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Abstract: A Buckley–Leverett analysis with capillary pressure to model the oil displacement in fractal
porous media is herein presented. The effective permeability for a non-Newtonian micellar fluid
is calculated by a constitutive equation used to describe the rheological properties of a displace-
ment fluid. The main assumption of this model involves a bundle of tortuous capillaries with a
size distribution and tortuosity that follow fractal laws. The BMP model predicts two asymptotic
(Newtonian) regions at low and high shear and a power-law region between the two Newtonian
regions corresponding to a stress plateau. Both the stress at the wall and the fluidity are calculated
using an imposed pressure gradient in order to determine the mobility of the solution. We analyze
different mobility ratios to describe the behavior of the so-called self-destructive surfactants. Initially,
the viscosity of the displacing fluid (micellar solution) is high; however, interactions with the porous
media lead to a breakage process and degradation of the surfactant, producing low viscosity. This
process is simulated by varying the applied pressure gradient. The resulting equation is of the
reaction–diffusion type with various time scales; a shock profile develops in the convective time
scale, as in the traditional Buckley-Leverett analysis, while at longer times diffusion effects begin to
affect the profile. Predictions include shock profiles and compressive waves. These results may find
application when selecting surfactants for enhanced oil recovery processes in oilfields.

Keywords: Buckley–Leverett analysis; micellar solutions; fractal porous media; mobility; oil recovery

1. Introduction

Chemical-enhanced oil recovery (CEOR) is a group of techniques for improving
recovery factors at the tertiary stage of the oilfield life cycle using combinations of chemical
additives [1]. Surfactant flooding is a tertiary oil recovery technique that has become a
useful method over the past years for obtaining additional oil production in depleted
reservoirs [2,3]. The mechanism of enhanced recovery involved in polymer flooding is
based on decreasing the mobility difference between the displacing and displaced fluids in
order to reduce fingering effects [4]. The surfactants used in these operations display shear
dependence of viscosity, thixotropy, and elasticity, among other features [5]. In contact
with the porous (reservoir) structure, the flow of non-Newtonian fluids is a function of
the permeability obtained by direct measurement of pressure drop and flow rate using
cylindrical cores from blocks of coherent porous or granular media. The permeability
obtained using a Newtonian fluid and the pressure drop/flow rate relationships are linearly
related, confirming that Stokes law applies at the pore scale. When the fluid is non-
Newtonian, an equivalent of Darcy’s law to describe this flow musy be sought. The use of
nonlinear constitutive equations aims to provide extensions of Darcy’s law to cover fluids
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with complex rheology [6]. At the pore scale, flow fields are strongly affected by elastic
forces that cause the principal directions of the stress and strain rates to be non-parallel,
as occurs with generalized Newtonian or thixotropic fluids. However, at the Darcy scale
the functional over past history becomes relevant, as all complexities at the pore scale are
considered in the functional.

Polymeric surfactants are macromolecules with hydrophobic and hydrophilic groups
in their structural makeup; although they are polymers, their unique molecular features
technically allow them to be defined as surfactants as well. Macrosurfactants, on the other
hand, are of more complex molecular structure and mostly have high molecular weight.
Polymeric surfactants have been proposed to reduce the number of chemical additive slugs
used to implement chemical floods in oil reservoirs, as they offer operational simplicity and
improve cost efficiency [4]. Polymer-free fluids based on viscoelastic surfactants have been
developed to recover oil from subterranean formations. These fluids are characterized by
the presence of large multi-molecular structures which provide the required high viscosity
and viscoelastic properties [1]. One of the most important advantages of viscoelastic surfac-
tants is that the multimolecular structures are broken by their interaction with produced
formation fluids containing hydrocarbons. As a result, the displacing fluid can be easily
removed from the propped structure. A new concept called “self-destructing” viscoelastic
surfactants form large micellar structures; these have the advantage that the gel can become
a low-viscosity fluid during backflow, as the individual surfactant molecules break down
into oil- and water-soluble species. They can then be easily removed by back-flowing
formation fluids [7,8]. These self-destructing surfactants have been the subject of research
for a long time following the pioneering work of [9,10]. Depending on the rheology of these
fluids, their viscosity is a function of the applied pressure gradient. Micellar solutions have
a complex rheology that can be used to improve the flow of the displaced oil fluid. These
surfactants exhibit pressure gradient-dependent properties, such as the presence of a shear
stress plateau at a critical value of the pressure gradient. This means that at this critical
stress level the flow rate increases dramatically, resulting in increased oil production. For
higher pressure gradients, the shear-thinning properties of the fluid lead to viscosities even
lower than those of the oil phase, up to the situation where water displaces oil [11,12].

We have previously modeled the rheology of micellar solutions, including surfactants
with self-destructive properties [13]. As mentioned, the presence of a stress plateau signals
the large decrease in viscosity observed in these micellar fluids at a critical pressure gradient.
The modeling does not take into account the chemistry associated with the surfactant
breakage process; instead, the viscosity drop is predicted by increasing the applied stress
or pressure gradient. The important parameter in oil displacement by a micellar solution is
the mobility ratio (i.e., the mobility of the oil phase divided by the mobility of the micellar
solution, which is a non-Newtonian fluid) [14,15]. At low pressure gradients, the mobility
of the surfactant solution is small, giving rise to a large mobility ratio; as a Newtonian fluid,
the viscosity of the oil phase is constant. As the pressure gradient increases, the mobility
of the surfactant solution increases, leading to a decrease in the mobility ratio. The limit
of this decrease (a very small ratio) corresponds to the situation where the viscoelastic
properties of the surfactant are destroyed and the resulting low viscosity system can be
easily removed through a backflow operation [7].

The conventional methods based on Euclidean geometry and fractal geometry have
shown evident advantages for addressing the complexity and multiple scales of porous
media [16]. Fractal geometry has been successfully applied to characterize the structures
of transport processes in porous media [17]. As far as permeability is concerned, a series
of models for porous media aim to reproduce the relevant features of real porous media.
The fractal geometry theory characterizes irregular or disordered objects such as sandstone
pores and grains, and represents a useful tool for analysis of porous media [18,19]. Models
usually relate structural parameters of porous media, such as fractal dimensions, tortuosity
fractal dimensions, microstructural parameters, and porosity, to the rheological material
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functions. These models seek relationships among the average flow velocity, effective
permeability, effective porosity, pressure gradient, and material constants [20].

In this work, a Buckley–Leverett analysis with capillary pressure to model the oil
displacement in a porous medium is presented. The model involves a bundle of tortuous
capillaries with a size distribution and tortuosity that follow fractal scaling laws. The
displacement of oil by a micellar solution in a fractal porous medium is described by the
Bautista–Manero–Puig (BMP) model [6,21]. This model of capillary pressure allows the
different shock profiles that may be present in a real porous medium to be described. Here,
we use the definition of the mobility ratio M as the mobility of the oil phase/mobility of
the micellar solution. Elsewhere, the definition of mobility ratio is 1/M. In the discusion
section, we provide an alternate interpretation using 1/M as the mobility ratio.

2. Rheological Equation of State

The BMP model is described by the following equations [21]:

σ
=
+

1
G0 ϕ

∇
σ
=
=

2
ϕ

D
=

, (1)

dϕ

dt
=

1
λ
(ϕ0 − ϕ) + k0(ϕ∞ − ϕ)σ

=
: D
=

, (2)

where
∇
σ
=

is the upper-convected derivative of the stress tensor, D
=

is the symmetric part of

the rate of the strain tensor, ϕ is the fluidity (inverse of the shear viscosity η), ϕ0

(
η−1

0

)
is

the zero-shear-rate fluidity, ϕ∞ is the fluidity at high shear rates, G0 is the shear modulus,
λ is the structural characteristic time, and k0 is a kinetic constant related to structure
modification. The upper-convected derivative of the stress tensor is

∇
σ
=
=

dσ
=

dt
−
(

L
=
· σ
=
+ σ

=
· L
=

T
)

, (3)

where L
=

is the velocity gradient tensor. Equations (1) and (2) reduce to the upper-convected
Maxwell model when ϕ ≡ ϕ0. These equations express that the nonlinear viscoelastic
processes contained in the Maxwell equation are coupled with an equation written in terms
of the fluidity, which is itself a kinetic equation with a characteristic time related to structure
formation λ and a destruction term related to structure modification with a kinetic constant
k0 proportional to the dissipation. Under simple shear flow, the above equations reduce to

σ +
1

G0 ϕ

dσ

dt
=

γ̇

ϕ
, (4)

dϕ

dt
=

1
λ
(ϕ0 − ϕ) + k0(ϕ∞ − ϕ)σγ̇, (5)

where γ̇ is the shear rate and the nonlinear terms in Equation (3) are not considered, which
implies that the normal stresses generated under flow are negligible. In steady state, both
Equations (4) and (5) can be reduced to provide

(ϕ0 − ϕ) + k0λ(ϕ∞ − ϕ)σγ̇ = 0. (6)

Equation (6) predicts shear-thinning behavior when ϕ∞ > ϕ0, shear-thickening be-
havior when ϕ∞ < ϕ0, and Newtonian behavior when ϕ∞ = ϕ0. A plateau region is
predicted in the limits of very low and very high shear rates, with a power-law behavior at
the intermediate shear rates. In addition, a stress plateau is predicted when ϕ0 = 0. This
implies a constant stress in the limit as the shear rate approaches zero. An apparent yield is
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predicted for very small values of ϕ0. The physical meaning of Equation (6) can be revealed
if it is written in terms of the non-dimensional dissipation, as follows:

k0λσγ̇ =
ϕ− ϕ0

ϕ∞ − ϕ
ϕ < ϕ∞. (7)

Upon increasing dissipation ϕ→ ϕ∞, while for decreasing dissipation ϕ→ ϕ0. From
Equation (6), the plateau stress can be calculated when ϕ0 = 0 in the region of very small
shear rates. This results in

σy = (k0λϕ∞)−1/2, (8)

Equation (6) can be solved for ϕ by expressing the results in terms of the plateau stress
to provide

ϕ(σ)

ϕ0
=

ϕ∞/ϕ0

2σ2/σ2
y

{(
σ2/σ2

y − 1
)
±
[(

σ2/σ2
y − 1

)2
+ 4ϕ0/ϕ∞

(
σ2/σ2

y

)]1/2
}

. (9)

The three independent parameters in Equation (9) can be evaluated from the flow
curve itself in the form of the viscosity versus the shear rate. The fluidity at low strain rates
ϕ0 (inverse viscosity) is extracted from the first Newtonian plateau at vanishing shear rates,
and the fluidity at an infinite shear rate ϕ∞ corresponds to the plateau at high shear rates.
When the plateau stress is approached, the viscosity tends to a slope of −1 in a log–log
plot. The usual form from which the plateau stress is evaluated considers the plateau that
is exhibited as the shear rate tends to zero in a plot of the log stress versus log shear rate. In
this context, the model does not contain fitting parameters. We can calculate the fluidity at
the plateau stress by setting σ2/σ2

y = 1; this provides

ϕ
(
σy
)
=
√

ϕ0 ϕ∞. (10)

According to the model presented here, the pores are considered as capillaries with
different diameters. The change in capillary radius is taken into account by modifying
the tortuosity along the flow trajectories, and several results are shown in which changes
in tortuosity or fractal dimensions are considered. Although transient flow exists in a
real porous medium (i.e., complex expansion–contraction trajectories), in this model the
change in geometry which modifies trajectories is considered as a change in tortuosity
and a change in fractal dimensions. In other words, following the averaging procedures
considered in the present model, the overall flow may be considered steady; however,
locally it is intrinsically unsteady. This transient state is taken into account by the variation
in thew tortuosity or fractal dimensions of the porous medium in time scales shorter than
that of the global averaged macroscopic flow.

2.1. Calculation of Mobility

The procedure to calculate the mobility in a complex fluid is outlined in (the appendix
of reference [6]). A momentum balance on a differential element in cylindrical geometry
leads to a relationship between the shear stress and the pressure gradient; in this case, the
shear stress at wall in tortuous capillaries is provided by [22,23].

σw = − r
2

dp
dLt

. (11)

Following the fractal scaling method, the wall shear stress is [6]

σw =
−rDT

22−DT

1

DT LDT−1
0

dp
dL0

, (12)
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where DT is the fractal dimension describing the tortuous length of the capillary. Darcy’s
law may then be written in terms of the non-Newtonian mobility as follows:

v = −MNN
dp
dL0

, (13)

where
MNN = ke ϕ(σ). (14)

As the capillaries in porous media are tortuous, the total shear stress in Equation (12) at
all capillary walls is related to the fractal dimensions D f and D f , microstructual parameters,
and pressure gradient (see [6]). The resulting effective permeability is

ke =
22DT−2φ

(
3− DT − D f

)
DT L2DT−2

0 r
3−DT−D f
max

[
1−

(
rmin
rmax

)3−DT−D f
] 1

ϕ(σ)

rmax∫
rmin

ϕ(r)rDT−D f−2dr. (15)

The Newtonian permeability may be obtained as a particular case when ϕ(r) =
ϕNr4/8, ϕ(σ) = ϕN (Poiseuille’s law), yielding

ke =
22DT−2φ

(
3− DT − D f

)
DT L2DT−2

0

[
1−

(
rmin
rmax

)3−DT−D f
]( r2DT

max

DT − D f + 3

)
. (16)

In straight capillaries, DT = 1; therefore, we can obtain

ke =
φ
(

2− D f

)
8
[

1−
(

rmin
rmax

)2−D f
]( r2

max
4− D f

)
. (17)

This equation agrees with those of the current literature for Newtonian fluids. We
obtained an analytical result for the permeability provided ϕ(r) can be calculated [6]. This
may be achieved assuming that the fluidity in the pore/capillary attains a minimum in the
center of the geometry and reaches a maximum at the walls, i.e.,

ϕ(ξ) = ϕ0 + (ϕ(σ)− ϕ0)ξ
2. (18)

Accordingly, the fluidity attains its minimum at the capillary center (at ξ = 0), that
is, ϕ0, and its maximum at the walls (at ξ = 1), ϕ(σ). The fluidity at the wall requires the
calculation of the wall stress according to Equation (11). Thus, the final result is [6]

ke =
22DT−2φ

(
3− DT − D f

)
DT L2DT−2

0

[
1−

(
rmin
rmax

)3−DT−D f
] 1

ϕ(σ)

[
ϕ0

8
r2DT

max

DT − D f + 3
+

ϕ(σ)− ϕ0

8
r2DT

max

DT − D f + 5

]
. (19)

When ϕ(σ)→ ϕ0, next to the capillary center, the permeability tends to the Newtonian
constant value provided by Equation (16). Near the wall, ϕ(σ) tends to a maximum value
and the permeability diminishes asymptotically to another constant value as a function of
the maximum fluidity. By defining

K1 =
22DT−2φ

(
3− DT − D f

)
r2DT

max

8DT L2DT−2
0

[
1−

(
rmin
rmax

)3−DT−D f
] ; K2 =

1(
DT − D f + 3

) ; K3 =
1(

DT − D f + 5
) , (20)
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Equation (19) can be expressed as

ke =
ϕ0

ϕ(σ)
(K1K2 − K1K3) + K1K3. (21)

Clearly, within the limit ϕ(σ)→ ϕ0 the permeability is constant, providing

KN = K1K2. (22)

In straight capillaries (DT = 1),

K1 =
ϕ
(

2− D f

)
r2

max

8
[

1−
(

rmin
rmax

)2−D f
] and K2 =

1(
4− D f

) , (23)

which agrees with Equation (17). The non-Newtonian fluid mobility in Equation (14)
becomes

MNN = ϕ0(K1K2 − K1K3) + ϕ(σ)K1K3, (24)

which reduces to the Newtonian mobility

MN = ϕN(K1K2), (25)

where ϕN is the fluidity of the Newtonian fluid, while the mobility ratio becomes

M =
MN

MNN
=

ϕN
ϕ0

[
1 +

K3

K2

(
ϕ(σ)

ϕ0
− 1
)]−1

. (26)

In Equation (26), the ratio is

K3

K2
=

DT − D f + 3
DT − D f + 5

. (27)

The limits of Equation (26) consider expressions at low and high stresses; in the
low range, ϕ(σ) → ϕ0 and M(σ→ 0) = ϕN/ϕ0. At the upper stress limit, ϕ(σ) → ϕ∞,
and hence

M(σ→ ∞) =
ϕN
ϕ0

[
1 +

K3

K2

(
ϕ∞

ϕ0
− 1
)]−1

≈ K2

K3

ϕN
ϕ∞

, (28)

At the plateau stress,

M
(
σy
)
≈ K2

K3

ϕN√
ϕ0 ϕ∞

. (29)

In Figure 1, a plot of the normalized fluidity as a function of the stress normalized
by the yield stress is disclosed. We consider a Newtonian fluid with viscosity ten times
smaller than that of the non-Newtonian fluid at small stresses. As the stress increases, the
fluidity of the non-Newtonian fluid increases as well, overtaking that of the Newtonian
fluid. In Figure 2, the mobility ratio is plotted with the applied stress.

We define the following relative permeabilities:

kr1 =
k1

kc1
, (30)

kr2 =
k2

kc2
, (31)

where kri is the relative permeability of fluid i and kc1 is the characteristic permeability
of fluid i. Figure 3 shows the variation of the relative permeabilities as a function of the
saturation.
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Figure 1. Normalized fluidity as a function of the stress normalized by the plateau stress. When the
normalized stress is equal to one, the fluidity is (ϕ∞/ϕ0)

1/2 = 10, which coincides with ϕN/ϕ0 = 10.
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ϕN√
ϕ0 ϕ∞

= 2. K2
K3

and the ratio is variable.

Figure 3. Relative permeabilities of Fluids 1 and 2.
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Saturation limits are S1C for Fluid 1 such that 1− S2C is the maximum saturation of
Fluid 1 and the minimum saturation of Fluid 2. Figure 3 shows that there is a quadratic
dependence of the relative permeability on the saturation, and therefore the following
relations represent this variation:

kr1 = αS2
1, (32)

kr2 = α(1− S1)
2 (33)

from the material balance for the two fluids, namely,

S1 + S2 = 1. (34)

Upon substitution of the above equations for those of Darcy’s law for each fluid
provides the following displacement velocities in the porous medium:

u1 = −kr1kc1 ϕ1

(
∂p1

∂x

)
, (35)

u2 = −kr2kc2 ϕ2

(
∂p2

∂x

)
. (36)

considering that the capillary pressure depends only on saturation

p2 − p1 = pc(S1), (37)

and the flow fractions are defined as follows:

f1 =
u1

u
, (38)

f2 =
u2

u
= 1− f1, (39)

where u = u1 + u2 represents the sum of the flow rate fractions, as the flow area is the
same for both fluids. Deriving Equation (37) with respect to x and solving for the pressure
gradients in Equations (35) and (36), upon substitution we obtain

f1(S1) =
1(

1 + kr2kc2 ϕ2
kr1kc1 ϕ1

) +
1
u

kr2kc2 ϕ2(
1 + kr2kc2 ϕ2

kr1kc1 ϕ1

) ∂pc(S1)

∂x
. (40)

Using Equations (32) and (33) and the definition of the mobility ratio M = kc2 ϕ2
kc1 ϕ1

, we
obtain

f1(S1) =
1(

1 + M (1−S1)
2

S2
1

) +
k
u

(1− S1)
2 ϕ2(

1 + M (1−S1)
2

S2
1

) ∂pc(S1)

∂x
, (41)

which can be expressed as

f1(S1) = F(S1) + H(S1)
∂S1

∂x
, (42)

where

F(S1) =
1(

1 + M (1−S1)
2

S2
1

) (43)

H(S1) =
k
u

(1− S1)
2 ϕ2(

1 + M (1−S1)
2

S2
1

) ∂pc(S1)

∂x
. (44)
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From the mass balance
ϕ

∂S1

∂t
+ u

∂ f1

∂x
= 0, (45)

the following equation is obtained:

∂S1

∂t
+

u
φ

[
∂F(S1)

∂S1

∂S1

dx
+

∂

∂x

(
H(S1)

∂S1

∂x

)]
= 0. (46)

2.1.1. The Buckley–Leverett Equation

Neglecting the capillary forces, Equation (46) reduces to

∂S1

∂t
+

u
φ

∂F(S1)

∂S1

∂S1

dx
= 0. (47)

A plot of the flow fraction F(S) as a function of the saturation S for the three mobility
ratios considering DT = 1 is shown in Figure 4.
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Figure 4. The flow function F as a function of saturation for three mobility ratios.

Next, we make Equation (46) non-dimensional by defining the variables x = x′
L and

t = ut′
φL . Dropping the sub-index, we can express Equation (46) as follows:

∂S
∂t

+
∂F(S)

∂x
+

∂

∂x

(
H(S)

∂S
∂x

)
= 0, (48)

where S refers to the saturation of Fluid 1. Up to first order in the derivatives and small
capillary pressure contributions, Equation (48) leads to

∂S
∂t

+
∂F
∂S

∂S
∂x

= ε
∂2S
∂x2 . (49)

The Buckley–Leverett problem does not consider capillary effects:

∂S
∂t

+
∂F
∂S

∂S
∂x

= 0. (50)

The material derivative of S in one dimension is

dS
dt

=
∂S
∂t

+
dx
dt

∂S
∂x

. (51)
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Comparing Equations (50) and (51), we obtain

dx
dt

=
∂F
∂S

= r, (52)

where
∂F
∂S

= 2M
S− S2(

S2 + M(1− S)2
)2 . (53)

In Figure 5, we plot Equation (53)
(

∂F
∂S versus S

)
for the three mobility ratios.

0
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d
𝐹
(𝑆
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Figure 5. The derivative of F(S) as a function of saturation for the three mobility ratios.

We can integrate Equation (52) as follows:

x = 2M
S− S2(

S2 + M(1− S)2
)2 t (54)

Because the function ∂F
∂S is not single-valued, the Buckley–Leverett analysis includes

the calculation of the tangent to the flux function F(S) and the presence of a shock. The
tangent condition reads

∂F
∂S

=
F(S)

S
. (55)

A unique root of Equation (55) is obtained, namely,

α =

√
M

M + 1
, (56)

which is the abscise of the point of intersection of the tangent and the function F(S). The
slope of the tangent is found from the condition

mS = F(S) or m =
F(α)

α
, (57)

and the mean saturation Save is found if F(S) = 1, namely,

Save =
1
m

. (58)
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In Figure 6a–c, we plot the flux function F(S) and its derivative together with the
tangent to locate the intersection point α.
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Figure 6. The function F(S) and its derivative as functions of the saturation S for three mobility
ratios (a) M=0.3, (b) M=2.5, and (c) M=10. The tangent and point of intersection with abscise α are
also shown.
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As the mobility ratio increases, the intersection point of the tangent and the function
F(S) has ordinate F(α) approaching one as well as α→ 1 see Figure 7, and hence the slope
tends to 450(m = 1); see Table 1.

Table 1. Mobility ratios with α values and the corresponding average saturations and tangents.

M α Save m

0.3 0.476 0.645 1.55
2.5 0.845 0.916 1.09
10 0.953 0.976 1.02

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

�

M

Figure 7. The root α as a function of the mobility ratio.

In Figures 1 and 2, it is clear that for low pressure gradients (namely, small stresses)
the fluidity of the displacing fluid is small and the ratio of its fluidity with the fluidity of
the Newtonian oil is large (M = 10). The plateau stress of the micellar fluid coincides with
that of the oil, with a mobility ratio around 2. For high pressure gradients, the fluidity of
the non-Newtonian fluid is large (close to that of water), even larger than that of the oil. In
this case the displacing action of the displacing fluid decreases, which is convenient for
actual enhanced oil recovery operations. It is worth mentioning that the viscosity of the
displacing fluid should be properly adjusted along with the applied pressure gradient in
order to provide the optimal oil displacement. This is one of the advantages of a complex
non-Newtonian fluid, which provides multiple options for actual oil operations.

The equal area criterion is used to specify the value at which the shock should occur,
namely,

∂F(S∗)
∂S

=
1

S f

∫ S f

0

∂F(S)
∂S

dS, (59)

where f ′(S∗) denotes the ordinate at which the equal area criterion holds. Equation (59) is
an illustration of the mean value theorem of integrals. In fact, if ∂F(S∗)

∂S = F(α)
α and S f = α,

Equation (59) is satisfied. Therefore, the shock occurs at a value of the saturation equal
to α and ordinate F(α)

α , which is the speed of propagation according to Equation (52). In
the Figure 8a–c, the saturation is plotted as a function of the propagation speed for the
three mobilities.

Figures 9a–c depict the speed of propagation of the shock profile as the mobility
changes. The speed is higher as the mobility ratio decreases. This effect is expected, as the
viscosity of the displacing non-Newtonian fluid is larger for M = 10. For higher pressure
gradients the displacing fluid viscosity diminishes, allowing for larger propagation speeds.
In Figure 10, the saturation is plotted with the propagation speed for the three fronts,
exhibiting the effect of diminishing the viscosity of the non-Newtonian pushing fluid for
large pressure gradients.
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Figure 8. The derivative ∂ f
∂S as a function of the saturation for three different mobility ratios (a) M = 0.3,

(b) M = 2.5, and (c) M = 10, illustrating the equal areas criterion. Here, f ′(S∗) denotes the ordinate at
which the equal area criterion holds.
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Figure 9. Saturation as a function of propagation speed for three mobility ratios (a) M = 0.3, (b) M = 2.5,
and (c) M = 10, illustrating the location of the shock.
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Figure 10. The velocity of the propagation front for the three mobility ratios.

To further analyse the shock profiles, let Sl be the saturation value to the left of the
shock and let Sr the value of the saturation to the right of the shock; moreover, let the
boundary conditions be

S(x, t) = Sl = S f ; x < rt, (60)

S(x, t) = Sr = 0; x > rt. (61)

The slope just before and after the shock corresponds to the Rankine–Hugoniot condi-
tion:

r =
dx
dt

=
F(Sl)− F(Sr)

Sl − Sr
, (62)

if S f = α. Applying the boundary conditions, we obtain

F(Sl)− F(Sr)

Sl − Sr
=

F
(

S f

)
S f

, (63)

which corresponds to the tangent condition. Furthermore, applying the Oleinik entropy
condition

F(Sl)− F(S)
Sl − S

≥ F(Sl)− F(Sr)

Sl − Sr
, (64)

if S = α,
F(S f )−F(α)

S f−α ≥ F(S f )
S f

and α ≥ S f . Hence, the criterion of equal areas is sufficient to
define the shock location according to the Oleinik criterion.

2.1.2. Capillary Pressure

Here, we consider the model by Hassanizadeh and Gray, in which the capillary
pressure can be described according to the following expression:

Pc(S) = pc(S)− τ
∂S
∂t

, (65)
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where pc(S) is the static capillary pressure and τ is a characteristic time. In this case, and
considering that the capillary pressure in equilibrium is generally a decreasing function of
saturation pc(S) = −S, Equation (46) becomes:

∂S
∂t

+
∂ f (S)

∂x
=

∂

∂x

[
H(S)

(
∂S
∂x

+ τ
∂2S
∂x∂t

)]
. (66)

We discuss an extension to the B-L equation which includes the third-order mixed
derivatives term and models the capillary pressure. Travelling wave solutions exist in
the extended model. The speed of the shock, Sl , and Sr are related through the Rankine–
Hugoniot (RH) condition Equation (62). Experiments in two-phase flow in porous media
reveal complex infiltration profiles with overshoots (i.e., non-monotone profiles). Solutions
with the second derivative term exist if f (S), Sr, and Sl satisfy the RH and Oleinik entropy
conditions. In the limit ε→ 0, traveling waves converge to the shock (Sr, Sl).

If S > α, then a weak solution is composed of a rarefaction wave in the region where
S > α and a shock that spans the range 0 < S < α. Focusing on the relation of Sl and τ, we
establish the existence of the function

τ = τ(Sl) defined in the interval α < Sl < β, (67)

where β is defined through the equal area criterion∫ β

0

[
F(S)− F(β)

β
S
]

dS = 0 (68)

in such a way that Equation (66) may possess a shock wave solution in which

τ(Sl)→ τ∗ > 0; Sl → α, (69)

τ(Sl)→ ∞ > 0; Sl → β, (70)

in which case τ is a bifurcation parameter when 0 < τ ≤ τ∗. For the case in which τ > τ∗,
the criterion α ≥ S f is not fulfilled, and new types of shock waves are admissible.

With β as defined above, we establish the existence of a function τ(Sl) defined for
α < Sl < β such that Equation (66) has a travelling wave solution with Sr = 0 if and only if
τ = τ(Sl).

The solution of Equation (66) for various cases is illustrated in the following plots;
here, x = vt(t = 1).

A Fortran numerical code was developed using the finite difference scheme proposed
by [14]. This code was used to solve the model governing equation (see Equation (5.1)
in [14]). With same parameters used by them, the computations were performed on the
interval −2 ≤ x ≤ 4, with ∆x = h = 0.002 for the rarefaction and rarefaction-under-
compressive shock solutions and h = 0.005 in other cases. All solutions are shown at time
t = 1 and with ∆t = k = 0.1(∆x)2. The numerical code was validated by comparing the
cases reported by [14]. The results showed that the present code qualitatively reproduces
the same results as shown in their figures.

3. Results

In Figure 11a–d we plot the first example, consisting of the case in which Sl = 0.2,
Sr = 0.4, τ = 1 and ε = 0.01, for the three mobility ratios (M = 0.3, M = 2.5 and M = 10).
In Figure 11a rarefaction wave solutions are shown for high mobility ratios, becoming
more shock-like as the ratio diminishes. The corresponding flux functions are illustrated in
Figure 11b–d. It is clear that the front velocity increases as the mobility ratio decreases, as
the slope of the curve between S = 0.2 to S = 0.4 increases from M = 10 to M = 0.3. The
fact that a near shock-like solution is apparent in Figure 11b indicates that the flux curve in
this region is almost a straight line.
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Figure 11. (a) Rarefaction wave solution for Sl = 0.2, Sr = 0.4, τ = 1, and ε = 0.01. The corresponding
flux functions for three different mobility ratios (b) M = 0.3, (c) M = 2.5, and (d) M = 10.

Figure 12a–d presents the solution for the three representative mobilities, from Sl = 0.6
to Sr = 0.4. In Figure 12a, a rarefaction wave solution is apparent at a small mobility ratio.
As the mobility ratio increases, the solutions now depict shocks appearing at a relatively
high propagation velocity (M = 2) as well as at a lower velocity (M = 10).



Fluids 2021, 7, 377 18 of 23

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

𝐹
(𝑆

)

𝑆

M=0.3

F(S)

F(S) rarefaction wave

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2

𝐹
(𝑆

)

𝑆

M=2.5

F(S)

F(S) shock

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2

𝐹
(𝑆

)

𝑆

M=10

F(S)

F(S) shock

(a)

(b)

(c)

(d)

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1 1,2

𝐹
(𝑆

)

𝑆

M=0.3

F(S)

F(S) rarefaction wave

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

𝐹
(𝑆

)

𝑆

M=2.5

F(S)

F(S) shock

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

𝐹
(𝑆

)

𝑆

M=10

F(S)

F(S) shock

(a)

(b)

(c)

(d)

Figure 12. (a) Rarefaction wave which evolves into to shocks as the mobility ratio diminishes for
Sl = 0.6, Sr = 0.4, and ε = 0.05. (b) The rarefaction wave location in the upper region of the flux
curve. (c,d) The shocks are represented by straight lines within the saturation interval (0.6, 0.4).

A more complex situation is exhibited here, as a shock trailing the under-compressive
shock for Sl = 0.8, Sr = 0.2, τ = 1 and ε = 0.05 is shown in Figure 13a–d.
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Figure 13. (a) The rarefaction wave evolves into a shock trailing the under-compressible shock for
M = 2.5 and alternatively evolving into an under-compressive shock for M = 10. (b–d) The shock
behaviour changes from a rarefaction wave at low mobility ratios into a small shock trailing an
under-compressive shock at high mobility ratios.

For low mobility ratios, the rarefaction wave is represented in the flux curve in
Figure 13b in the saturation interval (0.8, 0.2). At intermediate mobility ratios (M = 2.5)
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there is a small shock from 0.8 to 0.82 trailing the large under-compressive shock from
S = 0.82 down to S = 0.2 (Figure 13c). The propagation velocity of the first shock is smaller
than that of the large shock, as represented in the flux curve by a small change in the
slope of the black line with respect to the higher slope of the brown straight line. For large
mobility ratios, oscillations followed by an under-compressible shock from 0.8 down to 0.2
are presented.

The last example exhibits two shock profiles at low and high mobility ratios, with
an under-compressive wave trailing a shock in the intermediate mobilities. Figure 14a–d
illustrates the saturation as a function of the propagation velocity (Figure 14a) and the
corresponding flux curves for the three mobilities (Figure 14b–d). It is interesting that the
smallest mobility ratio generates a shock at lower velocity than that of the high mobility
ratio. The flux curve (Figure 14b) for M = 0.3 describes a shock in the saturation interval
(0.9, 0.4), which is represented by a straight line with a slope corresponding to the abscise
of the blue curve in Figure 14a. On the other hand, the flux curve for M = 10 (Figure 14d)
describes a shock in the same saturation interval, in this case represented by the straight
line, except with larger slope. The oscillations above 0.9 are due to the complex eigenvalues
at Sl , as referenced in [14]. The curves corresponding to the intermediate mobility ratio
(M = 2) comprise a rarefaction wave from 0.9 to 0.7 trailing a shock profile from 0.7 to
0.4. This behaviour may be described by a curve that follows the flux curve from 0.9 to
0.7, trailing a straight line with the largest slope between 0.7 down to 0.4, as illustrated in
Figure 14c.
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Figure 14. (a) The undercompressive shock for Sl = 0.8, Sr = 0.2, and ε = 0.05. The corresponding
flux functions for three different mobility ratios (b) M = 0.3, (c) M = 2.5, and (d) M = 10.

The influence of the characteristic time τ in Equation (66) on the shock pattern is
small, as can be observed in Figure 15. The results presented here agree with the analytical
solutions in [24]. Indeed, the shifting of the flux curve as the mobility ratio changes is
reproduced. The shock propagation predictions agree with present results of our analysis
as well.

Figure 15. Saturation as a function of velocity for various values of the characteristic times τ (the
same example as that described in Figure 13a for M = 2.5).

4. Discussion

Non-Newtonian fluids such as the micellar solution analysed here have variable
viscosity that depends on the stress or pressure gradient. At low pressure gradients, the
viscosity of these fluids is large, while upon increasing the pressure gradient the viscosity
decreases. The viscosity drop can be quite large, in some cases more than two decades. In
the process of oil displacement, the mobility ratio is one of the most important parameters,
defined here as the mobility of the oil phase divided by the mobility of the non-Newtonian
fluid. There are alternative definitions of the mobility ratio, namely, those that consider it
as the mobility of the non-Newtonian fluid divided by the mobility of the oil phase. This
definition, which according to the anonymous reviewer is conventional in the oil industry,
is used to set a criterion that represents a favourable condition for ratios equal or lower
than one, with ratios larger than one being unfavourable. The definition that we use here
has been utilized previously in various references [14]. In fact, the presented results can be
re-interpreted by substituting M−1 for M. In this context, the mobility ratio at low stresses
in Figure 2 is small, corresponding to high viscosity (low fluidity) of the non-Newtonian
fluid, which represents a favourable condition. An unfavourable condition is attained
for mobility ratios larger than one, and this condition is found for stresses larger than
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the yield stress, corresponding to decreased viscosity of the non-Newtonian fluid. This
is an important result, as the pressure gradient can be adjusted to conveniently provide
mobility ratios. As shown in Figure 10, the curve with M = 0.3 (M−1 = 3.33 ) is now
unfavourable, whereas the curves with M = 2.5 and M = 10 are favourable. Subsequently,
in Figures 11–14 we provide examples with various values of the saturations (Sl and
Sr) for the examined mobility ratios. For mobility ratios larger than one, four examples
(Figures 11b, 12b, 13b and 14b) represent unfavourable conditions consists of fronts with
rarefaction waves (Figures 12b and 13b), rarefaction–shock transitions (Figure 11b), or
retarded shocks (Figure 14b). These examples illustrate various situations for different
regions along the flow curve for optimum oil displacement with low mobility ratios.

5. Conclusions

We performed a Buckley–Leverett analysis with capillary pressure to describe the
flow patterns arising in the displacement of oil by a non-Newtonian micellar solution in
a fractal porous medium. Although a number of upscaled and effective models can be
used [24,25], our proposed approach provides a fast and simple description. The Darcian
permeability for a Newtonian fluid generalizes to describe the flow of non-Newtonian
fluids when the porous media has dimensions and tortuosity with a fractal structure. The
micellar solution is a viscoelastic fluid in which the fluidity (inverse viscosity) varies with
the applied pressure gradient. These ingredients provide expressions of the mobility ratio
between the displacing fluid (the micellar solution) and the oil.

We use a constitutive equation for micellar fluids (the BMP model) to model the
fluidity at a given shear stress or pressure gradient. This provides variations in the mobility
ratio corresponding to the applied pressure gradient. Micellar solutions possess a complex
rheology that can be used to improve the flow rates of the displaced oil fluid. In fact, these
surfactants exhibit particular properties as the pressure gradient increases, such as the
presence of a shear stress plateau at a critical value of the pressure gradient. This means that
the flow rate increases drastically at this critical stress. These rheological properties allow
the flow behavior to be mimicked in porous media of so-called self-destructive surfactants,
which possess a high viscosity at the initial stage of the oil displacing process followed by
degradation of their chemical structure, leading to a hydrophobic oil–affine structure and a
hydrophilic molecule with affinity for water. The resulting solution has a small mobility
ratio and low viscosity, and is easily removed from the formation.

The implementation of a Buckley–Leverett analysis with capillary pressure allows the
different shock profiles that may be present in a real porous media to be described. Because
the function ∂ f (S)

∂S is double-valued, the solution to this problem is to theoretically modify
the plot by defining a saturation discontinuity at x f and then balancing the areas ahead of
the front and below the curve. In other words, a discontinuity in S at a front location x f is
needed to make the saturation distribution single-valued and to provide a material balance
for fluid displacement.

With capillary pressure included, a variety of shock profiles and under-compressive
waves are predicted. This discontinuity propagates as combinations of shock and rar-
efaction waves, suggesting the decomposition of the solutions of the general initial-value
problems into combinations of traveling waves (approximating shocks) and smooth waves
(approximating rarefaction waves).

It is worth mentioning that the viscosity of the displacing fluid and applied pressure
gradient should be properly adjusted in order to provide the optimal oil displacement.
This is one of the advantages of a complex non-Newtonian fluid, which provide multiple
options for actual EOR operations.
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