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Abstract: On the basis of previous experimental and numerical studies, the windage operation of
low-pressure turbine rear stage is investigated. The state of the steam within the rotor channel was
correlated to measurements carried out downstream of the blades for different ventilation regimes.
Considering very-low-volume flow conditions, the ventilation power was related to the drag force
acting on the moving blades. A correlation was identified between the drag coefficient and a Reynolds
number relative to the reverse flow height. This correlation can be used in order to predict the power
loss of a last-stage moving blade operating at low load.
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1. Introduction

It is generally recognized that, during low-load operation, steam-turbine rear stages
may absorb power from the turbine shaft leading to the so-called “ventilation phenomenon”.
The absorbed power is converted into heat [1], increasing the temperature of the ventilat-
ing stages. The resulting flow and blade-metal temperatures depend on the operational
conditions, such as inlet mass flow and temperature, and condenser pressure, and some
geometrical parameters such as blade height and pitch-to-chord ratio [2].

Despite this phenomenon having been studied since 1970 [3–5], its importance was
mainly confined to the start-up and shut-down of the unit.

Today, with the growing role of renewables energy in the electricity market, steam
turbine power plants operate more frequently at a low load [6,7].

Ventilation losses are generated by flow separation and the formation of recirculation
zones in the last-stage moving blades [8].

Flow separation starts in correspondence of the blade hub, causing a limited separation
in the diffuser cone, as described by Sauchev et al. [9]. There are two different zones that
can be identified at the trailing edge of the last-stage moving blades (LSMBs): a reverse-
flow region and a through-flow region (Figure 1) [8]. The separated region initially does
not have any significant effect on the net power produced by the LSMB. As soon as the
volumetric flow reduces, the recirculating region increases, and the reverse flow height
increases accordingly [10]. The steam flow starts to be centrifugated in the radial direction,
leading to an increase in negative power and flow temperature in correspondence of the tip
region of the moving blade. As soon as the dimension of the through-flow region reduces,
the net power associated with the last-stage blades decreases accordingly, as reported by
Shnee et al. [5]. There is a point where the net power of the last-stage blades becomes
negative, producing heat that leads to an increase in flow and blade metal temperatures [11].
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Figure 1. Schematic representation of flow-reversal phenomenon [12]. 

The capability of accurately assessing the ventilation power and the resulting tem-
perature rise is a key aspect in today’s energy market. It enables power plants to: 
• Define and operate at the lowest admissible volumetric flow. This has a direct impact 

on the fixed and variable costs. Fixed costs are related to the potential modifications 
of the existing steam generator to allow for continuous low-load operation, and in 
defining the size of any potential auxiliary boiler that can run only when a low load 
is required [13]. 

• Run continuously at a low load to avoid cycling operation, which usually has an im-
pact on the lifetime of key mechanical components such as turbine shafts, economiz-
ers, and reheater and superheater tubes. 

• Optimize hood sprays, minimizing the risk of trailing edge erosion. A cooling system 
based on water sprays is installed at the low-pressure turbine exhaust. A temperature 
sensor is installed within the flow path to provide the signal for the automatic start 
and control of the spray-water quantity. The sizing of the nozzle sprays and the 
amount of sprayed water must be related to the ventilation power: if the ventilation 
power is underestimated, there would not be enough water to cool down the exhaust 
and the LSMB. The unit may trip for high temperature. If the ventilation power is 
overestimated, the resulting hood sprays are oversized. The injected water does not 
evaporate because not enough heat is produced by the ventilation power experienced 
by the LSMB. The droplets sprayed in the exhaust are dragged by the recirculating 
flow, eroding the trailing edge of the LSMB. This contributes to the degradation of 
the LSMB performance over the time, and could lead to the generation and propaga-
tion of cracks at the trailing edge of the last moving blades. This issue can be critical 
for blades characterized by high dynamic stresses in correspondence of the root or 
for moving blades produced from materials that have low fracture toughness such 
as titanium. Therefore, even when using hood spays, it is very important to assess 
the ventilation power in the most accurate way. In addition, hood sprays have no 
effect on the penultimate stages [14]. 

• Place the expansion line of the low-pressure turbine in the superheated region to 
avoid water droplet erosion. 
In previous works, the authors investigated in depth the windage phenomenon, char-

acterizing it and introducing several useful correlations for turbine design [14,15]. In [16], 
different ventilation regimes were identified. In particular, for very-low-flow coefficients, 
the separated flow occupies most of the rotor channel. In this condition, the blade moves 
in a stagnant fluid, dissipating power because of the drag resistance. The aim of the pre-
sent paper is to correlate the drag force intensity to the thermofluidic dynamic conditions 
of the flow by introducing a characteristic drag coefficient. Such a relationship can be 

Figure 1. Schematic representation of flow-reversal phenomenon [12].

The capability of accurately assessing the ventilation power and the resulting temper-
ature rise is a key aspect in today’s energy market. It enables power plants to:

• Define and operate at the lowest admissible volumetric flow. This has a direct impact
on the fixed and variable costs. Fixed costs are related to the potential modifications
of the existing steam generator to allow for continuous low-load operation, and in
defining the size of any potential auxiliary boiler that can run only when a low load is
required [13].

• Run continuously at a low load to avoid cycling operation, which usually has an impact
on the lifetime of key mechanical components such as turbine shafts, economizers,
and reheater and superheater tubes.

• Optimize hood sprays, minimizing the risk of trailing edge erosion. A cooling system
based on water sprays is installed at the low-pressure turbine exhaust. A temperature
sensor is installed within the flow path to provide the signal for the automatic start
and control of the spray-water quantity. The sizing of the nozzle sprays and the
amount of sprayed water must be related to the ventilation power: if the ventilation
power is underestimated, there would not be enough water to cool down the exhaust
and the LSMB. The unit may trip for high temperature. If the ventilation power is
overestimated, the resulting hood sprays are oversized. The injected water does not
evaporate because not enough heat is produced by the ventilation power experienced
by the LSMB. The droplets sprayed in the exhaust are dragged by the recirculating
flow, eroding the trailing edge of the LSMB. This contributes to the degradation of the
LSMB performance over the time, and could lead to the generation and propagation
of cracks at the trailing edge of the last moving blades. This issue can be critical for
blades characterized by high dynamic stresses in correspondence of the root or for
moving blades produced from materials that have low fracture toughness such as
titanium. Therefore, even when using hood spays, it is very important to assess the
ventilation power in the most accurate way. In addition, hood sprays have no effect
on the penultimate stages [14].

• Place the expansion line of the low-pressure turbine in the superheated region to avoid
water droplet erosion.

In previous works, the authors investigated in depth the windage phenomenon,
characterizing it and introducing several useful correlations for turbine design [14,15].
In [16], different ventilation regimes were identified. In particular, for very-low-flow
coefficients, the separated flow occupies most of the rotor channel. In this condition, the
blade moves in a stagnant fluid, dissipating power because of the drag resistance. The aim
of the present paper is to correlate the drag force intensity to the thermofluidic dynamic
conditions of the flow by introducing a characteristic drag coefficient. Such a relationship
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can be useful in developing models able to predict the operational conditions of turbines
running at a very low load.

Some details of both the plots and the mathematical relationships cannot be shown for
confidentiality reasons.

2. Experimental and Numerical Methods

In previous works, the low-load phenomenon has been investigated in detail through
both experimental and numerical analyses.

Below is shown only a brief summary of the experimental and numerical campaigns
carried out. Please refer to the references for more details and insights.

2.1. Experimental Setup

The experimental approach was widely described in [14]. Low-volume tests were
carried out in a scaled model steam turbine, which was the same as that described by
Megerle in [17]. The maximal output power generated by the steam turbine was between
6 and 8 MW, depending on the condenser pressure and the size of the last-stage blades.

The steam turbine is characterized by four stages (two front stages and two rear stages)
and a radial diffuser, which is about 1/3 of the full size. Its configuration and equipment
allow for performing detailed measurements relative to the ventilation power absorbed
by the penultimate and last stages. Temperature, pressure, and velocity measurements
along the blade span were taken on the different planes of CS52, CS61, and CS62, and at
the different circumferential locations of S05, S06 and S07 (Figure 2).
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Figure 2. Detailed view of the model steam turbine rear stages and rake temperature measurements [18].

Pressure and velocity measurements were performed with a conventional pneumatic
probe or using a dynamic pressure sensor. Temperature measurements were taken with
thermocouples of type K installed on a rake. The thermocouples on rake CS62 were not
regularly located: the radial pitch in the tip region was rather small in order to ensure the
measurement of the maximal flow temperature [12].

2.2. Numerical Setup

The numerical setup was extensively described in previous works, for example, in [12,19].
Briefly, 3D calculations were performed by means of the ANSYS CFX code. The ensemble
averaged Navier–Stokes equations coupled to the energy equation and the SST turbulence
model were solved by means of an implicit element-based finite-volume formulation. A
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streamline curvature correction was also considered in order to overcome some drawbacks
due to the eddy viscosity approach.

Steam properties were calculated on the basis of the IAPWS-97 steam table [20].
The whole scaled turbine and the exhaust box were modelled in ANSYS ICEM-CFD

and ANSYS Turbogrid, with the front stages as a single pitch, and the rear stages as a
full annulus.

By means of the multiple-mixing-plane approach [21], each stage was modelled with
4 sectors, as shown in Figure 3, discretizing in each of them a single stator and a rotor blade.
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As the authors in [12] showed, the CFD model is able to reproduce windage phe-
nomena in the turbine rear stages well. For example, the maximal temperature difference
between measurements and calculations was about 10 ◦C for each considered test case,
while the reverse flow height was always well-predicted.

3. Results
3.1. Low-Load Tests

Different sets of rear stages were tested with different thermodynamic boundary
conditions and rotational speed levels.

All tests were performed below 10% of the steam turbine nominal load. Therefore, the
resulting thermodynamic state of the steam at the last-stage blade outlet was superheated
for all the test cases, as reported by Mambro et al. [15].

A summary of the different last-stage blade layout is reported in Table 1, while Table 2
shows some details of the rear stage that are analyzed in this paper [17]. In particular, the
low-load test cases reported in Table 3 are considered.

Table 1. Experimental setup of low-pressure turbine rear stages and diffuser.

Full-Size Exhaust Area/Reference Exhaust Area Free Tip Snubber Pitch/Chord
(Midsection)

1.6 x Yes 0.703
1.3 x Yes 0.703
1.0 x Yes 0.703
1.1 x Yes 0.6653
1.0 x Yes 0.784
1.0 x no 0.784
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Table 2. Main last-stage design parameters for the reference exhaust area.

Last Stage Blades

Full-size exhaust area/reference exhaust area 1.0
Pitch-to-chord ratio (midsection) 0.784

Hub-to-tip ratio LSMB 0.45
Tip-clearance/moving-blade height ratio (%) 0.8

Part span connection yes

Table 3. Summary of some representative test cases.

Test
Case

Mass Flow (% of
Maximal Design Value)

Inlet Temperature
(T/Tref)

Condenser
Pressure (p/pref)

Flow
Coefficient (φ)

1 5 1.05 1.8 0.022
2 5 1.03 1.25 0.045
3 8 1.13 1.15 0.071
4 8 1.15 1.05 0.09
5 11 1.23 1 0.12

Referring to Table 3, the flow coefficient is defined as:

φ =
Cax

Uav
(1)

where Cax is the average axial velocity at the exhaust, and Uav is the blade rotational velocity
calculates at the midsection. The reference temperature Tref is the minimal tested steam tur-
bine inlet temperature. The reference pressure pref is the minimal tested condenser pressure.

3.2. Experimental and Numerical Results

Figure 4 shows the distribution of measured axial velocities downstream of the LSMB.
They were derived from the direct measurement of the absolute velocity and the rotational
speed on the measurement plane. Conventionally, the crossing point between the velocity
distribution and the zero axial velocity determines the so-called reverse-flow height [15].
Figure 4 also shows that the reverse-flow height increased when the flow coefficient decreased.
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Figure 4. Distribution of the axial velocity along the blade span. (left) Mean values on CS62 plane;
(right) mean reverse flow height. Axial velocity and flow coefficient values are not shown for
confidentiality reasons.

The extension of the reverse-flow height also influenced the temperature field, as
shown in Figure 5. The measured temperature distribution shifted towards higher values
as soon as the flow coefficient decreased. For each test case, as per usual for low-volume-
flow operation, the maximal temperature was reached in the upper part of the blade.
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Figure 5. Measured temperature downstream of the LSMB. Temperature values are not shown for
confidentiality reasons.

The CFD analyses carried out in [15,16,19] better clarify the experimental results
(Figure 6). According to the characteristic ventilation regimes identified in [16], the first two
test cases fell within the highest ventilation zone where the recirculating flow downstream
of the LSMB was predominant compared to the through-flow area (Zone A). Test Case
3 was characterized by a significant reverse-flow area, but it was still comparable to the
active area; the LSMB ventilated, and the overall net power was negative (zone B). Test
Cases 4 and 5 fell within the transitional region where the flow started to separate to the
hub. The recirculating flow region was negligible; thus, the overall net power produced by
the LSMB was positive even though rather small (Zone C).
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When the flow separated to the hub, the recirculating fluid was pushed along the blade
span by the centrifugal action. The blade rotated in a stagnant fluid and was subjected to a
resistant force that delivered power to the fluid; this power (i.e., the ventilation power) was
converted into heat. The extension of the reverse-flow height influenced the ventilation
power produced by the blades and the amount of generated heat. The flow coefficient was
smaller, and the reverse-flow height and generated heat were larger.

Maximal temperatures were reached at the tip of the blade where the centrifugal
action that compressed the fluid against the machine casing was maximal, as shown in
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Figure 7. A secondary vortex tended to form at the tip of the blade; however, this secondary
recirculation area was much smaller than the main recirculation area.
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Figure 7. Test Case 2—calculated axial velocity and flow temperature field.

At the blade tip, numerical results also show that the axial velocity field pushed
the fluid towards the measurement rake placed downstream of the LSMB. Then, the
temperature transducers grasped the maximal temperatures reached in the blade channel.

At the hub, instead, the axial velocities were equal to or less than zero. The measure-
ment rake detected the fluid temperature coming from the exhaust, which was significantly
smaller than that inside the blade channel.

However, the radial distribution of the temperature within the majority of the reverse-
flow height could be assumed to be uniform both in the blade channel and downstream of
the trailing edge, where the measurement rake was located.

Referring to the reverse flow region, Figure 8 shows the difference between the mean
temperature calculated into the blade channel and the measured one downstream the blade.
For high-enough flow coefficients, there was still a steam expansion between the rotor
channel and downstream of the blade (Zone C, Figure 6). The more the flow coefficient
reduced, the more the stagnant fluid remaining into the blade channel was compressed,
increasing the steam temperature, as shown in Figure 7.
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Figure 8. Difference in temperature between calculated data within the blade channel and measure-
ments downstream of the blade. Flow coefficient values are not shown for confidentiality reasons.

The trend shown in Figure 8 is of key importance to build up a transfer function that
allows for the assessment of the flow temperature in the reverse-flow region inside the blade
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channel where the ventilation phenomena occur from the measured temperature in the
exhaust via the rake. This difference depends on the flow coefficient via a linear function.

This correlation can be useful in estimating the properties of steam recirculating within
the moving blade channel, starting from data measured downstream of the trailing edge.

Drag Coefficient Estimation

At windage operation, the LSMB delivers work to the steam. This power can be
expressed as:

P = Pv − Pa (2)

where Pv is the power dissipated to move the blade through the stagnant fluid, while Pa is
the power that the steam flow delivers to the blades moving through the active area.

For very-low-volume flows, such as for test cases within Zone A, Pa could be neglected,
i.e., the measured ventilation power could be considered to be significantly predominant
compared to the active power.

Following this approach, the ventilation power due to viscous drag on a blade rotating
at rotational speed ω is given by:

Pv = ωRF (3)

where F is the frictional force on the blade in the reverse-flow height; R is the radius of the
pressure center, approximated to be equal to the mean radius of the reverse-flow height.

The frictional force can be calculated according to Equation (4):

F = CD AK (4)

where CD is a drag coefficient, K is the kinetic energy per volume unit, and A is the
characteristic area that is the wetted airfoil area. This is calculated as the airfoil perimeter
at the midsection of the reverse-flow height multiplied by the latter, as shown in Figure 9.

Fluids 2022, 7, x FOR PEER REVIEW 9 of 12 
 

where 𝑈 = 𝜔𝑅 (6) 

is the average rotational speed of the blade in the reverse flow area, while 𝜌 is the mean 
steam density in the reverse-flow height. 

Lastly, starting from the measured data, the drag coefficient could be calculated ac-
cording to Equation (7): 𝐶 = 𝑃0.5𝐴𝜌𝑈   (7) 

 
Figure 9. Schematic representation of the airfoil perimeter at the midsection and reverse-flow 
height. 

A relationship between the drag coefficient and a Reynolds number was identified 
for the last-stage blades of different sizes, pitch-to-chord ratios, and rotational speed lev-
els, as shown in Figure 10, which shows the results relative to a wide range of mass flows, 
inlet temperatures, and condenser pressures always running the LSMB in windage con-
ditions (i.e., the LSMB always delivering work to the fluid). 

 
Figure 10. Calculated drag coefficient vs. Reynolds number for different steam turbine last-stage 
blades—values per blade. CD,ref is the minimal drag coefficient found. 

TC5

TC4

TC3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.0E+0 5.0E+5 1.0E+6 1.5E+6 2.0E+6 2.5E+6

C D
/C

D,
 re

f[
-]

Reynolds Number [-] 

Figure 9. Schematic representation of the airfoil perimeter at the midsection and reverse-flow height.

K is calculated according to Equation (5):

K = 0.5ρU2
rev , (5)

where
Urev = ωR (6)

is the average rotational speed of the blade in the reverse flow area, while ρ is the mean
steam density in the reverse-flow height.
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Lastly, starting from the measured data, the drag coefficient could be calculated
according to Equation (7):

CD =
Pv

0.5AρU3
rev

(7)

A relationship between the drag coefficient and a Reynolds number was identified for
the last-stage blades of different sizes, pitch-to-chord ratios, and rotational speed levels, as
shown in Figure 10, which shows the results relative to a wide range of mass flows, inlet
temperatures, and condenser pressures always running the LSMB in windage conditions
(i.e., the LSMB always delivering work to the fluid).
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The Reynolds number was related to the reverse-flow height according to Equation (8):

ReRFH =
UrevDrev
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Cax Axial velocity 
CD Drag coefficient 
CD,ref Reference drag coefficient  

(8)

where Drev is the outer diameter of the reverse-flow height, and
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A Characteristic area 
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CD Drag coefficient 
CD,ref Reference drag coefficient  

is the mean value of the
kinematic viscosity of the steam recirculating in this region.

The kinematic viscosity (Equation (8)) and steam density (Equation (5)) were calculated
from the condenser pressure and the flow temperature in the reverse-flow height.

The condenser pressure could be used with good approximation because there was
practically no pressure recovery in the turbine exhaust due to the separated flow coming
from the rear-stage turbine.

According to the measurements and CFD calculations, the flow temperature could also
be assumed to be rather uniform in the LSMB channel. This temperature was estimated by
correcting the temperature measured downstream of the stage by means of the relationship
shown in Figure 8.

As highlighted by the markers relative to Test Cases 3–5, ReRFH increased with the
RFH; thus, extreme windage regimes are characterized by the highest values of ReRFH .

Figure 10 also highlights a clear link between the drag coefficient and the Reynolds number
for cases in which the recirculation area does not affect the whole blade span (Test Case 3).

This link can be expressed according to Equation (9), for which a coefficient of deter-
mination equal to 0.97 was found.

CD = α·Reβ
RFH (9)
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4. Conclusions

The results presented in this paper are useful in further understanding the behavior of
low-pressure turbines operating in windage conditions. In particular, the found relation-
ships can be useful in assessing the ventilation power that the last moving blade delivers to
the fluid.

Temperature data measured downstream of the blade were correlated to the mean
temperature of the recirculating steam within the blade channel. For high ventilation
regimes, this allows for calculating the drag force opposite to the blade motion and the
relative blade drag coefficient. A large number of experimental tests prove that this drag
coefficient is well-correlated to a Reynolds number defined for the reverse blade height.
This good correlation was found not just for extreme windage conditions, but also for each
operating condition in which the turbine delivers mechanical power to the steam.
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Nomenclature

A Characteristic area
Cax Axial velocity
CD Drag coefficient
CD,ref Reference drag coefficient
CFD Computational fluid dynamics
Drev Outer diameter of the reverse flow height
F Frictional force on the blade in the reverse flow height
K Kinetic energy per volume unit
LSMB Last-stage moving blades
P Power delivered to the steam by the LSMB at windage operation
Pa Active power
Pv Ventilation power
R Mean radius of reverse flow height
ReRFH Reynolds number calculated as: RERFH = Urev Drev
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Nomenclature 
A Characteristic area 
Cax Axial velocity 
CD Drag coefficient 
CD,ref Reference drag coefficient  

RFH Reverse flow height
T Inlet temperature
TC Test case
Tref Reference temperature
Uav Average circumferential velocity of the blade
Urev Average rotational speed of the blade in the reverse flow area
α, β Constant values
υ Mean value of the kinematic viscosity of the steam recirculating in the reverse flow area
p Condenser pressure
pref Reference pressure
ρ Mean steam density in the reverse flow height
φ Flow coefficient calculated as: φ = Cax

Uav

ω Rotational speed
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