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Abstract: Analysis and optimization of the hybrid upwind-central numerical methods for modern
versions of large eddy simulations (LESs) are presented herein. Optimization was performed based
on examination of the characteristics of the spatial and temporal finite-volume approximations of the
convective terms of filtered Navier–Stokes equations. A method for selecting level of subgrid viscosity
that corresponds to the chosen numerical scheme and makes it possible to obtain an extended inertial
interval of the energy spectrum is proposed. A series of LESs of homogeneous isotropic turbulence
decay were carried out, and the optimal values of the subgrid model constants included in the hybrid
shear stress transport delay detached eddy simulation (SST-DDES) method were determined. A
procedure for generating a consistent initial field of subgrid parameters for these simulations is
described. The three-stage explicit Runge–Kutta method was demonstrated to be sufficient for stable
time integration, while the popular explicit midpoint method was not. The slope of the energy
spectrum was shown to be almost independent of the central-difference scheme order and of the
mesh spacing when the correct numerical method was applied. Numerical viscosity was found to
become much greater than subgrid viscosity when the upwind scheme contributed about 10% or
more to the convective flux approximation.

Keywords: numerical dissipation; central differences; WENO; hybrid schemes; DES; homogeneous
isotropic turbulence

1. Introduction

The most appropriate approach to resolve turbulent flows is direct numerical simula-
tion (DNS) of instantaneous Navier–Stokes equations. DNS resolves all scales, down to the
Kolmogorov microscale. Unfortunately, DNS is a very expensive method that probably will
be available for practical problems at the end of the 21st century [1]. Reynolds-averaged
Navier–Stokes (RANS) equations are another approach based on modeling all turbulent
length scales [2]. RANS modeling only allows description of mean flow structure and is
popular in industrial applications. The intermediate approach is large eddy simulation
(LES) [3–5], which resolves large, turbulent scales directly and models small scales. The
latter can be carried out because of Kolmogorov’s hypothesis [6] that at high Reynolds
numbers, the turbulent kinetic energy spectrum contains the universal equilibrium interval,
and that all eddies that belong to the inertial interval (part of the universal equilibrium
interval) are locally isotropic. In addition, it is important that all statistical parameters
of these eddies depend only on turbulent kinetic-energy dissipation rate and kinematic
viscosity. Nevertheless, LES requires too many computational resources for simulation of
wall-bounded flows. According to [1], LES may become widespread in the second half
of the 21st century. Thereby, the currently relevant approach is to hybridize these two
methods: to use RANS in the near-wall region and LES in the exterior flow. A recent review
of hybrid methods is presented in [7]. We will focus on reviewing only one in this paper:
namely, detached eddy simulation (DES) [8], which is the most widely used today.
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Proper choice of a numerical scheme is a known issue in hybrid methods such as
DES and its modern versions [9]. The turbulent flow field in a hybrid simulation can
be roughly divided into three regions: a RANS region, a LES region and a buffer area
(transition layer between the RANS and LES regions). Central-difference schemes turn out
to be unstable in the RANS region, while upwind schemes have a high level of dissipation,
which leads to excessive levels of scheme viscosity in the LES region and destruction
of small eddies [10]. As a result, turbulent transport description accuracy may decrease
significantly. One way to solve this problem is to use hybrid numerical schemes that become
upwind in the RANS region and central-difference in the LES region. For example, in [11],
convective fluxes are approximated with the use of the second-order upwind scheme for
RANS and with the second-order centered scheme for delayed DES (DDES) and improved
DDES (IDDES). In addition, [11] demonstrates that subgrid model constants have to be
recalibrated with respect to the numerical method. This calibration plays a key role in
the LES region because subgrid-scale-model constants influence the dissipation level of a
numerical method. Therefore, values of these constants define resolved turbulence scales.

A standard problem in testing numerical methods and subgrid models of LES is
decay of homogeneous isotropic turbulence (DHIT)—see [12–16]—due to the fact that the
shape of its energy spectrum may be theoretically estimated. Paper [12] proposes using
the lattice Boltzmann equation to improve the accuracy of the numerical simulation. The
lattice Boltzmann equation modifies eddy viscosity. Additionally, it is worth noting that
the impact of the subgrid-scale model has to be reduced in this method through a decrease
in the value of the corresponding constant. In [13], the initial field problem was discussed,
and an original-solution method was proposed (this method is described below, in the
corresponding section). In addition, [13] demonstrates that for a pure central-difference
(CD) scheme, the influence of a subgrid model must be increased to reduce the energy
accumulation for the high wavenumbers. Further, [13] shows that upwind schemes are too
dissipative and need no subgrid model. Paper [14] focuses on subgrid models and their
calibration with the help of DNS data. Another method of subgrid model construction
is presented in [15], where an artificial neural network (ANN) was used to determine
the subgrid-scale stress tensor from the resolved velocity field. The advantage of this
approach is that no additional equations or model constants are needed. However, an
ANN needs DNS data for training, which may be difficult to obtain in the case of a complex
flow structure of industry problems. Several problems were considered in [16], such as
the initial field for subgrid parameters, the model constant values for different numerical
schemes, and the influence of the upwind part of the hybrid scheme on the turbulent-
energy spectrum.

We will focus on the LES region of the DES approach in this paper. A key issue of our
research is the correct form of the turbulent-energy spectrum. This problem may be divided
into two parts: an investigation of numerical-method influence and the optimal procedure
of obtaining a consistent initial field for subgrid model parameters. The results of [16]
were taken into account in this study. As is known, in use of an eddy-resolving approach,
the solution depends significantly on the chosen numerical method. Today, there is no
generally accepted methodology for choosing temporal or spatial approximations. Several
of these approximations were considered in this work, and their influence on the numerical
solution is investigated. It is worth noting that an approximation of the convective terms is
considered in this work. The approximation of the diffusion terms is investigated in [17].
Another concern of this paper is to analyze how the subgrid-scale model interacts with the
numerical scheme. It is demonstrated herein that for different schemes, different values
of model constants are needed to obtain the correct solution. The procedure of subgrid
model constant calibration is described and was applied to all schemes of interest. An
additional problem is the consistent initial field of the subgrid model parameters. To solve
this problem, the original algorithm was presented. This work is devoted to construction
of a correct numerical method for the DDES/IDDES (improved DDES) [11] approach and
the difficulties that arise in this case.
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This paper is organized as follows: In Section 2, the numerical setup is described. In
Section 3, the initial conditions of the test problem are presented. In Section 4, results are
discussed, followed by conclusions.

2. Numerical Method and Model

The DES approach, combining the RANS and LES approaches, was used in this paper.
The Reynolds average of an arbitrary function, a(xk, t), is defined as follows:

a(xi) = lim
Tt→∞

 1
Tt

t+Tt/2∫
t−Tt/2

a(xi, τ)dτ

,

where Tt is an averaging period and a is the averaged value. The instantaneous function
a could be expressed as the sum of the mean and fluctuating parts: a = a + a′. The Favre
average, or density-weighted average, of a(xk, t) is defined as ã = ρa/ρ (here, ρ is density),
and the decomposition of the instantaneous function a reads as a = ã + a′′ . After Reynolds
and Favre averaging, the system of conservation laws may be written as:

∂u
∂t

+
∂Fi(u)

∂xi
= 0, (1)

where u =

 ρ
ρ · ũk
ρ · Ẽ

 is the vector of the conservative variables: uk is the k-th component of

the velocity vector, E = ulul/2 + h− p/ ρ is the total energy, h = CpT is enthalpy and T is
temperature, Fi is the flux vector of u in the i-th direction:

Fi =

 ρũi

ρũkũi + pδik + ρũ′′i u′′k + τ̃ik

ρẼũi + pũi + q̃i + (ρũ′′i u′′k + τ̃ik)ũk + ρCpT̃′′ u′′k

.

Here, p is pressure, Cp is heat capacity (a constant value in the tests below) and δik is
the Kronecker delta. The terms ρũi, ρũkũi + pδik and ρẼũi + pũi represent the convective
fluxes of mass, momentum and energy, respectively. τik is the viscous stress tensor:

τik = −µ ·
(

∂ui
∂xk

+
∂uk
∂xi
− 2

3
∂ul
∂xl

δik

)
and δik =

{
0, i 6= k,
1, i = k.

,

where µ is dynamic viscosity and can be calculated using Sutherland’s formula:

µ = 1.72 · 10−5 ·
(

T
273

)3/2 273 + 122
T + 122

.

qi is the heat flux calculated by Fourier’s law:

qi = −
µ

Pr
cp

∂T
∂xi

.

Here, Pr = 0.72 is the molecular Prandtl number. The equation of state reads as
p = ρR0T/m, where R0 is the universal gas constant and m is the molar mass of the gas or
mixture. To close the written system of governing Equation (1), the Reynolds stress tensor

(ρũ′′i u′′k ), the turbulent heat flux vector (ρCpT̃′′ u′′k ) and turbulent kinetic energy (k = ũ′′l u′′l /2)
(k enters into the expression for total energy after averaging) have to be modeled.

LES equations are gained through application of the spatial filtering operator to NS
equations. The filtered NS equations coincide formally with RANS Equation (1). The former
are obtained through substitution of the Reynolds averages with filtered quantities in the
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latter. The subgrid-scale stress tensor, the subgrid-scale heat flux vector and subgrid-scale
kinetic energy also have to be modeled.

In this paper, we used the hybrid SST-DDES model developed in [11]. This model
includes two additional equations, Equations (2) and (3) (for k and ω; ω is characteristic
turbulence frequency), which are applied to the RANS region and the subgrid part of the
LES region in this paper. As a result, the system equations to solve comprise 7 equations.

Hereinafter, the average and filter symbols are omitted. The SST closure includes the
Boussinesq hypothesis for the Reynolds and subgrid-scale stress tensors; for the turbulent
and subgrid-scale heat flux vectors,

ρu′′i u′′k =
2
3

ρkδik − µt ·
(

∂ui
∂xk

+
∂uk
∂xi
− 2

3
∂ul
∂xl

δik

)
and ρCpT′′ u′′i = − µt

Prturb
Cp

∂T
∂xi

,

where Prturb = 0.9 is the turbulent Prandtl number and µt is eddy viscosity (expression is
given below).

The two supplementary equations for the subgrid-scale turbulent quantities (k
and ω) read:

∂ρk
∂t

+∇
(

ρ
→
Uk
)
= ∇[(µ + σkµt)∇k] + Pk − ρ

√
k3

lDDES
, and (2)

∂ρω

∂t
+∇

(
ρ
→
Uω

)
= ∇[(µ + σωµt)∇ω] + 2(1− F1)ρσω2

∇k∇ω

ω
+ α

ρ

µt
Pk − βρω2, (3)

where lDDES = lRANS − fdmax(0, lRANS − lLES), lLES = CDEShmax, CDES = CDES1 · F1 +

CDES2 · (1− F1), F1 = tanh
(
arg4

1
)
, andarg1 = min

[
max

( √
k

Cµωdw
; 500ν

d2
wω

)
; 4ρkσω2

max(2ρσω2
∇k∇ω

ω ;10−10)·d2
w

]
;

dw is the distance to the nearest wall.
Here, hmax is the maximum edge length of the cell. The variables α, β, σk, σω, CDES

represent the model functions that smoothly change their values between the two constants,
with subscripts 1 (near the wall) and 2 (far away from the wall). The transition is also made
using the function F1. The functions α, β, σk, σω , CDES approach the following limit values:

α1 = 5/9, β1 = 0.075, σk1 = 0.85, σω1 = 0.5, CDES1 = 0.78,
α2 = 0.44, β2 = 0.0828, σk2 = 1.0, σω2 = 0.856, CDES2 = 0.61.

The left-hand side of each equation for k (2) and ω (3) is the convective flux of the cor-
responding parameter. The first term in the right-hand side (RHS) of (2) and (3) represents
the molecular and turbulent diffusion fluxes, respectively. The second term in the RHS of
the equation for ω is the cross-diffusion flux, which is also used in the definition of F1. The
last two terms on the RHS of (2) and (3) are the sources of subgrid/modeled turbulence:
production and dissipation. The expression for turbulence production is the following:

Pk = min
(
µt2SijSij, 10Cµρkω

)
, where Cµ = 0.09 and Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the shear stress

tensor. Eddy viscosity, µt, is defined as

µt =
ρk
ω
·

max

1;

√
2SijSijF2

0.31ω

−1

,

where F2 = tan h
(
arg2

2
)

is the near-wall function; arg2 = max
(

2
√

k
Cµωdw

; 500ν
d2

wω

)
.

The RANS/LES transition is implemented with the length scale, lDDES, in the turbulence-
dissipation term. The RANS length scale is defined as lRANS =

√
k/Cµω, which takes on

significant values in the near-wall region (where k is high enough) and tends to zero else-
where. Thus, lDDES changes between lRANS and lLES with the help of the empiric blending
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function fd = 1− tanh
[
(20rd)

3
]
, where rd = µt/ρ+ν

(0.41dw)
2√SijSij+ΩijΩij

; Ωij =
1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
is

the vorticity tensor.
To select a numerical scheme appropriate for this equation system and to calibrate the

closure model constants, decay of the homogeneous isotropic turbulence (DHIT) problem
was considered. There are no walls in the DHIT problem. This means that dw → ∞ , hence
fd ≈ 1− tanh

(
1

d6
w

)
≈ 1, lim

dw→∞
F1(dw) = 0, CDES = CDES2 · (1− F1) +CDES1 · F1 ≈ CDES2

and lDDES = lRANS − fdmax(0, lRANS − lLES) = lLES ≈ CDES2hmax. Therefore, subgrid
model influence is determined by only one constant: CDES2. It is worth noting that DHIT
flow is intrinsically unsteady, and the numerical method must take this point into account.

All simulations were carried out using the second-order-accuracy finite-volume
method implemented on a multiblock structured mesh. The solver zFlare [18] from the
EWT-TsAGI package [19] was used. Diffusion fluxes were determined using a second-order
central scheme. For the primitive variables’ value reconstruction on the faces involved in
the determination of convective fluxes, the central differences of the 2nd, 4th and 6th orders
were used (hereinafter referred to as CD-2, CD-4 and CD-6, respectively; the corresponding
expressions are given in [16]), as well as a hybrid scheme that worked as a weighted
average between the upwind (weighted essentially non-oscillatory scheme constructed on
a 5 point stencil (WENO5) [20] with the monotonicity-preserving correction [21] and the
exact Riemann solver [22]) and central-difference (CD-2) approximations of the convective
terms, with the weight function, σ, defined thusly: Fconv = σ · Fupwind + (1− σ) · FCD. The
blending function, σ, is taken from [23]. CD-4 and CD-6 are implemented as half-sums of
the WENO3 and WENO5 reconstructions (with optimal weights), respectively, on the left
and right sides of the cell’s face. The approximations obtained in this way coincide with
the finite-difference interpolation formulas [24].

The temporal schemes are explicit: namely, the midpoint method, the 3-step Heun’s
scheme of the 3rd order and the 5-step strong stability-preserving scheme of the 4th order [25]
(hereinafter euler2, heun3 and ssp5, respectively).

The aforementioned DDES based on the SST model [11] with the shear-layer-adapted
(SLA) subgrid length-scale [26] was used. It should be noted that in [16], instead of the av-
erage (over the neighboring cells) value, <VTM> (vortex tilting measure), the instantaneous
value was used. Figure 1 shows the distribution of the weight function, FKH(VTM), which
is used in the definition of the subgrid length scale, ∆: ∆ = ∆̃ω · FKH(VTM) (see [26]),
where ∆̃ω depends on mesh spacing and local vorticity alignment relative to the strain-
tensor eigenvectors.
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3. Computational Mesh and Initial Conditions of the DHIT Problem

In this study, the computational domain was a cube with periodic boundary conditions.
The size of the cube was 2πL. The dimensional parameter, L, was 1 m. All simulations were
performed on uniform meshes, with the number of cells at 323 ≈ 33, 000, 643 ≈ 262, 000
and 1283 ≈ 2.1× 106.

An important turbulence characteristic in this problem is the shape of the energy
spectrum, E(k). It is defined as an integral of half of the spectrum-tensor trace over a sphere
with radius k [27]: E(k) = 1

2
v

S(k)
Φii(k)dS(k), where k is a wavenumber: k = |k|. The spec-

trum tensor is a three-dimensional Fourier transformation of the velocity correlation tensor
Rij(r) (obtained by averaging the product ui(x)uj(x + r) over the computational domain):

Φij(k) =
1

(2π)3

y
Rij(r) exp(−ik · r) dr and Rij(r) =

1
Ω

y

Ω

ui(x)uj(x + r) dx,

where S(k) is the sphere in wavenumber space with radius k, and r is the separation vector
between the points. At high Reynolds numbers, the spectrum included the Kolmogorov
inertial interval [6]: E(k) = CKε2/3k−5/3, where ε = − dEk

dt (Ek is turbulence kinetic energy).
The Kolmogorov range is followed by the range of dissipation, with a rapid decrease in E(k).
The initial velocity field was created with a synthetic turbulence generator, which is similar
to the generator in [28]. The difference is that in [28], perturbations were continuously
generated on one surface, whereas in this paper, they are generated throughout the whole
computational domain at the initial moment of time. The perturbation field is represented
as a sum of transverse harmonic oscillations. To maximize the quality of the initial field,
the wavenumber values of the harmonics were distributed as a geometric progression with
a common ratio of 1.001 instead of the standard value of 1.01 [28]. The initial turbulence
energy spectrum corresponds to the von Karman model [29]:

E(k) =
55
9π

Ek0L0

(
αL0
2π k

)4

(
1 +

(
αL0
2π k

)2
)17/6 where α ≈ 1.339,

with the following parameters:

• Initial turbulence kinetic energy can be estimated as Ek0 = 1000 m2s2. Therefore,

characteristic fluctuation velocity is u′ =
√

2
3 Ek0 ≈ 25.8 m

s and the turbulent Mach
number is Mt ≈ 0.08. Thus, the flow can be considered incompressible;

• The integral turbulence scale, L0 = πL/2 ≈ 1.57 m, is equal to a quarter of the
computational domain length. This is the largest resolved scale because bigger scale
eddies would be significantly deformed by the periodic conditions of the cube;

• The turbulent Reynolds number, Ret0 =
√

Ek0L0
ν ≈ 3× 106, is sufficiently large for

turbulence to form the inertial interval. Resolved velocity scales are inviscid. Unre-
solved velocity scales contain a fraction of the vortices from the inertial interval and
the vortices from the dissipation interval. The scales of the latter are smaller than the
numerical grid size;

• Initial integral time scale, T0, is estimated as T0 = L0/
√

2
3 Ek0 ≈ 0.06 s. All simulations

are carried out up to physical time 2T0 ≈ 0.12 s. The energy spectrum of the turbulence
is assumed to reach an equilibrium shape in two large eddy turnover times, and this
shape at the final moment of time is determined only by the properties of the subgrid
model and the numerical method.
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4. Results
4.1. Consistent Initial Field Problem

The problem of specifying the initial fields of the subgrid-scale turbulence parameters
consistent with the resolved flow field is described in [13,16]. In [13], use of the Smagorinsky
model is proposed [3] to determine the turbulent viscosity at each cell of the computational
domain. Further, the subgrid-scale kinetic energy, k, is proposed to be considered as the
difference between the total turbulence energy (obtained theoretically by integrating the
one-dimensional spectrum provided from the Comte-Bellot and Corrsin experiment [30,31]
over the whole wavenumber range) and the kinetic energy of the resolved scales. After
that, the characteristic subgrid-scale frequency value ω can be estimated as ω = k/νt. In
our viewpoint, this method is relatively laborious. Moreover, it is worth noting that the
procedure of obtaining a consistent initial field must be applied to all unsteady flows. This
means that a more general approach is needed (especially in cases when total turbulence
energy is unknown). In this paper, an original method based on [16] was used. To obtain
the initial field, only the equations for the subgrid-scale turbulence parameters were solved
(none of the rest of the flow parameters changed during the simulation); the fields of
these parameters trended toward a stationary state consistent with the resolved velocity
field obtained from the turbulence generator. However, the convergence algorithm was
simplified; the approach to the stationary state was tracked using the subgrid-scale kinetic
energy averaged over the computational domain. The ω field relaxation was not tracked,
since it was found to reach a stationary state several times more quickly than did the
k field. Figure 2 shows the dependence of the volume-averaged subgrid-scale kinetic
energy, kave, on physical time with use of a central-difference scheme and the standard
value CDES2 = 0.61 (see Section 1) on a mesh of 643 cells. The value kave was seen to
significantly change during the first integral time scale, t ≤ T0 ≈ 0.06 s. By the time
equal to 2T0 ≈ 0.12 s, the kave value had almost stopped changing (changes occurred in
the fifth significant digit). A similar behavior was observed for other CDES2 values on the
same mesh. As a result, it was decided to carry out this procedure up to a time equal to
3T0 ≈ 0.18 s, assuming that for this time period on any of the considered meshes and for
any values of the subgrid-scale parameter field, there would be enough time to adjust to
the initial resolved field. At the same time, each value of the CDES2 constant corresponds to
its own established value, kave.
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Figure 2. The evolution of kave with CDES2 = 0.61 on the mesh with 643 cells.

Another observation that can be made from Figure 2 is that the initial subgrid turbulent
energy with CDES2 = 0.61 took on a value of about 11% of the resolved turbulent energy.
This corresponds to a relation that is typical for LES [32].
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4.2. Choice of Temporal Approximation

The first series of simulations was devoted to a comparison and the choice of a
temporal approximation. For this, a mesh with 64 cells in each direction and the value
of CDES2 = 1 (value 1 was found to be optimal in [16]) were used, and convective fluxes
were approximated with CD-4. All three of the time schemes mentioned in Section 2 were
considered. The time step did not exceed 8× 10−5 s. in any case. Figure 3 shows the energy
spectra for these schemes at the end of each simulation. The euler2 scheme was seen to
create an overshoot of energy in the short-wavelength spectrum region. Thus, it is less
stable within the framework of the test problem in comparison with the other two schemes.
The heun3 and ssp5 schemes made it possible to obtain identical spectrum shapes, which
indicates a negligible contribution of their residual terms to the equations’ balance. This
means that the heun3 scheme is sufficient for further simulations. We noted an additional
benefit of the heun3 scheme compared to ssp5: it has three intermediate stages at each
step rather than five. As a result, it is possible to advance in time more efficiently. Another
conclusion that can be drawn from Figure 3 is that the chosen preliminary value of the
constant CDES2 = 1 turned out to be too high; the inertial interval k−5/3 was not maintained
in the spectra.
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4.3. Choice of Central Differences

In the second series of simulations, the central-difference scheme was varied, with a
fixed heun3 time scheme (Figure 4). Interestingly, all three of the central-difference schemes
gave similar results. This was probably due to the fact that solution reconstruction was
carried out independently along the mesh directions and one quadrature point was taken
on each face. This led to a restriction on the order of the scheme when equations were
solved in a multidimensional case. It should also be noted that when the euler2 time
scheme was used, simulations with spatial approximations CD-2, CD-4 and CD-6 gave
significantly different results (Figure 5).
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Figure 5. The energy spectrum for various central-difference approximations on a mesh with 643 cells
and euler2; CDES2 = 1.

It turns out that with an increase in the order of the central-difference scheme, its stabil-
ity decreases. This can also be demonstrated using the convection equation ut + c · ux = 0,
where c is speed of convection, with the help of the von Neumann stability analysis. It is
convenient to represent the solution at the j-th cell on the n-th time layer in the spectral
form: un

j = λn · eijα, where eijα is an eigenfunction of the numerical operator of transition
to a new time layer and λ is an eigenvalue. The necessary condition for stability has the
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following form: max
λ
|λ| ≤ 1 + O(τ) when τ, h→ 0 . In consideration of the euler2 time

scheme, it is possible in the case of CD-2 to substitute approximations and express un+1
j :

un+1
j = un

j −
cτ

2h

[
un

j+1 − un
j−1 −

cτ

4h

(
un

j+2 + un
j−2 − 2un

j

)]
.

Therefore,

λ = 1− cτ

2h

[
eiα − e−iα − cτ

4h

(
e2iα + e−2iα − 2

)]
= 1− cτ

2h

[
2i sin α +

cτ

h
sin2 α

]
,

From which it follows that

|λ| =

√√√√(1− 1
2

(
cτ sin α

h

)2
)2

+

(
cτ sin α

h

)2
=

√
1 +

1
4

(
cτ sin α

h

)4
.

Obviously, max|λ| =
√

1 + 1
4 c4rτ ≤ 1 + c4r

8 τ when τ = r1/3h4/3; r is a dimensional
constant coefficient. This means that the scheme is conditionally stable [33]. The following

can be similarly obtained for CD-4: max|λ| =
√

1 + 64
81
( cτ

h
)4

=
√

1 + 64
81 c4rτ ≤ 1 + 32c4r

81 τ.
Thus, in the spectral plane, the set of points that correspond to the growing solution
amplitude of CD-2 scheme is within the corresponding set of the CD-4 scheme. This means
that in the case of CD-4, bigger harmonics can appear at each time step. Through use of the
heun3 scheme for CD-2, it is possible to obtain the following:

|λ| =
√(

1− 1
2
( cτ sin α

h
)2
)2

+
(

cτ sin α
h − 1

6
( cτ sin α

h
)3
)2

=

√
1 + 1

36
( cτ sin α

h
)4 ·

[( cτ sin α
h
)2 − 3

]
.

The value of |λ| reaches a maximum when sin α = 1. In this case, it is possible to
obtain a stronger stability condition: |λ| < 1. To attain this, it is necessary for the right
factor of the radicand to be less than or equal to 0:

( cτ
h
)2 − 3 ≤ 0. Therefore, the scheme is

conditionally stable at τ ≤
√

3
c h. Interestingly, the relationship between the time step, τ,

and the mesh spacing, h, turned out to be linear here (the linear dependence that is used in
solving practical problems, including the problem of isotropic turbulence decay). In the
case of CD-4 and the heun3 scheme, it is possible to write the expression for |λ| as follows:

|λ| =

√
1 +

( cτ

3h
(4− cos α) sin α

)4 1
36

[( cτ

3h
(4− cos α) sin α

)2
− 3
]

.

The expression in the second set of parentheses attains its maximum at

cos α = 1 −
√

3/2. The stability condition may be expressed as: τ ≤ 3
√

12
ξ

h
c , where

ξ = 4
(

2
√

3
2 −

3
2

)
·
(

3 +
√

3
2

)2
≈ 67.79. Therefore, the limit on τ is approximately 1.26 h

c .

As a result, CD-4 has a stricter stability condition than CD-2.
In Figure 5, it can be seen that only in the case of CD-2, the spectrum obtained using

the euler2 scheme is similar to the spectra obtained using other temporal approximations.
However, the more accurate spatial schemes were observed to suffer from the effect of
energy pumping in the short-wavelength region. With this taken into account, the CD-2
scheme was chosen for all further simulations. The heun3 scheme was chosen as a temporal
approximation, since in the case of the convection equation, unlike the Euler methods, it is
stable when τ and h are linearly related and when central-difference spatial approximations
are used.
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4.4. Constant Calibration

The third series of simulations was devoted to the calibration of the subgrid model
constant CDES2 while using the previously chosen CD-2 central-difference scheme and
the heun3 temporal approximation. The method for choosing the optimal value of CDES2
is described below. A series of simulations was carried out with different values of the
constant, ranging from 0 to 1 with a step of 0.1. After that, a power-law range was found
on the energy spectrum graph, and the exponent E(k) ∼ kα was determined for it. Then, an
error function, ε, was introduced as the difference between the exponent and the theoretical
value −5/3. If the condition |ε| < 0.01 was satisfied for some of the spectra, then the
corresponding value of the constant CDES2 would be declared optimal. Otherwise, a
parabola would be constructed from the three values of ε closest to 0, depending on CDES2.
Furthermore, the point at which the parabola took on a value of zero was declared optimal,
and an additional simulation was carried out with a new value of CDES2.

Figure 6 shows the spectra obtained at various values of CDES2 on a mesh with 643 cells.
It can be seen that as CDES2 increased, the level of dissipation in the short-wavelength region
of the spectrum became larger due to growing influence of the subgrid model. Visually,
the theoretical slope corresponded to values CDES2 = 0.7 and 0.8; however, according to
the method described above, for both cases, the error exceeded the specified threshold of
0.01. As a result of a parabolic interpolation, the optimal value of CDES2 turned out to be
0.69. It is worth noting that in [16], the optimal value of the constant was equal to 1.2. This
difference can be explained by the fact that VTM averaging was not used in [16] (Figure 1).
This led to a decrease in the value of ∆ in a certain set of cells; this was compensated by
an increase in CDES2. It is worth noting that regardless of the local VTM averaging, the
global average values over the computational domain were close to 1: FKH(VTM) ≈ 0.930
and FKH(< VTM >) ≈ 0.999. Meanwhile, the optimal values of the constants differed by a
factor of 1.7.
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Figure 6. The spectrum on a mesh with 643 cells, with different CDES2 values.

Figure 7a shows the spectra closest to optimal on a mesh with 323 cells; they correspond
to the values CDES2 = 0.6, 0.7 and 0.8. A similar result is shown in Figure 7b for a mesh with
1283 cells. On the coarse mesh, the optimal value turned out to be 0.70, and on the most
refined mesh, it was 0.68. The optimal value of CDES2 barely depended on mesh spacing,
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which is a good sign that the methods were used within their ranges of applicability in this
problem; therefore, the obtained values of the coefficient can be trusted.
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Figure 8 shows the energy spectrum obtained in the simulation with the use of the
CD-2 scheme with the optimal value of the coefficient CDES2 = 0.69 (solid line). The
extended inertial interval is clearly visible almost up to the cutoff wavenumber, kcut (for
the given mesh, kcut = 32).
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CDES2 calibration was also carried out for the above-described hybrid scheme (as
before, the heun3 scheme was used as the temporal approximation). Figure 9 shows
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the spectra on a mesh with 643 cells at CDES2 = 0.5, 0.6 and 0.7. The optimal value of
CDES2 in the presence of upwind approximations turned out to be smaller than that of
a pure central-difference scheme: namely, 0.56. The spectrum obtained with this value
of the constant in the case of a hybrid scheme is shown in Figure 8 (dashed line). The
inertial interval was as wide as it would have been in the case of a pure central-difference
approximation (solid curve, Figure 8), although a slight upward convexity could be seen
upon closer consideration. Despite this remark, the hybrid scheme is of the most interest for
practical simulations. Indeed, in the presence of RANS regions and non-turbulent regions
far from the domain of study, switching to the upwind scheme is a necessary condition for
stable simulation [23].
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hybrid scheme.

4.5. Determining the Maximum Weight of the Upwind Scheme

In the final series of simulations, a numerical experiment was carried out. Its task
was to determine the maximum constant weight of the upwind scheme at which the
influence of the explicit subgrid model was still present in the solution. The practical
interest of this experiment was that the critical value of the upwind scheme weight, σ*,
would be determined. For all values over σ*, it would be possible to conduct an LES using
a more economical ILES (implicit large eddy simulation) method without the risk of energy
pumping in the short-wavelength region.

This problem was reduced to finding a constant weight, σ*, at which the simulation
where CDES2 = 0 would make it possible to obtain a solution with a sufficiently small error
in the power law E(k) ∼ k−5/3 on the inertial interval. Simulations were carried out on
a mesh with 643 cells. Formally, the subgrid model was included, but taking CDES2 to be
equal to 10−3 resulted in the model working in ILES mode.

Figure 10 shows the spectra for several different σ values. At σ = 0.02, an energy
overshoot can still be seen in the short-wavelength region of the spectrum, and at σ = 0.1,
the scheme had already turned out to be excessively dissipative. Simulations with values
of σ equal to 0.06 and 0.07 were close to the correct slope of the spectrum. The fact that
the threshold value turned out to be very small (σ* ∈ [0.06, 0.07]) suggests that the optimal
values of CDES2 obtained above are relevant only to those schemes whose behavior is very
close to that of the central difference. When the approximation of the convective term
reaches 6–7 percent of the upwind scheme, the coefficient CDES2 in the simulation should
be assumed to be equal to 0.
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Figure 10. The energy spectra in a series of ILES at various constant values of σ on a mesh with
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5. Conclusions

Hybrid upwind-central spatial approximations and time-integration schemes were
analyzed and optimized for a modern version of detached eddy simulation: namely, SST-
DDES. A method for selecting the appropriate level of subgrid viscosity was proposed.
A series of LES simulations of homogeneous isotropic turbulence decay was carried out.
The issue of generating a consistent initial field of subgrid variables was considered. The
conducted research led to the following conclusions:

• Firstly, for simulations using the current implementation of DDES in zFlare, a hybrid
scheme based on a central-difference scheme of the second order of accuracy and the
explicit three-step Heun method (which has a weaker time-step constraint than the
midpoint method) is recommended to maximize computational efficiency, at least if
the computational mesh is close to uniform;

• Secondly, with the recommended hybrid numerical method, the optimal value of
CDES2 was found to be 0.56. This value was almost independent of the mesh spacing,
at least if its cutoff scale fell within the inertial interval. At the same time, the optimal
value of CDES2 for a pure central-difference scheme of the second order of accuracy
equal to 0.69 was found;

• Thirdly, the influence of the subgrid model very quickly decreased with an increase
in the weight of the upwind part of the numerical scheme. It became insignificant at
values as low as σ = 0.07, which indicates a possibility of using these schemes with
the ILES method in eddy-resolving regions.
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