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Abstract: In this paper, we study the two-dimensional linear stability of a regularized Casson fluid
(i.e., a fluid whose constitutive equation is a regularization of the Casson obtained through the
introduction of a smoothing parameter) flowing down an incline. The stability analysis has been
performed theoretically by using the long-wave approximation method. The critical Reynolds number
at which the instability arises depends on the material parameters, on the tilt angle as well as on
the prescribed inlet discharge. In particular, the results show that the regularized Casson flow has
stability characteristics different from the regularized Bingham. Indeed, for the regularized Casson
flow an increase in the yield stress of the fluid induces a stabilizing effect, while for the Bingham case
an increase in the yield stress entails flow destabilization.

Keywords: regularized Casson fluid; regularized Bingham fluid; linear stability analysis; long-wave
approximation

1. Introduction

The rheological behaviour of materials such as suspensions, dispersion, and polymer
solutions, is distinctly different from that of Newtonian fluids. In particular, such materials
often exhibit flow properties characterized by a critical value of stress (i.e., yield stress,
usually denoted as τ∗0 ), below which the materials do not deform, and above which they
flow accordingly to their rheological properties. They are usually referred as viscoplastic
materials, which include, e.g., the Bingham [1], the Herschel–Bulkley [2], and the Casson
model [3].

The flow stability analysis of these models can have useful application in several
industrial processes (e.g., food and pharmaceutical industries) and environmental phenom-
ena (e.g., debris and lava flow). In general, flows are unstable when the corresponding
Reynolds is larger than a critical threshold usually referred to as critical Reynolds num-
ber and denoted as Rec. The pioneering works on stability of Newtonian flow down an
incline has been reported in [4,5]. In these papers the authors provide a proportionality
relation between the so-called critical Reynolds number, Rec, and the tilt angle θ and later
experimentally validated in [6]. Then, the interest to properly describe fluids with complex
rheological behaviour led to an increase in theoretical, numerical, and experimental studies,
see e.g., [7–32].

Recently, the onset of instability for viscoplastic fluids, flowing down an incline,
has been investigated in [10,16]. In particular, a stability analysis has been performed
numerically by using a spectral method in [16] and the long-wave approximation in [10],
through a regularization of the Bingham law. The Bingham law describes a material
characterized by the presence of a yield stress below which the continuum behaves like a
rigid body and above which it flows as a linear viscous fluid. In this paper, we theoretically
investigate the flow stability through the long-wave approximation technique following
the approach reported in [10] and in [28]. In particular, we focus on a fluid modelled as
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a regularized Casson, since it has the advantage of being easy to handle analytically. The
Casson constitutive law is widely used to model blood flow [33]. Recently, studies regarding
the peristaltic Casson flow (important to understand artery and vein physiology [34,35]),
has been developed in [36–41].

In the “ideal” Casson model the stress is undetermined at zero strain rate. The presence
of a yield stress has been widely discussed [42–46] and it is still an open debate. The use
of a regularized model allows to avoid the problems due to this singularity and so to
avoid several analytical and numerical issues [47,48]. Indeed, the singularity at zero strain
rate can be smoothed out and the exact model can be recovered through introduction
of a positive parameter, chosen quite arbitrarily, which accounts for the accuracy of the
approximation [10,16,49,50].

To the best of the authors’ knowledge, the analysis of the onset of instability of a
flow down an incline when the fluid is modelled as a regularized Casson material has not
been presented in the literature before, and this motivates our investigations. Actually, the
aim and novelty of this paper is two-fold. First, we study the stability properties of the
regularized Casson flow down an incline. Then, we compare the obtained results with
the one illustrated in [10] regarding the flow of a regularized Bingham. In particular, our
findings highlight that the regularized Bingham fluid and the regularized Casson fluid
have stability properties dramatically different. Indeed, although the two models belong
to the same “viscoplastic family”, they show an opposite stability behaviour as the yield
stress increases.

The paper is organized as follows: in Section 2 and 3 we formulate the mathematical
problem and the main characteristics of a regularized Casson flow down an incline, respec-
tively. In Section 4, following [10,16,51], we briefly recall linear stability analysis by using
the long-wave approximation method. Then, in Section 5 and 6, we report results and some
final remarks.

2. Mathematical Model

We proceed similarly to [10,16] briefly reporting the main theoretical background.
Throughout the paper the “*” represents a dimensional quantity. Let us consider a reference
framework x∗Oy∗ as the one depicted in Figure 1. We denote the tilt angle as θ ∈ (0, π/2)
and suppose that the flow domain of the flow is given by

D =
{
(x∗, y∗) ∈ R2|0 ≤ x∗ ≤ L∗, 0 ≤ y∗ ≤ h∗(x∗, t∗)

}
,

where L∗ is the length of the domain and y∗ = h∗(x∗, t∗) is the upper free surface (not a
priori known) and H∗ = max{h∗}.

Figure 1. Reference framework.

We denote by T∗ the Cauchy stress tensor and set

T∗ = −p∗I + τ∗, (1)

where τ∗ is the deviatoric part.
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The governing equations for the two-dimensional incompressible flow, v∗ = u∗i + v∗j, are

ρ∗(u∗t∗ + u∗u∗x∗ + v∗u∗y∗) = −p∗x∗ + τ∗11,x∗ + τ∗12,y∗ + ρ∗g∗ sin θ,

ρ∗(v∗t∗ + u∗v∗x∗ + v∗v∗y∗) = −p∗y∗ + τ∗12,x∗ + τ∗22,y∗ − ρ∗g∗ cos θ,

u∗x∗ + v∗y∗ = 0,

(2)

where g∗ is gravity and ρ∗ is the constant material density and, to take the notation as light

as possible, we denote (·)t∗ =
∂(·)
∂t∗

, (·)x∗ =
∂(·)
∂x∗

, (·)y∗ =
∂(·)
∂y∗

. We consider the non-slip

and impermeability conditions u∗ = v∗ = 0 on y∗ = 0 and the kinematical–dynamical
conditions on h∗, namely 

h∗t∗ + u∗h∗x∗ = v∗, y∗ = h∗,

T∗n = 0, y∗ = h∗,

(3)

where n is the outer normal (see Figure 1).
Exploiting (2)3, we rewrite (3)1 as

h∗t∗ +
(∫ h∗

0
u∗dy∗

)
x∗

= 0. (4)

We introduce the characteristic quantities

τ∗c =
µ∗U∗

H∗
, p∗c =

µ∗U∗

H∗
, (5)

and the strain-rate γ̇∗ = 1/2
(
∇∗v∗ +∇∗v∗T

)
. Next, we consider the following dimen-

sionless variables
x =

x∗

H∗
, v =

v∗

U∗
, t =

U∗

H∗
t∗, (6)

h =
h∗

H∗
, p =

p∗

p∗c
, τ =

τ∗

τ∗c
, γ̇ =

H∗

U∗
γ̇∗, (7)

where U∗ denotes the reference velocity which will be selected to normalize the dimension-
less longitudinal velocity. Exploiting (5)–(7), the system (2) becomes

Re
(
ut + uux + vuy

)
= −px + τ11,x + τ12,y + ξ,

Re
(
vt + uvx + vvy

)
= −py + τ12,x + τ22,y − ξ cot θ,

ux + vy = 0,

(8)

where

ξ =
Re

Fr2
sin θ =

ρ∗g∗H∗2

µ∗U∗
sin θ, (9)

and

Re =
ρ∗U∗H∗

µ∗
, Fr2 =

U∗2

g∗H∗
, (10)

are the Reynolds number and Freude number, respectively.
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Finally, we recall that the flow is driven prescribing the inlet discharge which we
assume to be constant in time. So, denoting as Q∗ the flow rate per unit fluid layer width,
we have

Q∗ = U∗H∗
∫ 1

0
u(y)dy, (11)

provided that the layer is flat and its thickness is H∗ (which does not vary in time). From (9)
and (10) we have

H∗ =

(
ξµ∗2

ρ∗2g∗ sin θ
Re

)1/3

,

U∗ =
µ∗

ρ∗H∗
Re =

(
g∗µ∗ sin θ

ξρ∗

)1/3
Re2/3.

(12)

Therefore, the flow rate Q∗ can be rewritten in terms of Re and ξ for given physical (τ∗0 , µ∗,
ρ∗) and geometrical (θ) parameters. In the sequel, we shall see that Q∗ can be also expressed
only on terms of the Reynolds number through the normalization of the dimensionless
longitudinal velocity.

3. Regularized Casson

Similarly to [10,16,52], we introduce a dimensional regularization parameter ε∗ into
the dimensionless Casson model, setting

τ = r(|γ̇|)γ̇, r(|γ̇|) =
(
√

2 +

√
B√

|γ̇|+
√

ε

)2

, (13)

where |γ̇| =
√

tr(γ̇2)/2, B =
τ∗0 H∗

µ∗U∗
is the Bingham number, which represents the ratio

between the yield stress and the characteristic viscous stress, with τ∗0 the yield stress, and
ε = 2ε∗H∗/U∗, so that when ε∗ → 0 we formally retrieve the Casson constitutive law [38].

We recall that for a regularized Bingham fluid the function r, see [10,16], is given by

r(|γ̇|) = 2 +
B

|γ̇|+ ε
. (14)

The plot of r, by using (13) and (14), with respect to |γ̇| for selected values of B and ε is
shown in Figure 2. In particular, the function r(|γ̇|) gives the regularized relation between
the shear stress τ and shear strain rate γ̇.

By using (9) and (10) the Bingham number and the regularization parameter can be
rewritten in terms of Re, namely

B = X
ξ2/3

Re1/3 , (15)

with

X =
λ1

(sin θ)2/3 , λ1 =
τ∗0

(g∗µ∗)2/3ρ∗1/3 , (16)

and

ε =
λ2

(sin θ)2/3
ξ2/3

Re1/3 , (17)

with

λ2 =
ε∗µ∗1/3

ρ∗1/3g∗2/3 , (18)

respectively. The parameters λ1 and λ2 do not depend on the flow and on the tilt angle θ,
so that the parameter X is constant once the fluid and the tilt angle have been selected, i.e.,
it depends only on the “material” and geometrical properties.
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Figure 2. Plot of r(|γ̇|) given by (13) and (14) for B = 1.1 and ε = 0.1. Although the regularized Bingham
and the regularized Casson belong to the same viscoplastic family, they have different behaviour.

We look for a solution in the form v = u(y)i, h = 1, thus system (8) is reduced to
0 = −px + τ12,y + ξ,

0 = −py − ξ cot θ,

(19)

which leads to
p = ξ cot θ(1− y). (20)

Thus, we have τ12 = ξ(1− y), and, from (13)

uy

(
1 +

√
B

√uy +
√

ε

)2

= ξ(1− y),

which, by integrating with respect to y with u(0) = 0, leads to

u(y) = − ξ

4
y2 − N1(y)

12ξ
3
2

y− 1

12ξ
3
2
(N2(y) + N3(y) + N4(y)), (21)

where

N1(y) = M1(y)M2(y)− 6ξ
5
2 + 8a(y) B

1
2 ξ

3
2 − 6c,

N2(y) = −72εξ
1
2

(
2ε

1
2 B

1
2

3
+ B

)
log
(

ε
1
2 − B

1
2 + a(y) + M2(y)

)
,

N3(y) = M2(y)
{

a(y)
[
3ξ

3
2 + ξ

1
2

(
−3ε + 8ε

1
2 B

1
2 + B

)]
− b + ξ

1
2

[
B

3
2 + ε

1
2

(
3ε− 47ε

1
2 B

1
2 + 11B

)]}
,

N4(y) = −8a(y) ξ
3
2 B

1
2 + 8ξ2B

1
2 + M3 + M4,

M1(y) = −3a(y) ξ
3
2 + b,

M2(y) =
[
2a(y)

(
ε

1
2 − B

1
2

)
+ c + a2(y)

] 1
2 ,

M3 =
(

3ε
1
2 + 5B

1
2

)
ξ

3
2 − B

3
2 ξ

1
2 + ε

1
2 ξ

1
2

(
−3ε + 47ε

1
2 B

1
2 − 11B

)
−M5 ξ

(
−3ε + 8ε

1
2 B

1
2 + B+ 3ξ

)
,

M4 = 72εξ
1
2

(
−2ε

1
2 B

1
2

3
+ B

)
log
(

ε
1
2 − B

1
2 + ξ

1
2 + M5

)
,

M5 =

[
B+ 2B

1
2

(
ε

1
2 − ξ

1
2

)
+
(

ε
1
2 + ξ

1
2

)2
] 1

2
,

a(y) = ξ
1
2 (1− y)

1
2 , b = 3ξ

3
2

(
ε

1
2 +

5
3
B

1
2

)
, c =

(
ε

1
2 + B

1
2

)2
.

(22)
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Now, we normalize the velocity of the free surface so that u(1) = 1, obtaining the
implicit relation between Re and ξ, i.e.,

F (Re, ξ) = 1, (23)

where
F (Re, ξ) = − 4

ξ
3
2 Re

1
3
(D1(Re, ξ) log(D2(Re, ξ)) + (D3(Re, ξ)), (24)

and

D1(Re, ξ) = −X
1
2 ε

3
2 ξ

5
6 Re

1
6 +

3
2

X εξ
7
6 ,

D2(Re, ξ) = ε
1
2 + ξ

1
2 − X

1
2 ξ

1
3

Re
1
6

+ A(Re, ξ),

D3(Re, ξ) = D4(Re, ξ) + D5(B, ξ) + D6(Re, ξ),

D4(Re, ξ) =
A(Re, ξ)

16

[
1
3

X
1
2 ξ

1
3

Re
1
6

P1(Re, ξ) + P2(Re, ξ)

]
,

D5(Re, ξ) = P3(Re, ξ) log(2ε
1
2 )ε,

D6(Re, ξ) =
P5(Re, ξ)

16

(
X

1
2 ξ

1
3

Re
1
6

P4(Re, ξ) + ε
3
2 Re

1
3 ξ

1
2 +

11
3

ε
1
2 Xξ

7
6

)
+ P6(Re, ξ),

P1(Re, ξ) = −Xξ
7
6 + Re

1
3

[
5ξ

3
2 + ε

1
2

(
47ε

1
2 ξ

1
2 − 8ξ

)]
,

P2(Re, ξ) = −11
3

ε
1
2 Xξ

7
6 + ε

1
2 Re

1
3 ξ

3
2 − 1

3
Xξ

5
3 − Re

1
3

(
ε

3
2 ξ

1
2 − εξ + ξ2

)
,

P3(Re, ξ) = X
1
2 ε

1
2 ξ

5
6 Re

1
6 − 3

2
Xξ

7
6 ,

P4(Re, ξ) =
1
3

(
−47εξ

1
2 Re

1
3 + Xξ

7
6

)
,

P5(Re, ξ) = ε
1
2 +

X
1
2 ξ

1
3

Re
1
6

,

P6(Re, ξ) = −X
1
2 ξ

1
3 Re

1
6

4

(
ξ

3
2 ε

1
2 − 2

3
ξ2
)
− 1

8
εξ

3
2 Re

1
3 − 1

16
ξ

5
2 Re

1
3 − 1

8
Xξ

13
6 ,

A(Re, ξ) =

[
2

X
1
2 ξ

1
3

Re
1
6

(
ε

1
2 − ξ

1
2

)
+

Xξ
2
3

Re
1
3
+
(

ε
1
2 + ξ

1
2

)2
] 1

2

.

(25)

As expected, we obtain a one-to-one relation between Re and ξ and we denote by ξ̂
the unique solution to (23) such that u(1) = 1. The plot F (Re, ξ) is displayed in Figure 3.
Moreover, we recall that B is expressed in terms of Re through (15), where now ξ̂ is the
solution of (23). Relation (23) defines as F (Re, ξ) = 1 which, as expected, is a one-to-one
relation between Re and ξ. The plot of F (Re, ξ) is displayed in Figure 4, which highlights
that, for given λ1, λ2, and θ, there exists a unique (Re, ξ) fulfilling (23). Consequently,
recalling that Equation (23) derives from the normalization of u, for any Re we obtain a
unique value of ξ, which we denoted as ξ̂, such that u(1) = 1.
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Figure 3. Plot of F (Re, ξ) for λ1 = 0.1 and θ = 5◦ for the regularized Casson model (given by (23)).
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Figure 4. Plot of u(y) given by (21) (empty circles) and (26) (solid line) with λ1 = 0.1 and θ = 1◦ for
different values of ε. It is worth noting that the “exact” profile of u(y), given by (26), can be retrieved
from the regularized one, given by (21). In fact, the two profiles become very similar when ε < 10−2.

We remark that for ε→ 0 we retrieve the Casson flow whose normalized velocity field
is given by

u(y) =


− ξy2

2 + (ξσ + 2B)y +
4
√
B
[
−(ξσ+B)3/2+(ξσ−yξ+B)3/2

]
3 ξ , if 0 ≤ y ≤ σ,

1, if σ ≤ y ≤ 1,

(26)
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with

σ = 1−
τ∗0

ρ∗g∗H∗ sin θ
= 1− B

ξ
, (27)

is the flat yield surface [10,16]. The velocity field is normalized so that u(σ) = 1, i.e.,

− ξσ2

2
+ (ξσ + 2B)σ +

4
[
−
√
B(ξσ + B)3/2 + B2

]
3 ξ

= 1, (28)

that leads, using (15) and (27), to the following implicit relation between ξ and Re

F (Re, ξ) = 1, (29)

where

F (Re, ξ) = −X2

6
ξ

1
3 Re−

2
3 − 4

3

√
ξ

√
X ξ

2
3 Re−

1
3 + X ξ

2
3 Re−

1
3 +

ξ

2
. (30)

The regularized and the “exact” profiles of u(y) are given by (21) and (26), respectively.
They become very similar when ε < 10−2 as shown in Figure 4.

It is worth noting that in case B = 0, i.e., Newtonian flow, Equation (23), for ε → 0,
and Equation (29) simply reduce to F = ξ − 2 = 0, whose trivial solution is ξ̂ = 2.

The equations governing the regularized and exact Bingham flow have been reported
in [10]. In this paper, we have adopted the same notations as in [10], thus the comparison
between the two models can be performed easily.

4. Linear Stability Furthermore, Long-Wave Approximation

In this section, we briefly recall the main characteristic of the linear stability analysis as
reported in [10,16,51] and we refer the readers to [10,16] for more details on the derivation
of the formulas here summarized.

We consider the basic flow consisting of h(x, t) = hb, with hb = 1, vb = ub(y)i with
ub given by (21), and, p = pb(y) where, recalling (20), pb(y) = ξ̂ cot θ(1− y). Then, we
perturb the basic flow superimposing small disturbances, in the form of travelling waves,
so that

h = 1 + ĥ(y)eiα(x−ct), u = ub + û(y)eiα(x−ct),

v = v̂(y)eiα(x−ct), p = pb + p̂(y)eiα(x−ct),
(31)

and
γ = γb + γ̂, τ = τb + τ̂, (32)

where α ∈ R is the wave number, c ∈ C is the complex wave speed and the notation ˆ(·)
represents the infinitesimal disturbance. We write the velocity field in terms of the stream
function, i.e.,

ψ̂(x, y, t) = φ(y)eiα(x−ct),

as
û = ψ̂y = φ′(y)eiα(x−ct), v̂ = −ψ̂x = −iαφ(y)eiα(x−ct), (33)

where, here and in the sequel, (·)′ denotes the differentiation with regard to y. Defin-
ing by <(c) and =(c) the real and imaginary part of c, we recall that =(c) gives the
growth/attenuation factor of the αth mode. Hence, the basic flow hb, vb, pb(y) is unstable
when the parameters involved in the problem, namely Re, λ1, λ2 and θ, are selected so that
=(c) > 0. The transition between the two regimes is identified by the so-called marginal or
neutral curve, i.e., the set of Re, λ1, λ2 and θ at which =(c) = 0.
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Then, we consider disturbances of long wavelength 2π/α� 1, i.e., α� 1, expanding
φ and c in powers of α up to the first order in α, namely

φ(y) = φ0(y) + αφ1(y),

c = c0 + αc1,
(34)

where (φ0, c0) and (φ1, c1) solve

(s(y)φ0(y)′′)′′ = 0,

φ0(0) = φ′0(0) = 0,

φ′′0 (1)− φ0(1)
ξ̂

s(1)(c0 − 1)
= 0,

s(1)φ′′′0 (1) + φ0(1)
ξ̂s′(1)

s(1)(c0 − 1)
= 0,

(35)

and

(s(y)φ′′1 (y))
′′ = iRe

[
φ′′0 (y)(ub(y)− c0)− u′′b (y)φ0(y)

]
,

φ1(0) = φ′1(0) = 0,

φ1(1) = 0,

φ′′1 (1) + φ0(1)
ξ̂c1

s(1)(c0 − 1)2 = 0,

−is(1)φ′′′1 (1) + φ′0(1)Re(c0 − 1)− φ0(1)
ξ̂

s(1)

(
s(1)cotθ
c0 − 1

− i
c1s′(1)
(c0 − 1)2

)
= 0,

(36)

with

s(y) =
1
2

[
r
(

u′b
2

)
+

u′b
2

dr
dz

(
u′b
2

)]
,

and r given by (13). In particular, we have that =(c0) = 0, while <(c1) = 0, thus

φ(y)eiα(x−ct) = φ(y) eiα(x−c0t)︸ ︷︷ ︸
travelling wave

eα2=(c1)t︸ ︷︷ ︸
growth/attenuation

. (37)

In particular, we can find the critical value of Re, denoted as Rec, such that

=(c) = =(c1(Rec, λ1, λ2, θ)) = 0, (38)

by prescribing the material characteristics and the tilt angle (i.e., λ1, λ2, and θ). Hence, for
Re < Rec the αth mode is stable, while instability arises when Re > Rec, since =(c1) < 0
for Re < Rec and vice versa. Moreover, we eventually remark that the identification of Rec
means, from the practical point of view, the identification of a critical discharge, Q∗c , above
which the flow becomes unstable.



Fluids 2022, 7, 380 10 of 13

5. Results

The critical value of the Reynolds number, Rec, is computed by solving the system
given by the system of algebraic Equations (23) and (38) with MATLAB® 2022a, using the
function FSOLVE.

Figure 5 shows the variation of Rec with respect to the tilt angle θ for different value
of the material parameter λ1, when ε = 0.01 by considering the regularized Bingham and
Casson model. Similar to [10], at a given θ, Rec decreases for increasing values of λ1 and
coincides with 5/4 cot θ, when λ1 = 0, i.e., B = 0. However, recalling the proportionality
relation (16) between λ1 and τ∗0 , we have that (see Figure 5A) the yield stress destabilizes
the flow when this is modelled using a regularized Bingham flow, while (see Figure 5B)
the regularized Casson flow is more stable than the Newtonian flow (i.e., the yield stress
has a stabilizing effect on the flow when the material is modelled as a regularized Casson
fluid). Coherently, in the case of regularized Casson fluid, Rec is an increasing function of
λ1, namely an increase in the yield stress τ∗0 leads to a flow stabilization (Figure 6C,D). For
the regularized Bingham, we have an opposite behaviour. Indeed, Figure 6A,B highlight
that Rec decreases as λ1 (i.e., τ∗0 ) increases. Moreover, it is worth noting that, as physically
expected, an increase of θ leads to flow destabilization in both cases.

In Table 1, we report the values of Rec and c0 when θ = 5◦ for various values of λ1
when a regularized Bingham and Casson models are considered. We notice that c0 = 2
when λ1 = 0, i.e., when the flow is Newtonian, as in [10]. Again, coherently with the
results obtained in [10], as λ1 increases the superficial wave speed increases also for the
regularized Casson fluid.

A                                                                          B 

Reg. Bingham                                                                          Reg. Casson

Figure 5. Evolution of the critical Reynolds number, Rec, with respect to the tilt angle, θ, with
ε = 0.01 for different values of λ1 in the case of the flow modelled as a regularized Bingham (A) and
regularized Casson (B) fluid. The theoretical Newtonian flow (i.e., 5/4 cot θ) is given by the red circles.
The continuous line is the Newtoian flow computed by our code. We emphasize that the theoretical
curve and the computed one coincide.

Table 1. Values of Rec and c0 for given values of λ1 with θ = 5◦ and ε = 0.01 for both the regularized
Bingham and Casson models.

λ1 Rec c0
Reg. Bingham Reg. Casson Reg. Bingham Reg. Casson

0 14.29 14.29 2 2
0.01 14.08 15.61 2.03 2.15
0.1 12.45 19.08 2.34 2.52
0.5 9.05 28.13 4.31 3.30
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Reg. Bingham                                                                        Reg. Casson

B                                                                         D 

Reg. Bingham                                                                        Reg. Casson

A                                                                         C 

Figure 6. Plot of the critical Reynolds number, Rec, as a function of λ1 with ε = 0.01 for different val-
ues of θ for a regularized Bingham (A,B) and regularized Casson (C,D) fluid. The case of Newtonian
flow corresponds to λ1 = 0, i.e., B = 0.

6. Conclusions

In this paper, the stability analysis of a free surface regularized Casson flow down
an incline has been theoretically investigated and compared to the one obtained for the
regularized Bingham flow. In both cases the benchmark represented by the Newtonian
case (i.e., when λ1 = 0, thus B = 0) has been recovered. Our results show that for a
regularized Casson fluid Rec increases with increasing values of the “material” parameter
λ1 (that is proportional to τ∗0 see (16)), while for a regularized Bingham fluid Rec decreases
when λ1 (i.e., τ∗0 ) increases [10,16]. Therefore, our findings (obtained within the long-wave
approximation method) show that the flow of the regularized Casson fluid is stabilized by
increasing yield stress τ∗0 contrary to what happens with the regularized Bingham.

The stability analysis of the exact Bingham model, investigated in [16], shows that the
flow down an incline is unconditionally stable for every Reynolds number. Therefore, our
results are unexpected, highlighting that, although in a regularized formulation, models be-
longing to the same class of viscoplastic fluids can have stability characteristics completely
different. Although we are not aware of any studies on the stability of the Casson fluid
flowing down an incline, we suppose that the results of [12] can also be extended to this
case. Therefore, we show that (as for the regularized Bingham fluid [10]) the regularized
Casson can have stability properties that are different from the classic Casson flow. It
is worth remarking that the our study has been developed by applying the long-wave
approximation to the flow of regularized Bingham and Casson fluids down an incline.

We have in fact shown that the flow along an incline of a Casson-type material becomes
increasingly stable as the yield stress increases. Exactly the opposite behaviour occurs with
the Bingham fluid. Therefore, this feature can be used, from an experimental point of view,
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to highlight the difference between the two rheological models. We believe that our results
can pave the way to experimental studies on the flow down an incline.
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