesses. Relatively
good comparability of the experimental data exists for the shape parameter H, which
is clearly better represented by the 1/n power-law than by the 1/7 power-law, but still
underestimates the experimental results by about 5–7%. The strong deviation of the data
from Oweis et al. [14] could result from the pressure gradient present in the experiments.

Figure 3. Cont.
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Figure 3. Boundary layer thicknesses and form parameter compared to the data given by DeGraaff
and Eaton [15], Marusic et al. [13], Oweis et al. [14], Österlund [10], Petrie et al. [16], Schlichting
and Gersten [17], and Vallikivi et al. [11]: (a) boundary layer thickness; (b) displacement thickness;
(c) momentum thickness; (d) form parameter, with Schlichtings formula H = 1

1− 7.1√
2

c f

.

Based on the results for θ, Rex is plotted against Reθ in Figure 4. A good agreement
can be found for both the 1/7 power-law and the 1/n power-law. As an example, θ is also
plotted over Reθ . It can be seen that this does not result in an improved agreement of the
data compared to Figure 3c.

Figure 4. (a) Reynolds number based on x plotted over the Reynolds number based on θ; (b) momen-
tum thickness from different experiments and formulae plotted over Reθ .

3.2. Friction Coefficients

Figure 5 compares the local friction coefficient c f and the friction drag coefficient CD, f
with experimental data and formulae from the literature. The 1/n power-law is more in
line with the experimental results than the 1/7 power-law at high Reynolds numbers. For
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very low Reynolds numbers, the reference data are slightly exceeded by the 1/n approach.
Among other things, this could be because the interpolated values for intercept A and slope
B (cf. Equation (24)) do not quite match the actual values for small Reynolds numbers
(see Figure 2). The sensitivity of the results towards slight deviations of the exponent is
shown in Figure 5 for the friction coefficient c f . The Prandtl Schlichting formula [4,17] is
usually expressed as

c f =
(
2 · log10(Rex)− 0.65

)−2.3 (31)

Figure 5. (a) Local friction coefficient compared to experimental data (as above, but additionally
from Hoerner [18]) and the Prandtl–Schlichting formula, as well as the formula given by Schulz–
Grunow c f = 0.37 ·

(
log10 Rex

)−2.584 [19], PF = profile fit, FM = force measurement, OF = oil-film
measurement; (b) Friction drag coefficient calculated by CD, f = 2 θ

L , as well as CD, f = 0.427 ·(
−0.407 + log10 Rex

)−2.64 according to [19], CD, f = 0.455 ·
(
log10 Rex

)−2.58 according to [17] and

CD, f = 0.075 ·
(
log10 Rex − 2

)−2 according to [20].

Which is shown in Figure 5 as “Prandtl Schlichting (a)”. The correct representation
would be “Prandtl Schlichting (b)”:

c f =
(
2 · log10(Rex)− 0.65

)− 7
3 (32)

While the difference in the exponent is only about 1.5%, the resulting c f values differ
by almost 10%.

3.3. Boundary Layer Profiles

Finally, the boundary layer profiles at different Reynolds numbers are compared with
selected experimental data. First, the data from Österlund [10] are considered, as these
data were used as the basis for n and k. As shown in Figure 6, the measured profiles agree
better with the 1/n power-law than with the 1/7 power-law at higher Reynolds numbers.
Compared to the log law, the 1/n power-law seems to give better results further away from
the wall, but it is inferior in close wall proximity.
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Figure 6. Boundary layer profiles at different Reynolds numbers Rex compared to the data from
Österlund [10], (a) Re = 1.1 × 106, (b) Re = 4.91 × 106, (c) Re = 10 × 106, (d) Re = 20.16 × 106.

Figure 7 compares the results with the data obtained by Marusic et al. [13], one of
the most recent studies, which are in a similar Reynolds number range to Österlund’s
experiments [10]. The observations are the same as in Figure 6. Interestingly, there is
good agreement between the profiles by Österlund and Marusic determined at the same
Reynolds number (Figure 7d), while the derived boundary layer quantities in Figure 3
show significant differences.
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Figure 7. Boundary layer profiles at different Reynolds numbers Rex compared to the data from
Marusic et al. [13] and Österlund [10], (a) Re = 2.12 × 106, (b) Re = 9.85 × 106, (c) Re = 17.12 × 106,
(d) Re = 10 × 106.

Figure 8 compares the results with the data from Vallikivi et al. [11]. Again, at high
Reynolds numbers, the best agreement is shown for the 1/n power-law. The comparison of
the different experimental data (Figure 8e,f) shows differences demonstrating the difficulty
of comparability with the experimental data.
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Figure 8. Boundary layer profiles at different Reynolds numbers Rex compared to the data from
Vallikivi et al. [11], Marusic et al. [13], and Österlund [10], (a) Re = 0.05 × 108, (b) Re = 0.17 × 108,
(c) Re = 0.6 × 108, (d) Re = 1.65 × 108, (e) 4.91 × 106, (f) 0.17 × 108.
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Figure 9 compares the data with the profiles determined by Oweis et al. [14]. Here, a
shift can be seen for all experimental profiles compared to the power-law and log law pro-
files, which increases slightly with decreasing Reynolds number. This is assumed to result
from the pressure gradient along the measuring section [21]. Therefore, a corresponding
correction with a constant shift of u+ = −0.7 was inserted, with which the 1/n power-law
results agree quite well.

Figure 9. Boundary layer profiles at different Reynolds numbers Rex compared to the data from
Oweis et al. [14], (a) Re = 0.73 × 108, (b) Re = 1.45 × 108, (c) Re = 2.23 × 108.

4. Conclusions

In this paper, a formula for the analytical determination of boundary layer quantities
was derived, based on the data from Barenblatt et al. [9] and Buschmann and Gad-el-Hak [6].
Like the 1/7 power-law, the formula is based on a power-law approach for the boundary
layer profile, whereby the exponent and intercept are dependent on the Reynolds number.
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Subsequently, the results obtained with the formula were compared with current data
in the literature. Good agreement was found over a wide range of Reynolds numbers, both
for the friction coefficients and the boundary layer thicknesses and profiles themselves.

At the same time, the comparison once again shows the problem of how to normalise
experimental data to obtain satisfactory agreement. The classical approach to plot the data
over Rex or Reθ without considering further boundary conditions shows large deviations
in the experimental results. Nevertheless, the general trend confirms the validity of the
presented approach. All boundary layer quantities considered can be represented with the
same or better approximation to the experimental data than with comparable approaches,
especially at high Reynolds numbers. This confirms that the relations for n and k derived
from smaller Reynolds numbers are apparently also valid for higher Reynolds numbers.
The quality of the results could be further improved by a comprehensive investigation of
correct n and k values. The same approach can be taken for pipe flows with respective n
and k (see [22]).

Funding: This research received no external funding.

Acknowledgments: The author would like to thank Christian Navid Nayeri for the helpful discus-
sions and support.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Tschepe, J.; Maaß, J.-T.; Nayeri, C.N.; Paschereit, C.O. Experimental investigation of the aerodynamic drag of roof-mounted

insulators for trains. J. Rail Rapid Transit 2019, 234, 834–846. [CrossRef]
2. Bell, J.; Burton, D.; Thompson, M.; Herbst, A.; Sheridan, J. A wind-tunnel methodology for assessing the slipstream of high-speed

trains. J. Wind. Eng. Ind. Aerodyn. 2017, 166, 1–19. [CrossRef]
3. de Chant, L.J. The venerable 1/7th power law turbulent velocity profile: A classical nonlinear boundary value problem solution

and its relationship to stochastic processes. Appl. Math. Comput. 2005, 161, 463–474. [CrossRef]
4. Tschepe, J.; Nayeri, C.; Paschereit, C. On the influence of Reynolds number and ground conditions on the scaling of the

aerodynamic drag of trains. J. Wind. Eng. Ind. Aerodyn. 2021, 213, 104594. [CrossRef]
5. Barenblatt, G. Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech. 1993,

248, 513–520. [CrossRef]
6. Buschmann, M.H.; Gad-El-Hak, M. Debate Concerning the Mean-Velocity Profile of a Turbulent Boundary Layer. AIAA J. 2003,

41, 565–572. [CrossRef]
7. George, W.K. Recent Advancements Toward the Understanding of Turbulent Boundary Layers. AIAA J. 2006, 44, 2435–2449.

[CrossRef]
8. Buschmann, M.H.; Gad-el-Hak, M. Turbulent boundary layers: Reality and myth. Int. J. Comput. Sci. Math. 2007, 1, 159–176.

[CrossRef]
9. Barenblatt, G.I.; Chorin, A.J.; Prostokishin, V.M. Analysis of Experimental Investigations of Self-Similar Intermediate Structures in

Zero-Pressure Boundary Layers at Large Reynolds Numbers. arXiv 2000, arXiv:math-ph/0002004.
10. Österlund, J. Experimental Studies of Zero Pressure-Gradient Turbulent Boundary-Layer Flow; KTH: Stockholm, Sweden, 1999;

Available online: https://www.mech.kth.se/~{}jens/zpg/art/zpg_screen.pdf (accessed on 5 January 2022).
11. Vallikivi, M.; Hultmark, M.; Smits, A. Turbulent boundary layer statistics at very high Reynolds number. J. Fluid Mech. 2015, 779,

371–389. [CrossRef]
12. Gorbushin, A.; Osipova, S.; Zametaev, V. Mean Parameters of an Incompressible Turbulent Boundary Layer on the Wind Tunnel

Wall at Very High Reynolds Numbers. Flow Turbul. Combust 2021, 107, 31–50. [CrossRef]
13. Marusic, I.; Chauhan, K.; Kulandaivelu, V.; Hutchins, N. Evolution of zero-pressure-gradient boundary layers from different

tripping conditions. J. Fluid Mech. 2015, 783, 379–411. [CrossRef]
14. Oweis, G.; Winkel, E.; Cutbrith, J.; Ceccio, S.; Perlin, M.; Dowling, D. The mean velocity profile of a smooth-flat-plate turbulent

boundary layer at high Reynolds number. J. Fluid Mech. 2010, 665, 357–381. [CrossRef]
15. de Graaff, D.; Eaton, J. Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 2000, 422, 319–346.

[CrossRef]
16. Petrie, H.L.; Fontaine, A.A.; Sommer, S.T.; Brungart, T.A. Large Flat Plate Turbulent Boundary Layer Evaluation; Penn State Applied

Research Laboratory Technical Memo File No. 89-207; Penn State Applied Research Laboratory: Reston, VA, USA, 1990;
Available online: https://apps.dtic.mil/sti/pdfs/ADA225316.pdf (accessed on 5 January 2022).

17. Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2017. [CrossRef]
18. Hoerner, S. Fluid-Dynamic Drag; Hoerner Fluid Dynamics: Bakersfiled, CA, USA, 1965; Available online: http://ftp.demec.ufpr.

br/disciplinas/TM240/Marchi/Bibliografia/Hoerner.pdf (accessed on 3 October 2021).

http://doi.org/10.1177/0954409719867537
http://doi.org/10.1016/j.jweia.2017.03.012
http://doi.org/10.1016/j.amc.2003.12.109
http://doi.org/10.1016/j.jweia.2021.104594
http://doi.org/10.1017/S0022112093000874
http://doi.org/10.2514/2.1994
http://doi.org/10.2514/1.19951
http://doi.org/10.1504/IJCSM.2007.016529
https://www.mech.kth.se/~{}jens/zpg/art/zpg_screen.pdf
http://doi.org/10.1017/jfm.2015.273
http://doi.org/10.1007/s10494-020-00232-z
http://doi.org/10.1017/jfm.2015.556
http://doi.org/10.1017/S0022112010003952
http://doi.org/10.1017/S0022112000001713
https://apps.dtic.mil/sti/pdfs/ADA225316.pdf
http://doi.org/10.1007/978-3-662-52919-5
http://ftp.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliografia/Hoerner.pdf
http://ftp.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliografia/Hoerner.pdf


Fluids 2022, 7, 114 14 of 14

19. Schultz-Grunow, F. New Fricitional Resistance Law for Smoothe Plates; NASA Tech Memo No. 986; NASA: Washington, DC, USA,
1941. Available online: https://ntrs.nasa.gov/citations/19930094430 (accessed on 5 January 2022).

20. ITTC. Skin Friction and Turbulence Stimulation; Committee Report; ITTC: Ledegem, Belgium, 1957; Available online: https:
//ittc.info/media/3139/skin-friction-and-turbulence-stimulation.pdf (accessed on 5 January 2022).

21. Rona, A.; Monti, M.; Airiau, C. On the generation of the mean velocity profile for turbulent boundary layers with pressure
gradient under equilibrium conditions. Aeronaut. J. 2012, 116, 569–598. [CrossRef]

22. Afzal, N.; Seena, A.; Bushra, A. Power Law Velocity Profile in Fully Developed Turbulent Pipe and Channel Flows. J. Hydraul.
Eng. 2007, 133, 1080–1086. [CrossRef]

https://ntrs.nasa.gov/citations/19930094430
https://ittc.info/media/3139/skin-friction-and-turbulence-stimulation.pdf
https://ittc.info/media/3139/skin-friction-and-turbulence-stimulation.pdf
http://doi.org/10.1017/S0001924000007089
http://doi.org/10.1061/(ASCE)0733-9429(2007)133:9(1080)

	Introduction 
	Method 
	Results and Discussion 
	Boundary Layer Thickness 
	Friction Coefficients 
	Boundary Layer Profiles 

	Conclusions 
	References

