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Abstract: Numerical simulations of contaminated spherical drops falling through a stagnant liquid
at low Reynolds numbers are carried out using the finite difference method. The numerical results
are used to describe the behavior of the surfactant concentrations and to understand the surfactant
effects on the fluid motions in detail. The predicted interfacial surfactant concentration, Γ, is almost
zero for angles, θ, below a certain value (the stagnant-cap angle, θcap), whereas it steeply increases
and reaches a large value for θ > θcap (the stagnant-cap region). The increase in the initial surfactant
concentration, C0, in the drop enhances the adsorption from the drop to the interface, which results in
the increase in Γ and the decrease in θcap. Peaks appear in the predicted Marangoni stresses around
θcap, which causes similar peaks in the pressure distribution. The high-pressure spots prevent the
fluid motion along the interface, which results in the formation of the stagnant-cap region and the
attenuation of the tangential velocity in the continuous phase. The surfactant flux from the bulk to
the interface decreases C in the vicinity of the interface for θ < θcap and the weak diffusion cannot
compensate for the reduction in C by adsorption, which results in C at the interface smaller than C0.
The pattern of the low C region is determined by the advection and does not smear out because of a
small diffusive flux.

Keywords: soluble surfactant; adsorption; desorption; Marangoni effect; drag force

1. Introduction

Surface-active agents (surfactants) have various effects on the motion of a fluid parti-
cle, e.g., the drag coefficient of a spherical bubble under a fully contaminated condition
corresponds to that of a solid particle [1,2], capillary waves formed on the surface of a
bubble are dampened by the presence of surfactant [3,4], and so on. Boussinesq [5] assumed
that the interface contaminated with surfactant behaves similar to a viscous membrane
and modeled the increase in drag caused by the presence of surfactant as surface viscos-
ity [1,6]. The drag model for clean spherical fluid particles of low Reynolds numbers,
i.e., the Hadamard–Rybczynski model [7,8], can be easily extended to that for contami-
nated fluid particles by introducing the surface viscosity. On the other hand, Levich [9]
succeeded in explaining the surfactant effect on the drag force by accounting for the surface
tension gradient, i.e., the Marangoni stress, caused by non-uniform distribution of the
surface tension due to the adsorption of surfactant to the interface. Numerical simulations
of contaminated fluid particles have been carried out so far by taking into account the
Marangoni stress [2,10–20], in contrast, measurements of the Marangoni stress and the
interfacial surfactant concentration have rarely been carried out.
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Reduction in the surface tension due to surfactant adsorption takes place for various
surfactants such as Triton X-100, sodium dodecyl sulfate (SDS), alcohols such as 1-pentanol
and so on. In the presence of interfacial flow, the distribution of surfactant at the interface
is non-uniform due to advection. For example, the interfacial flow formed at the interface
of a drop falling through a stagnant liquid due to gravity transfers surfactant molecules
adsorbing to the interface from the nose side to the rear side of the drop, which results in
a high surfactant concentration in the rear side. The non-uniform surfactant distribution
also results in a non-uniform distribution of surface tension. The distribution of the
surface tension can be calculated if the Marangoni stress is measured, and the interfacial
surfactant concentration can also be computed from the surface tension by making use
of the Langmuir–Szyszkowski isotherm [21]. The Marangoni stress can be evaluated if
the velocity gradients at the interface and the viscosities of the two phases are known
since the jump of the tangential viscous stress at the interface balances with the Marangoni
stress. Hosokawa et al. [22] measured velocity fields about single contaminated drops of a
glycerol–water solution falling through a silicone oil at low drop Reynolds numbers using
SFV (spatiotemporal filter velocimetry) [23] to evaluate the distributions of the interfacial
surfactant concentration (Figure 1). However, other field variables, e.g., the surfactant
concentration in the drop and the pressure fields, required for full understanding of the
phenomena, have not been obtained in the experiment yet.

In this study, the motions of contaminated drops of low Reynolds numbers are nu-
merically simulated using the finite difference method under the same conditions as those
in Hosokawa et al. [22] to discuss the distributions of the bulk and interfacial surfactant
concentrations and the surfactant effects on the interface velocity and pressure in detail. In
the following sections, the numerical method is first introduced. The validity of the numer-
ical method is examined for clean drops, spherical particles and contaminated bubbles [10].
Then, the falling motions of contaminated drops are simulated, and the surfactant effects
are discussed.
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Figure 1. Single drop falling through stagnant liquid [22], where d is the drop diameter, a is the
drop radius, r and θ are the radial and azimuthal coordinates, U is the drop velocity, and g is the
magnitude of the gravitational acceleration.



Fluids 2022, 7, 55 3 of 23

2. Numerical Method
2.1. Governing Equations

The governing equations are written in the frame of reference moving with a single
drop. The drop shape is assumed to be spherical, and the drop Reynolds number is given
as a parameter from the experimental data [22]. The flow passing through the spherical
drop at the prescribed Reynolds number is therefore obtained by solving the governing
equations. The (r, θ) two-dimensional spherical coordinates are used since the flow has
axial symmetry at low drop Reynolds numbers. The flow is assumed to be incompressible
and isothermal. The Navier–Stokes equation for Newtonian fluids is therefore given by [24]

ρk

(
∂ur,k

∂t
+ uk · ∇ur,k −

u2
θ,k

r

)
= −∂pk

∂r
+ µk

(
∇2ur,k −

2ur,k

r2 −
2

r2 sin θ

∂ sin θuθ,k

∂θ

)
(1)

ρk

(
∂uθ,k

∂t
+ uk · ∇uθ,k +

ur,kuθ,k

r

)
= −1

r
∂pk
∂θ

+ µk

(
∇2uθ,k +

2
r2

∂ur,k

∂θ
− uθ,k

r2 sin2 θ

)
(2)

where ur and uθ are the velocity components in the r and θ directions, respectively, t is the
time, p is the pressure, ρ is the density, µ is the viscosity, and k denotes either the dispersed
phase (k = D) or the continuous phase (k = C). The differential operators, u · ∇ and ∇2,
are given in Appendix A. The following continuity equation holds in each phase:

1
r2

∂

∂r

(
r2 ∂ur,k

∂r

)
+

1
r sin θ

∂(sin θuθ,k)

∂θ
= 0 (3)

The normal component of the velocity is continuous at the interface when there is no
interfacial mass transfer. Hence the velocity boundary condition at the drop interface is
given by

ur,D = ur,C = 0 (4)

and the following no-slip condition is used for the tangential velocity component:

uθ,D = uθ,C = uθ,int (5)

where the subscript int denotes the interface. The tangential viscous stress, τrθ , in each
phase balances with the Marangoni stress at the interface:

[τrθ ]int =
1
a

∂σ

∂θ
(6)

where [X]int represents the jump of the quantity, X, at the interface, σ is the surface tension,
and a is the drop radius.

In the present study, surfactant is assumed to be soluble in the dispersed phase, so
that it is present inside the drop at the molar concentration, C. The transport equation of C
is given by

∂C
∂t

+∇ · uDC = ∇ · DD∇C (7)

where DD is the diffusion coefficient. Adsorption and desorption of surfactant molecules
take place at the interface and the magnitude of the adsorption–desorption flux depends
on C at the interface, CS, and the molar concentration, Γ, of surfactant adsorbing to the
interface. The transport equation of Γ is given by [2,10,25]

∂Γ
∂t

+∇S · uSΓ = ∇S · DS∇SΓ + ṠΓ (8)

where DS is the diffusion coefficient of surfactant at the interface,∇S is the surface gradient
operator, and uS is the interface velocity. The ṠΓ is the net adsorption–desorption flux,
which is evaluated by making use of the following Frumkin–Levich model [9,10,26]:
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ṠΓ = kaCS(Γmax − Γ)− kdΓ (9)

where ka is the adsorption rate constant, kd is the desorption rate constant, and Γmax is the
saturation value of Γ. The diffusive flux of C at the interface balances with ṠΓ, i.e.,

− DD
∂C
∂r

∣∣∣∣
r=a

= ṠΓ (10)

The surface tension, σ, of the contaminated interface depends on Γ as [21]

σ = σ0 + RGTΓmax ln
(

1− Γ
Γmax

)
(11)

where σ0 is the surface tension of a clean interface, RG is the universal gas constant, and T
is the temperature.

The following dimensionless forms of the governing equations are useful to make
clear the relevant dimensionless groups:

∂u∗r,k

∂t∗
+ u∗k · ∇∗u∗r,k −

u∗2θ,k

r∗
= −∂p∗k

∂r∗
+

1
Rek

[
∇∗2u∗r,k −

2u∗r,k

r∗2
− 2

r∗2 sin θ

∂ sin θu∗θ,k

∂θ

]
(12)

∂u∗θ,k

∂t∗
+ u∗k · ∇u∗θ,k +

u∗r,ku∗θ,k

r∗
= − 1

r∗
∂p∗k
∂θ

+
1

Rek

[
∇∗2u∗θ,k +

2
r∗2

∂u∗r,k

∂θ
−

u∗θ,k

r∗2 sin2 θ

]
(13)

∂C∗

∂t∗
+∇∗ · u∗DC∗ =

∇∗2C∗

PeD
(14)

∂Γ∗

∂t∗
+∇∗S · u∗SΓ∗ =

∇∗2S Γ∗

PeS
+ Ṡ∗Γ (15)

where u∗ = u/U, p∗ = p/ρU2, C∗ = C/C0, Γ∗ = Γ/Γmax, r∗ = r/d, t∗ = Ut/d,
∇∗ = d∇, ∇∗S = d∇S, and C0 is the initial concentration. The Reynolds numbers, Rek,
the Peclet number, PeD, and the surface Peclet number, PeS, are defined by Rek = ρkUd/µk,
PeD = Ud/DD, and PeS = Ud/DS, respectively, where d is the drop diameter, and U is the
drop velocity. The momentum jump condition in the tangential direction is given by

[τ∗rθ ]int =
Ma
a∗

∂σ∗

∂θ
(16)

where the Marangoni number, Ma, and the dimensionless surface tension, σ∗, are defined
by Ma = RGTΓmax/µCU and σ∗ = σ/RGTΓmax, respectively. The dimensionless radius
is given by a∗ = a/d = 1/2. The interfacial surfactant flux in the dimensionless form is
given by

Ṡ∗Γ = α

[
C∗S(1− Γ∗)− Γ∗

La

]
(17)

where C∗S = CS/C0, La is the Langmuir number defined by La = kaC0/kd, and α is the
ratio of the adsorption rate to the characteristic velocity, i.e., α = kaC0d/U. The boundary
condition of C at the interface is

− ∂C∗

∂r∗

∣∣∣∣
r∗=a∗

= PeDKṠ∗Γ (18)

where K is the dimensionless adsorption length defined by K = Γmax/C0d. The σ∗ is
given by

σ∗ = σ∗0 + ln(1− Γ∗) (19)

where σ∗0 = σ0/RGTΓmax.
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2.2. Discretization Schemes
2.2.1. Velocity-Pressure Coupling

The present numerical method for obtaining the velocity and pressure fields is based on
the fractional step method [27,28]. The Adams–Bashforth scheme is used for the advection
terms of the Navier–Stokes equations, while the Crank–Nicolson scheme is used for the
diffusion terms. Therefore,

∇∗2u∗mr,k −
2u∗mr,k

r∗2
− 2Rek

∆t∗
u∗mr,k −

2
r∗2 sin θ

∂ sin θu∗m−1
θ,k

∂θ
= Sr,k (20)

∇∗2u∗mθ,k −
u∗mθ,k

r∗2 sin2 θ
− 2Rek

∆t∗
u∗mθ,k +

2
r∗2

∂u∗m−1
r,k

∂θ
= Sθ,k (21)

where ∆t∗ is the time step size and

Sr,k = −Dn
r,k + 2Rek

[
−

u∗nr,k

∆t∗
+

3An
r,k − An−1

r,k

2
+

∂p∗nk
∂r∗

]
(22)

Dr,k = ∇∗2u∗r,k −
2u∗r,k

r∗2
− 2

r∗2 sin θ

∂ sin θu∗θ,k

∂θ
(23)

Ar,k = u∗k · ∇∗u∗r,k −
u∗2θ,k

r∗
(24)

Sθ,k = −Dn
θ,k + 2Rek

[
−

u∗nθ,k

∆t∗
+

3An
θ,k − An−1

θ,k

2
+

1
r∗

∂p∗nk
∂θ

]
(25)

Dθ,k = ∇2u∗θ,k +
2

r∗2
∂u∗r,k

∂θ
−

u∗θ,k

r∗2 sin2 θ
(26)

Aθ,k = u∗k · ∇∗u∗θ,k +
u∗r,ku∗θ,k

r∗
(27)

The superscript n denotes the time step, A and D are the advection and diffusion terms,
respectively, and S is the source term in the Crank–Nicolson solver. Equations (20) and (21)
are solved for um, where the superscript m is the step number for the iteration of the
Crank–Nicolson solver. Since the former and latter include the terms of uθ and ur, respec-
tively, in the diffusion term, these terms are treated as source terms in each iteration. The
converged solutions of the velocity components are denoted as u†.

The pressure contribution is then subtracted from u† to obtain the intermediate velocity
u‡, i.e.,

u‡
r,k = u†

r,k + ∆t∗
∂p∗nk
∂r∗

(28)

u‡
θ,k = u†

θ,k +
∆t∗

r∗
∂p∗nk
∂θ

(29)

The pressure at n + 1 is obtained by solving the following Poisson equation:

∇∗2 p∗n+1
k =

Θk
∆t∗

(30)

where

Θk =
1

r∗2
∂

∂r∗

r∗2
∂u‡

r,k

∂r∗

+
1

r∗ sin θ

∂(sin θu‡
θ,k)

∂θ
(31)

The velocity components are then updated as
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u∗n+1
r,k = u‡

r,k − ∆t∗
∂p∗n+1

k
∂r∗

(32)

u∗n+1
θ,k = u‡

θ,k −
∆t∗

r∗
∂p∗n+1

k
∂θ

(33)

The staggered variable arrangement is used, i.e., the velocity components are located
at the faces of computational cells, whereas the scalar variables are located at the cell centers.
The advection terms are discretized using the ENO (essentially non-oscillatory) scheme [29].
The second-order centered difference scheme is used for the diffusion terms.

2.2.2. Interface Velocity and Numerical Treatment at Pole

The uθ,int is updated at each time step after obtaining un+1
k . The momentum jump

condition in the tangential direction is given by

r∗
∂

∂r∗

(u∗θ,C

r∗

)
= κr∗

∂

∂r∗

(u∗θ,D

r∗

)
− Ma

r∗
∂σ∗

∂θ
(34)

where κ is the viscosity ratio defined by κ = µD/µC. Applying the continuity of the velocity
at the interface and the second-order one-sided finite difference to the velocity gradients
for the configuration in Figure 2 yields

u∗θ,int =
∑k=C,D

cka∗
∆r∗nk −∆r∗wk

(
∆r∗wk
∆r∗nk

f 1
k −

∆r∗nk
∆r∗wk

f 2
k

)
−Ma

(
1
a∗

∂σ∗
∂θ

)
∑k=C,D

ck
∆r∗nk −∆r∗wk

(
∆r∗wk
∆r∗nk
− ∆r∗nk

∆r∗wk

) (35)

where f = u∗θ /r∗, cC = 1, cD = κ, and the superscripts for f denote the cell indices. The
surface tension gradient is evaluated using the second-order centered difference scheme.

u2
θ,D

u1
θ,D

uθ,int

u1
θ,C

u2
θ,C

Interface

r

Δrw
C

Δrn
CΔrn

DΔrw
D

Figure 2. Interface velocity.

Discretization of some derivatives in the governing equations needs a special treatment
at the pole (r = 0). In the evaluation of the divergence of u and the Laplacian of the velocity
components and the pressure, no special treatments are required since the terms rφ and
r∂φ/∂r vanish at the pole, where φ = ur, uθ or p. On the other hand, for instance, the finite
difference approximation of the advection term ur∂uθ/∂r requires uθ at r = 0. A numerical
treatment similar to that in Mohseni and Colonius [30] and Sugioka and Komori [31] is
used in this study to set uθ at r = 0, i.e., uθ(0, θ) = (uθ(∆r/2, θ) + uθ(∆r/2, θ + π))/2
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(Figure 3). Although 0 ≤ θ ≤ π, uθ(∆r/2, θ + π) can be set to the value of uθ(∆r/2, θ − π)
because of the axial symmetry.

x

z

θ

uθ(Δr/2,θ)

uθ(Δr/2,θ + π) uθ(Δr/2,π − θ)

r = 0

Figure 3. Numerical treatment at pole.

2.2.3. Surfactant Transport Equations

The transport equation of Γ∗ is solved using the second-order Runge–Kutta scheme:

Γ∗(1) = Γ∗n +
∆t∗

2

[
−∇∗S · u∗n+1

S Γ∗n +
∇∗2S Γ∗n

PeS
+ Ṡ∗Γ(Γ

∗n)

]
(36)

Γ∗n+1 = Γ∗n + ∆t∗
[
−∇∗S · u∗n+1

S Γ∗(1) +
∇∗2S Γ∗(1)

PeS
+ Ṡ∗Γ(Γ

∗(1))

]
(37)

The Runge–Kutta scheme is also used for the transport equation of C∗ as follows:

C∗(1) = C∗n +
∆t∗

2

[
−∇∗ · u∗n+1

D C∗n +
∇∗2C∗n

PeD

]
(38)

C∗n+1 = C∗n + ∆t∗
[
−∇∗ · u∗n+1

D C∗(1) +
∇∗2C∗(1)

PeD

]
(39)

The advection and diffusion terms are discretized with the second-order ENO and
second-order centered difference schemes, respectively.

The bulk concentration, C∗S, at the interface is evaluated by applying the second-order
one-sided finite difference to ∂C∗/∂r∗,

C∗S =
PeDKṠ∗Γ +

1
∆r∗nD −∆r∗wD

(
∆r∗wD
∆r∗nD

C∗1 − ∆r∗nD
∆r∗wD

C∗2
)

1
∆r∗nD −∆r∗wD

(
∆r∗wD
∆r∗nD
− ∆r∗nD

∆r∗wD

) (40)

and is used to evaluate Ṡ∗Γ. The Ṡ∗Γ is then used to set the boundary condition, Equation (18).
The u∗θ,int is updated for ∇∗Sσ∗(Γ∗n+1).

2.2.4. Solution Procedure

The solution procedure of the numerical method is summarized in the following:
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1. Set the dimensionless groups (ρD/ρC, κ, ReC, La, PeD, PeS, Ma, α, K and σ∗0 ); generate
computational grids inside and outside the drop; and set the initial conditions for
each field variable.

2. Evaluate the Marangoni stress, ∇∗Sσ∗(Γ∗n), and set the interface velocity, u∗nθ,int, using
the boundary condition (Equation (35)).

3. Solve Equations (20) and (21) to obtain u†.
4. Compute the intermediate velocity, u‡ using Equations (28) and (29).
5. Solve the Poisson equation, Equation (30), to obtain p∗n+1.
6. Update the velocity to u∗n+1 using Equations (32) and (33).
7. Update the interface velocity, u∗n+1

θ,int , for u∗n+1.
8. Compute the surfactant concentration, C∗nS , at the interface using Equation (40)

with C∗n.
9. Solve Equations (36) and (37) to obtain Γ∗n+1, where the adsorption–desorption flux,

Ṡ∗Γ, is evaluated using Equation (17).
10. Set the boundary condition of C∗ at the interface, Equation (18), with Ṡ∗Γ.
11. Solve Equations (38) and (39) to obtain C∗n+1.
12. Return to Step 2.

3. Validation of Numerical Method
3.1. Clean Drop and Solid Sphere

The numerical method is validated for simple problems with well-accepted correla-
tions, i.e., uniform flows about solid spheres and clean spherical drops. Figure 4 shows the
computational domain and the grid system. The dimensionless particle diameter is unity,
and the domain size is 40 in the radial direction. The outer boundary of the domain is split
into either inflow or outflow. The zero-gradient condition is used for the velocity at the
outflow boundary and the outlet pressure is set to zero. The numbers of the computational
cells in the r and θ directions are 25 and 120, respectively. The cell size is uniform in the θ
direction, whereas in the r direction the cell size decreases (increases) toward the drop inter-
face (the outer boundary of the domain) as r increases. For clean drops, it is not necessary
to use the very thin computational cells in the vicinity of the drop interface for capturing
the velocity boundary layer at low and moderate Reynolds numbers. On the other hand, in
the contaminated drop cases discussed in Section 4, the thin cells are required to capture
concentration boundary layers of C∗ forming at the interface. Cuenot et al. [10] estimated
the dimensionless thickness of the concentration boundary layer as δ ∼

√
π/(4PeC) [9]

and generated computational grids so as to have at least three computational cells within
the boundary layer. The present grid is prepared to meet the same requirement. This
grid will also be used in the contaminated drop simulations. The mesh dependence of the
predictions was confirmed to be small enough at the present spatial resolution.

Figure 5 shows predicted u∗θ,int of clean drops at several drop Reynolds numbers, ReC,
the range of which (0.1 ≤ ReC ≤ 20) covers ReC in the experiment of the contaminated
drops [22], i.e., 0.5 ≤ ReC ≤ 0.73. The viscosity ratio in the simulations is κ = 0.021. The
predicted u∗θ,int at ReC = 0.1 agrees well with the Hadamard–Rybczynski (HR) solution,
u∗θ,int = sin θ/(2(1 + κ)). The slight difference between the prediction and the analytical
solution for the Stokes flow is attributed to the presence of a weak inertial effect even at
the small Reynolds number. The increase in ReC up to ReC = 1 makes the inertial effect
obvious, i.e., uθ,int for θ < 3π/4 is larger than the HR solution. The deviation from the
Stokes flow is increased by further increase in ReC.

Figure 6 shows predicted CD of clean spherical drops. The open circles are for κ = 0.021
and they are compared with the HR drag (the black dashed line)

CD =
8

ReC

(
2 + 3κ

1 + κ

)
(41)

and the empirical correlation proposed by Myint et al. [32] (the black solid line)
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CD =
8

ReC

(
2 + 3κ

1 + κ

)(
1 + 0.15Re0.687

C

)
(42)

d

a

(b)

Inflow

Outflow

40d

CL
(a) (c)

Figure 4. Computational grid. (a) whole domain, (b) drop, (c) continuous phase around drop.

0 π/4 π/2 3π/4 π

θ [rad]

0.0

0.2

0.4

0.6

0.8

1.0

u
∗ θ,i
n
t

ReC = 0.1

1

5

10

20

HR

Figure 5. Interface velocities of clean drops at several Reynolds numbers. HR: Hadamard-Rybczynski
solution.
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Figure 6. Drag coefficients, CD, of clean drops and solid spheres. HR: Hadamard–Rybczynski [7,8]
(Equation (41)), WM: Win Myint [32] (Equation (42)).

The CD at ReC = 0.1 agrees with both drag correlations. The predictions become
larger than the HR drag as ReC increases due to the inertial effect. The trend of the drag
curve of Equation (42) agrees with that of the data, the values of which are however
smaller than those of the correlation since the correlation accounts for the increase in
drag by shape deformation. The green and blue symbols in the figure are predictions
for κ = 1 and 5, respectively. The simulations reproduce well the increase in CD by
the factor of (2 + 3κ)/(1 + κ). Simulations of flows about spherical particles are also
carried out as the limiting case of κ → ∞ by directly applying the no-slip boundary
condition to the particle surface. The predicted drag coefficients are shown in the figure
by the red symbols and compared with the following empirical correlation proposed
by Schiller and Naumann [33]:

CD =
24

ReC

(
1 + 0.15Re0.687

C

)
(43)

The data agree well with the correlation. Thus, the present numerical method gives
good predictions of the motion of drops for wide ranges of ReC and κ.

3.2. Contaminated Bubbles

Cuenot et al. [10] carried out numerical simulations of contaminated spherical bubbles
in stagnant liquid at ReC = 100, PeC = 1× 105 and K = 1. They changed Ma, α and La to
deal with different situations, i.e., the stagnant-cap regime and the fully covered regime.
Case 1 (Ma = 61, α = 0.001, La = 0.112), Case 3 (Ma = 61, α = 0.001, La = 0.0112) and
Case 4 (Ma = 610, α = 0.001, La = 0.112) in their study are simulated with the present
numerical method. The flows inside bubbles are not solved; instead, the tangential viscous
stress in the gas phase is set to zero in Equation (6). Figure 7 shows predicted u∗θ,int and Γ∗,
which are compared with the predictions by Cuenot et al. [10]. The u∗θ,int increases with
increasing θ, whereas it steeply decreases to zero at θ ∼ π/4 and 5π/8 in Cases 1 and 3,
respectively. On the other hand, the gradients of Γ∗ are large at these θ. The steep decrease
in u∗θ,int is due to the Marangoni stress caused by the gradient of Γ∗. In comparison with
Case 3, Γ∗ in the contaminated region is larger in Case 1 and the attenuation of u∗θ,int is
more significant because of the larger La. In Case 4, u∗θ,int is almost zero, in other words the
interface is immobile, due to the large Ma, and Γ∗ ≈ 0.09 even at the bubble nose. Thus,
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being similar to the predictions of Cuenot et al. [10], the effects of La and Ma on u∗θ,int and
Γ∗ are clearly observed.
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Figure 7. Interface velocities, u∗θ,int, and interfacial surfactant concentrations, Γ∗ of contaminated
bubbles. Steady-state solutions for Cases 1, 3 and 4 in Cuenot et al. [10].

4. Simulations of Contaminated Drops

The main difference in the simulations of contaminated drops carried out in this section
is the value of La, which ranges from 0 to 102, leading to varying surface concentrations.
The fluid properties of a drop and a bulk liquid are the same as those in the experiment [22],
i.e., those for a glycerol–water solution of 54 wt.% and a silicone oil. They are summarized
in Table 1. The drop diameter is 8.3 mm. Under this condition, ReC is less than unity.
Triton X-100 is used for surfactant. The adsorption–desorption properties and the diffusion
coefficients of Triton X-100 are shown in Table 2 (see Appendix B for evaluation methods).
The C0 in a drop is initially set either to 0 (clean liquid), 0.0020, 0.0050, 0.010 or 0.10 mol/m3.
These conditions are referred to as Cases 1, 2, 3, 4 and 5, respectively. The concentrations
are less than the critical micellar concentration (0.28 mol/m3). The measurements were
carried out at 250 mm below the nozzle tip. The dimensionless time when drops reached
the measurement region was 30. The relevant dimensionless groups in each case are
summarized in Table 3. These values of the dimensionless groups are used as the input
parameters of the numerical simulations. See Hosokawa et al. [22] for further details of the
experimental conditions.
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Table 1. Fluid properties of glycerol–water solution of 54 wt.% and silicone oil at 298 K [22].

Phase Dispersed Continuous

ρ [kg/m3] 1132 967
µ [Pa·s] 0.00613 0.299

σ0 [N/m] 0.0343

Table 2. Properties of Triton X-100 [22].

ka [m3/mol·s] kd [1/s] Γmax [mol/m2] DD [m2/s] DS [m2/s]

9.4 0.0096 1.69 × 10−6 2 × 10−10 2 × 10−10

Table 3. Dimensionless groups.

Case 1 2 3 4 5
C0 [mol/m3] 0 0.0020 0.0050 0.010 0.10

ρD/ρC 1.17 1.17 1.17 1.17 1.17
κ 0.021 0.021 0.021 0.021 0.021

ReD 42 39 34 30 29
ReC 0.73 0.68 0.59 0.52 0.50
La 0 2.0 4.9 9.8 98

PeD × 10−6 - 1.1 0.91 0.80 0.77
PeS × 10−6 - 1.1 0.91 0.80 0.77

Ma - 0.55 0.64 0.72 0.75
α - 0.0062 0.018 0.040 0.42
K - 0.10 0.041 0.020 0.0020
σ∗0 8.2 8.2 8.2 8.2 8.2

Figure 8a shows flow fields in Case 1 (C0 = 0 mol/m3). The left half is the flow field
visualized by integrating the grayscale values in high-speed video images while tracking
the drop; the flow structure is therefore observed from the frame of reference moving with
the drop. The liquid in the outside of the drop flows from the nose (θ = 0) side to the
rear (θ = π) side and no separation of the flow takes place. Inside the drop, an internal
circulation is formed. Hence the interface is mobile. The right half of the figure shows the
predicted velocity vectors inside and outside the drop. The number of the velocity vectors
are reduced for visualization purposes. The flow characteristics inside and outside the drop
agree with the measurement.

Figure 9 shows Γ∗ at t∗ = 10, 20 and 30. In Case 2 (C0 = 0.0020 mol/m3), Γ∗ increases
in the rear region of the drop as t∗ increases. The contaminated area also increases, but is not
so large even at t∗ = 30. In Case 3 (C0 = 0.0050 mol/m3) and 4 (C0 = 0.010 mol/m3), the
trend of the temporal change in Γ∗ is similar to that in Case 1, whereas the contaminated area
becomes much wider as C0 increases. The Γ∗ in Case 5 (C0 = 0.10 mol/m3) is much larger
than the other cases, and the whole interface is contaminated. The presence of surfactant
reduces the region of the internal circulation both in the experiment and simulation of
Case 3 as shown in Figure 8b (the flow field of Case 2, whose flow characteristics are
in-between those of Cases 1 and 3, was omitted for saving the space). The magnitude of
the drop velocity in the vicinity of the drop rear is very small. The increase in C0 from
0.0050 mol/m3 to 0.010 mol/m3 (Case 4) makes the circulation region smaller (Figure 8c).
The interface velocity in the rear half, θ > π/2, is close to zero, so that the formation of
velocity boundary layer along the interface can be clearly observed in the continuous phase.
In Case 5 (Figure 8d), no internal circulation is formed inside the drop. In the continuous
phase, the grayscale values near the interface in the measurement are very low (almost
black), which implies that the velocities there are very small. The prediction agrees with the
measurement; the interface velocity is almost zero at the whole interface; in other words,
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the interface is fully contaminated and immobile, so that the velocity field outside the drop
seems to be similar to that about a solid sphere.

Nose

Rear(a) (b)

(c) (d)

30

Figure 8. Comparisons of flow fields between predictions and experimental data [22]. (a) Case 1
(clean), (b) Case 3, (c) Case 4, (d) Case 5. Right: predicted; Left: measured (Reprinted from In-
ternational Journal of Multiphase Flow 97, S. Hosokawa, Y. Masukura, K. Hayashi, A. Tomiyama,
Experimental evaluation of Marangoni stress and surfactant concentration at interface of contami-
nated single spherical drop using spatiotemporal filter velocimetry, 157–167, Copyright (2017), with
permission from Elsevier).

t*
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(a) (b) (c) (d)

0.500
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0.250

0.125

0.000Γ*
0

1

Figure 9. Time evolutions of Γ∗. (a) Case 2; (b) Case 3; (c) Case 4; (d) Case 5.
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Figure 10a shows the distribution of C∗ in Case 2. The t∗ increases from the left to the
right. The rightmost figures are magnified views of the regions labeled by (i) and (ii). The
C∗ near the interface in the rear region decreases at t∗ = 5. The low C∗ region develops
toward the centerline of the drop as t∗ increases due to the advection. However C∗ near
the rear does not decrease so much. Because of the low diffusion coefficient, the pattern
of the low C∗ region is determined by the advection and does not smear out. Figure 11
shows the time evolution of C∗S in Case 2. The surfactant flux from the bulk to the interface
decreases C∗ in the vicinity of the interface and the weak diffusion cannot compensate
for the reduction in C∗ by adsorption. The C∗S at t∗ = 5 is therefore smaller than the
initial value, C∗S = 1. The θ for the minimum C∗S corresponds to that for steep velocity
decrease; in other words, the stagnant-cap angle, θcap. For θ < θcap, Γ∗ is very small, so
that the adsorption is dominant in the surfactant flux. The increase in C∗S with increasing
θ for θ > θcap implies that the desorption increases C∗S in the stagnant-cap region. In the
stagnant-cap region, Γ∗ approaches a value for the local adsorption–desorption equilibrium,
Γ∗ ∼ 1/(1 + (C∗S)

−1). The u∗θ,int is very small in that region, but is still non-zero. The weak
interface compression effect (Γ∇S · uS) appears and slightly increases Γ∗. However, some
excess amount of surfactant is desorbed from the interface to the bulk. Thus, C∗S has an
increasing trend in the high θ region. At larger t∗, C∗S decreases moderately for θ < θcap,
whereas for θ > θcap C∗S increases and becomes larger than unity.

5t* = 10 20 30

(a)

(b)

(c)

2515

0.500

0.375

0.250

0.125

0.000
C*

0.2

1.8

0.500

0.375

0.250

0.125

0.0000.2

1.3

0.500

0.375
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1.1
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L LLLLL

L LLLLL

L LLLLL
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(v)

(i)
(ii)

(iii)

(iv)

(v)

30

1.0

1.0

1.0

Figure 10. Time evolutions of C∗. (a) Case 2; (b) Case 4; (c) Case 5. The time t∗ increases from left to
right, whereas the rightmost figures are magnified views of the distribution at t∗ = 30.

Figure 10b shows the time evolution of C∗ in Case 4. As shown in the magnified
view of C∗ near the interface (iii), a low C∗ region is formed around the drop equator. The
interface area is more than half covered with surfactant at this moment (Figure 9c). The
formation of the low C∗ region is therefore the result of surfactant adsorption from the bulk
to the interface. The thickness of the concentration boundary layer is, as expected, very thin
because of the high PeD. In Case 5, the whole interface is covered by surfactant as shown in
Figure 9d, which results in the formation of the thin concentration boundary layer of low
C∗ in the nose region (Figure 10c(v)). As it is similar to Case 2, the interface compression
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effect increases Γ∗ in the rear half of the drop and the desorption becomes dominant near
the rear, resulting in the formation of boundary layer of C∗ larger than unity in the rear
region (the magnified view (iv)).
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Figure 11. Surfactant concentration, C∗S, at interface in Case 2.

Figure 12 shows the pressure distribution in Case 3, in which p∗D and p∗C are subtracted
by the pressure, p∗0 , at the drop center and the far field pressure, p∗∞ = 0, respectively. The
θcap represents the cap angle evaluated from the velocity distribution and θcap ∼ 0.6π rad.
In the pressure distribution, high-pressure spots are formed in the vicinity of the interface
at θ slightly smaller than θcap. Comparing p∗ with the velocity field clearly shows that
these high-pressure spots prevent the fluid motion along the interface, which results in the
formation of the stagnant-cap region in the rear half of the drop and the attenuation of the
tangential velocity in the continuous phase.
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Figure 12. Pressure distributions inside and outside drop in Case 3 (right). The velocity field is also
shown for comparing the high-pressure location with the cap angle, θcap ∼ 0.6π rad (left).
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Figure 13a shows the interface velocity, u∗θ,int, at t∗ = 30. The lines and symbols are the
predictions and the measured data [22], respectively. The predicted velocity of the clean
drop (Case 1) agrees fairly with the data, except for the rear region. The lower values at
large θ in the data are due to slight contamination in the rear region, the cause of which
would be contamination brought into the drop by seeding particles. The retardation effect
of surfactant in u∗θ,int is clearly seen in both data and predictions of Cases 2–5. In Case 2,
the predicted velocity profile agrees with the data. The u∗θ,int decreases from θ ∼ π/2 as
θ increases and becomes very small for θ > 3π/4, i.e., θcap ∼ 3π/4. The increase in C0
decreases θcap, i.e., θcap are 0.6π and 0.45π rad in Case 3 and 4, respectively. Although the
predicted velocities are somewhat larger than the data, the dependence of u∗θ,int on C0 is
reproduced. In Case 5, u∗θ,int ∼ 0 at any θ as already seen in Figure 8.

The distributions of Γ∗ are shown in Figure 13b. The predicted Γ∗ of Case 2 is almost
zero for θ < θcap, whereas it steeply increases and reaches a large value for θ > θcap,
which is larger than La/(1 + La) = 0.67 for the absorption-desorption equilibrium for C0
since C∗S in this region is larger than unity (Figure 11). The measured Γ∗ shows a similar
profile, while the following differences are present: the measured Γ∗ is smoother around
θ = θcap than predicted and approaches 0.67. The increase in C0 (Cases 3 and 4) increases
Γ∗, whereas the drop nose is still almost clean. On the other hand, Γ∗ takes a large value
even at the nose in Case 5 since the adsorption is much more dominant than the desorption
as represented by the large La.

As shown in Figure 13c, peaks appear in the predicted Marangoni stresses in
Cases 2, 3 and 4. However, in Case 5, there are no peaks. This is due to the smaller Γ∗

gradient. Despite a smaller Γ∗ gradient, the Marangoni stress immobilizes the interface
almost completely since the Marangoni stress acts on the whole interface. In this situation,
the Marangoni stress agrees very well with the viscous stress acting on the solid sphere
given by the Stokes solution (the black dotted line in the figure), i.e., ∂u∗θ /∂r∗

∣∣
r∗=a∗ = 3 sin θ.

The smaller peaks in the data are attributed to a smoother distribution of Γ∗.
The peaked distribution of the Marangoni stress also causes similar peaks in the

pressure distribution as shown in Figure 13d. The locations of the strong Marangoni stress
correspond to those of the steep velocity reduction (the cap angles). The peaks of the
pressure however locate at slightly smaller θ. This trend was already observed in Figure 12.
The pressure distribution in Case 5 is smooth as in the clean drop case and agrees well with
the Stokes solution given by p∗C = 3 cos θ/(2ReC).

In the distributions of C∗S shown in Figure 13d, θ for the minimum C∗S in Cases 2–4
roughly correspond to θcap. The C∗S in these cases exhibit the increasing trend in the
stagnant-cap region. On the other hand, on the completely immobilized interface in Case 5,
the profile of C∗S monotonically increases with increasing θ.

The measured Γ∗ is much smoother than predicted, which suggests that in reality PeS
is much lower than that used in the simulation or that there is some other transport process
much more effective for interface transport. A brief discussion on this point is given in
Appendix C.
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Figure 13. Predictions of (a) u∗θ,int, (b) Γ∗, (c) −Ma∂σ∗/∂(a∗θ), (d) p∗C and (e) C∗S at interface. The
symbols and lines are measured [22] and predicted values, respectively. The black dotted line in
∂σ∗/∂(a∗θ) represents the dimensionless velocity gradient, ∂u∗θ /∂r∗

∣∣
r∗=a∗ = 3 sin θ, given by the

Stokes solution for solid sphere. The black dotted line in p∗C is also the Stokes solution given by
p∗C = 3 cos θ/(2ReC).
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5. Conclusions

The motion of contaminated spherical drops falling through a stagnant liquid were
numerically simulated using the finite difference method to investigate the effects of surfac-
tant on the flow inside and outside the drops. The numerical method was first validated
through simulations of spherical particles, clean drops and contaminated bubbles. The
predicted drag coefficients of the spherical particles and clean drops agreed well with avail-
able drag correlations. The interface velocity and the interfacial surfactant concentration of
contaminated bubbles also agreed with those predicted in the literature [10]. The numerical
simulations of contaminated drops were then carried out. The numerical conditions were
the same as those in the experiment carried out in Hosokawa et al. [22], i.e., the fluid
properties for the drop and the bulk liquid were for a glycerol–water solution and a silicone
oil, respectively, and the surfactant was Triton X-100. The drop Reynolds numbers were
less than unity and the drop shape kept spherical. The surfactant concentration, C0, was
varied below the critical micellar concentration; C0 = 0.0020, 0.0050, 0.010 and 0.10 mol/m3

in Cases 1, 2, 3, 4 and 5, respectively. The characteristics of the field variables can be
summarized as follows:

• The predicted interfacial surfactant concentration, Γ, is almost zero for the angle, θ,
smaller than a certain value (θcap), whereas it steeply increases and reaches a large
value for θ > θcap. The interface velocity, uθ,int, decreases as θ increases and becomes
very small for θ > θcap. The increase in C0 increases Γ and decreases θcap. The presence
of surfactant attenuates the internal circulation and the increase in C0 makes the
circulation region smaller.

• The surfactant flux from the bulk to the interface decreases C in the vicinity of the
interface and the weak diffusion cannot compensate for the reduction in C by adsorp-
tion. The bulk concentration, CS, at the interface therefore tends to be smaller than C0
for θ < θcap. The pattern of the low C region is determined by the advection and does
not smear out because of a small diffusive flux.

• Peaks appear in the predicted Marangoni stresses in Cases 2–4, while in Case 5 no
peaks develop due to a smaller Γ gradient. The peaked distribution of the Marangoni
stress also causes similar peaks in the pressure distribution. The locations of the
strong Marangoni stress correspond to θcap, whereas the peaks of the pressure appear
at slightly smaller θ. The high-pressure spots prevent the fluid motion along the
interface, which results in the formation of the stagnant-cap region in the rear half of
the drop and the attenuation of the tangential velocity in the continuous phase.
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Appendix A. Differential Operators

The differential operators used in the governing equations are defined by

u · ∇( ) = ur
∂( )

∂r
+

uθ

r
∂( )

∂θ
(A1)
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∇2( ) =
1
r2

∂

∂r

(
r2 ∂( )

∂r

)
+

1
r sin θ

∂

∂θ

(
1
r

∂( )

∂θ
sin θ

)
(A2)

Appendix B. Surfactant Property

The isotherm is given in terms of C0:

σ = σ0 − RGTΓmax ln
(

1 +
C0

χ

)
(A3)

where χ = kd/ka At large C0, this equation can be approximated as

σ ≈ σ0 − RGTΓmax ln
(

C0

χ

)
(A4)

The Γmax is therefore calculated by fitting the expression

Γmax = − 1
RGT

∂σ

∂ ln C0

∣∣∣∣
T

(A5)

to data of σ(C0), which can be measured using a sessile drop method (Figure A1).
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Figure A1. Surface tension [22]. Solid line: Equation (A3) and σ(CMC).

Substituting Γmax and the interfacial surfactant concentration

Γeq =
C0Γmax

χ + C0
(A6)

in the adsorption–desorption equilibrium state into Equation (11) yields

σ(C0) = σ0 + RGTΓmax ln
(

χ

χ + C0

)
(A7)

Fitting this functional form to the σ data determines χ.



Fluids 2022, 7, 55 20 of 23

By eliminating the advection and diffusion terms in Equation (8) for a static interface
with a uniform Γ distribution, Equation (8) can be immediately integrated, i.e.

Γ(t) =
C0Γmax

χ + C0

[
1− e−(χ+C0)kat

]
(A8)

where t is the time measured from the instant at which a drop intrudes into the bulk liquid.
Substituting thus obtained Γ(t) into Equation (A3) yields

σ(t) = σ0 + RGTΓmax ln

(
χ + C0e−(χ+C0)kat

χ + C0

)
(A9)

where only ka is the unknown constant. The least-square fitting to the data of σ(t) gives ka.
The change of σ in time at a stationary interface is given by [34]

σ(t) = σ(Γeq) +
RGTΓ2

eq

2C0

√
π

DDt
(A10)

The DD can therefore be calculated by applying the sessile drop method. Since there
is no knowledge of DS of Triton X-100 at the interface between the glycerol–water solution
and silicone oil, it is assumed that DS = DD [2,10].

Appendix C. Contaminated Drops of Lower Peclet Numbers

The measured Γ∗ is much smoother than predicted as shown in Figure 13, which
leads to a speculation that in reality the diffusion of surfactant is much larger; in other
words, the Peclet number is much lower than that in the simulation. As described in
Appendix B, DD was evaluated from the data of σ obtained by the sessile drop method
(Equation (A10)). By considering the measurement uncertainties in DD we increased the
value of DD in the simulation by three times. The PeD for the increased DD is given in
Table A1. The simulations of the contaminated drops were carried out with these PeD
and the assumption of PeS = PeD. The predicted Γ∗ profiles were still much sharper than
those in the measurement although the reduction in the Peclet numbers slightly affected
the results. By further decreasing PeS down to the order of O(10) (Table A1), we obtained
better agreements between the predictions and the data as shown in Figure A2. The peaks
in the pressure and the Marangoni stress observed in Figure 13 are mitigated.

The simulation thus implies the possibility of lower Pe in reality. However, according
to values of DD and DS measured for different contaminated systems [35,36], the assump-
tion, DD = DS, is considered to be acceptable, and PeS of O(10) seems too small. Further
studies are required to make clearer the cause of the deviation from the measurement.

Table A1. Reduced Peclet numbers.

Case 2 3 4 5
C0 [mol/m3] 0.0020 0.0050 0.010 0.10

PeD × 10−5 3.5 3.0 2.7 2.6
PeS × 10−1 7.0 6.1 5.4 5.2
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Figure A2. (a) u∗θ,int, (b) Γ∗, (c) −Ma∂σ∗/∂(a∗θ), (d) p∗C and (e) C∗S predicted at lower Peclet numbers
(see Table A1). The legends are the same as those in Figure 13.
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