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Abstract: The numerical calculation of local mass distributions in membrane systems by computa-
tional fluid dynamics (CFD) offers indispensable benefits. However, the concept to calculate such
distributions in response to separate variations of operation conditions (OCs) makes it difficult to
address overall, flow-physics-related questions, which require the consideration of the collective
interaction of OCs. It is shown that such understanding-related relationships can be obtained by the
analytical solution of the advection–diffusion equation considered. A Fourier series model (FSM) is
presented, which provides exact solutions of an advection–diffusion equation for a wide range of
OCs. On this basis, a new zeroth-order model is developed, which is very simple and as accurate
as the complete FSM for all conditions of practical relevance. Advection-dominated blocked and
diffusion-dominated unblocked flow regimes are identified (depending on a Péclet number which
compares the flow geometry with a length scale imposed by the flow), which implies relevant require-
ments for the use of lab results for pilot- and full-scale applications. Analyses reveal the equivalence
of variations of OCs, which offers a variety of options to accomplish desired flow regime changes.

Keywords: membrane; mass transport; flow regimes

1. Introduction

Computational studies of membrane systems as illustrated in Figure 1 enable very
valuable insight into the effectiveness of performance measures, e.g., with respect to con-
centration polarization and fouling [1–11], as well as evaluating flow unsteadiness induced
by different spacer configurations [12–28]. Such computational insights are invaluable
given the experimental challenges associated with directly quantifying such phenomena.
In one recent study, Liang et al. [29] used two-dimensional (2D) computational fluid dy-
namics (CFD; the use of this term refers here to the numerical solution of partial differential
equations) simulations to resolve the roles played by bulk flow and slip velocities at a
membrane surface for generating shear forces at the membrane surface. From this work,
it was determined that the origin of shear induction was less important when compared
with the resonant frequency of the perturbations themselves for increasing flux through the
disruption of foulant and concentration polarization boundary layers. Similarly valuable
insights into improving the hydrodynamic conditions within spiral wound membrane
elements were made by Foo et al. [30]. Using CFD, these researchers identified optimum
spacer geometries for enhancing water flux (up to a 40% flux enhancement) through a mem-
brane through maximizing unsteady-state shear forces at a membrane surface. Reaching
this outcome, as is the case in other similar studies, required computationally intensive
evaluations of the hydrodynamic environments within the membrane flow channels. Re-
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gardless of the complexities involved, the impacts that such studies have on improving the
performance and energy efficiency of membrane processes is obvious.

permeate channel

feed channel

x

y
membrane

flow direction

Figure 1. Membrane system illustration.

Despite the indispensable benefits of CFD, the use of such numerical investigation
methods is non-trivial, time-consuming, dependent on the availability of numerical codes,
and affected by the numerical schemes applied [31–39]. For example, the influence of
Péclet numbers (see Equation (6)) has consequences for the equation type considered and
the numerical solution of these equations. The equation shows a parabolic (hyperbolic)
behavior if the Péclet number is small (large). The numerical solution of such equations
becomes increasingly difficult as the Péclet number increases due to the onset of spurious
oscillations or excessive numerical damping if standard finite difference or finite element
formulations are used [40]. A particular problem is the usual application of Reynolds-
averaged Navier–Stokes (RANS) equations. If spacers are involved, separated flow will
appear (recirculation zones), and RANS equations are known to not have the capability to
deal with such flow features (the latter requires the use of rather sophisticated, partially
resolving flow simulation methods [41–48]). On top of knowledge about detailed mass
distributions in membrane systems for specific operation conditions OCs provided by CFD,
knowledge of specific flow regimes (which may have desired or undesired characteristics)
is very helpful for the membrane system design process. Diffusion–advection processes are
characterized by diffusion-dominated and advection-dominated flow regimes, which are
separated by corresponding Péclet numbers [40,49]: when this number is small (large), then
diffusion (advection) dominates. However, there is a large variety of Péclet numbers that
can be considered [50], there are often fuzzy criteria for characterizing different flow regimes
(such as Péclet numbers larger or smaller than unity), and the practical consequences of
such regime separations are not always obvious. So, there are questions regarding the
membrane system design (see also Figure 2):

Q1. What determines the existence of qualitatively different mass transport regimes?
Which interplay of geometry and OCs is implied, which matters to upscaling?

Q2. How is it possible to accomplish desired flow regime changes by equivalent variations
of OCs?

Q3. For different flow regimes, how is it possible to understand the overall mass transport
through membranes and characteristic mass distribution features?

The CFD approach often provides an inappropriate basis to address these questions: sep-
arate parameter variations hardly allow conclusions about collective parameter effects.

x

y

x1* =0 x2*

y1*

y2*

c= f(y )*
c =x* 0

c =y* 0

c = cy* -2 /

Pey
Pe

Ad

flow regimes see Fig.( 4)

overall mass transport

c c x y y A Pe Pey= ( , - | , d* * 1* , , )

equivalence conditions of OC

Figure 2. An illustration of the flow configuration considered and flow physics questions addressed
(in blue). Operation condition parameters are given in red. Partial derivatives (cx∗and cy∗) are
indicated here by subscripts.
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In addition to CFD, the use of analytical simulation methods is beneficial because of
several reasons. Their use hardly depends on the availability of codes. They are by orders
of magnitude more efficient than the numerical integration of partial differential equations
in time because of the independence of discretizations and the need to honor numerical
stability criteria under significant model parameter variations. Such analytical simulation
methods can be used for the verification of numerical solvers because they provide exact
results (i.e., independent evidence is not needed to support them). However, first of all,
the availability of such models offers the chance to address questions about basic mass
transport mechanisms, e.g., regarding the questions Q1–Q3 presented above.

One question related to the use of analytical simulation methods is about their required
complexity and simplicity of using them. For the case considered, analytical simulation
methods are given by Fourier series representations, there is the question of whether the
complexity of such Fourier series representations can be significantly reduced to enhance
the clarity of conclusions. Another question related to analytical simulation methods is
that their development requires the neglect of effects of spacers, which modify basic flow
characteristics implied by geometry, inflow and boundary conditions. The specification of
spacer effects on the basic flow configuration varies in the literature [30,51,52]. There are
indications that spacers can produce higher fluxes of about 30–40% compared with cases
without spacers [30,51,52]. This means analytical simulation methods can be expected to
provide valuable guidelines for the characterization of basic flow features, even under
conditions where spacers and other effects (flow unsteadiness) are involved. Thus, there
are questions in addition to Q1–Q3 considered above:

Q4. What is the most simple analytical model which still enables accurate calculations
equivalent to complete Fourier series solutions?

Q5. Given the required approximate representation of the flow field, which arguments sup-
port the use of analytical simulation methods under more complex flow conditions?

Analytical solutions obtained by Laplace transforms were presented for a variety
of problems, for example, in regard to turbulent dispersion of air pollution [53] and dif-
fusion of oxygen into the blood [54], but no corresponding solutions were presented in
regard to membrane systems. The corresponding value of analytical simulation methods is
demonstrated here by addressing the questions Q1–Q5 presented above. Fourier analysis is
applied for the derivation of analytical results, which offers (via the analysis of eigenvalue
regimes) essential new insight. The model development is presented in Section 2 in con-
junction with the consideration of questions about the model evaluation and computational
aspects. Model applications are reported in Section 3 by focusing on the influence of OCs
on species concentration distributions. Section 4 deals with conclusions about the questions
considered.

2. Model Development
2.1. Equation Considered

Incompressible flow and a 2D domain are considered, see the illustration in Figure 2.
The velocity field is approximated by assuming constant velocities U and V in the x and
y directions, which is a requirement to obtain analytical solutions. The suitability of this
assumption is considered in Section 4, conclusion #5, in conjunction with mass transport
properties. A mixture (e.g., an oil-in-water emulsion) of a continuous phase (e.g., water) and
a dispersed phase (e.g., oil at low concentrations) is considered. The solutions presented
below are not specific to oil-in-water emulsions, they can be applied to many other systems.
According to refs. [7,10,55], the dispersed phase transport equations in the feed/permeate
region and membrane region (see Figure 1), respectively, read

∂c
∂t

+ U
∂c
∂x

+ V
∂c
∂y

= DM

( ∂2c
∂x2 +

∂2c
∂y2

)
,

∂εpc
∂t

+ U
∂c
∂x

+ V
∂c
∂y

= Dc

( ∂2c
∂x2 +

∂2c
∂y2

)
. (1)

Here, c refers to the dispersed phase concentration, t is time, DM refers to the molecular
diffusion (of oil in water), Dc refers to the capillary diffusion, and εp is the membrane
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porosity. The constant diffusivities DM and Dc are considered in consistency with the
consideration of constant velocities U and V. Diffusion in x direction (which is sometimes
neglected) is included. No attempt is made to differentiate between the velocities U and
V involved in Equation (1) because these equations are covered by one equation in the
following, in particular, the advection–diffusion equation of the membrane region,

∂c
∂t

+ Û
∂c
∂x

+ V̂
∂c
∂y

= D̂c

( ∂2c
∂x2 +

∂2c
∂y2

)
. (2)

Here, Û = U/εp, V̂ = V/εp, and D̂c = Dc/εp are introduced. The solution obtained can
be easily applied as a solution to the feed/permeate region equation by a corresponding
adjustment of model parameters (by setting εp = 1 and replacing Dc by DM). The domain
considered is 0 ≤ x ≤ x2 and y1 ≤ y ≤ y2; see the illustration in Figure 2. By involving
imposed functions g(x, y) and f (y), the initial distribution and x boundary conditions
(BCs) at x = x1 = 0 and x = x2 are given by

c(x, y, 0) = g(x, y), c(0, y, t) = f (y),
∂c
∂x

(x2, y, t) = 0. (3)

The latter condition applies to the case that diffusion in x direction is included. The y BCs
at y = y1 and y = y2 are given by

∂c
∂y

(x, y1, t) = 0, c(x, y2, t)V̂/δ + D̂c
∂c
∂y

(x, y2, t) = 0. (4)

The y BCs modify a constant mass transfer (zero gradient) along y by the condition at
y2, which leads to an accumulation of the dispersed phase in the membrane region; see
the discussion in the beginning of Section 3. The parameter δ introduced here enables
variations of the mass transfer at y2; Equation (A2) in the Appendix A shows that 2/δ
represents the standardized membrane permeability. The introduction of δ is relevant to the
identification of the critical Péclet number Pec = 4/(2+ δ) in Section 3.1. The measurement
of δ is addressed in Section 3.2. Implications of these BCs may be well seen in figures below
(although the effects may be small, see the distributions along x∗).

An important property of the solution c(x, y, t) is its boundedness: if the initial and
boundary values of c(x, y, t) lie within a minimum and maximum, cmin ≤ c ≤ cmax, then all
c(x, y, t) values are bounded by this range [56]. The consideration of an advection–diffusion
equation for the dispersed phase is equivalent to the consideration of a stochastic particle
model for this phase (a random model for the positions of oil droplets, a Brownian motion
model originally applied to describe the motion of pollen grains in water) where the mass
concentration represents a non-normalized probability density function (PDF) [57]: the
concentration has all the properties of a PDF except that it is not normalized.

It is helpful to introduce normalized variables: x∗ = Ûx/(2D̂c), y∗ = V̂y/(2D̂c), and
t∗ = V̂2t/(4D̂c). By using these normalized variables, Equation (2) reads

∂c
∂t∗

+ 2
U2

V2
∂c

∂x∗
+ 2

∂c
∂y∗

=
U2

V2
∂2c
∂x2∗

+
∂2c
∂y2∗

. (5)

The equations derived in the following reveal that c = c
(
x∗, y∗ − y1∗, t∗|x2∗, ∆, δ, U/V

)
,

where ∆ = y2∗ − y1∗. It is convenient to introduce usually applied non-dimensional
numbers, the aspect ratio A, the Péclet number Pe, and the Péclet number Pey in y direction,

A =
x2

y2 − y1
, Pe =

Ûx2

D̂c
, Pey =

V̂(y2 − y1)

D̂c
. (6)
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Pe and Pey represent the product of corresponding Reynolds numbers (Ûx2/ν and V̂(y2 −
y1)/ν, respectively) with the Schmidt number ν/D̂c, where ν is the kinematic viscosity. By
applying the relationships

x2∗ = Pe/2, ∆ = Pey/2, U/V = Pe/(APey), (7)

the solution c = c
(

x∗, y∗ − y1∗, t∗|x2∗, ∆, δ, U/V
)

can be written in the following way:

c = c
(
x∗, y∗ − y1∗, t∗|A, Pe, Pey, δ). (8)

The solution c(x∗, y∗, t∗) to Equation (5) involves two ingredients, the stationary solution
s(x∗, y∗) for infinitely large t∗ and the transitional solution w(x∗, y∗, t∗),

c(x∗, y∗, t∗) = s(x∗, y∗) + w(x∗, y∗, t∗). (9)

The stationary and transitional solutions s(x∗, y∗) and w(x∗, y∗, t∗), which are referred
to as stationary Fourier series model (FSM) and transitional Fourier series model (FSM),
are given by Equation (A3) and Equation (A17), respectively; see the explanations in the
Appendix A.

2.2. Validation of the Model Implementation

The equations were implemented in an in-house code written for this application. In
numerical model applications, the use of the stationary and transitional FSMs obtained
ensures exact solutions to the advection–diffusion equation considered. Relatively sim-
ple analysis also shows that the use of the structures of Xn(x∗) and Un(y∗) given in the
Appendix A ensures the correct upper and lower y∗ BCs and outflow BCs. However, the
inflow BCs represented by the sum of Fourier series contributions in the model implemen-
tation require validation because they are affected by the numerical implementation, for
example, the correct calculation of eigenvalues. This question is addressed in terms of
Figure 3, which shows the concentration distribution along y∗/∆ for reference parameters
Pey = 1, Pe = 102, A = 103, δ = 10, and δ = 1 at x∗ = 0. The dashed lines represent the
imposed profile, the colored lines arise from imitated implementation errors: the neglect
of one eigenfunction contribution, and the incorrect calculation of one eigenvalue (βm

0 or
β

p
0 , respectively) given by a modification by a factor of 2 or 0.5. It may be seen that such

incorrect implementations have serious consequences. Both the neglect of one eigenfunc-
tion contribution or an eigenvalue modification (by a factor of 2 or 0.5) implies that the
model is incapable to correctly provide the imposed profile. Therefore, checks whether con-
centration calculations are in consistency with imposed profiles are sufficient to conclude
that the model implementation is correct. A relatively simple way to provide additional
support for the correct model implementation is to ask whether the solutions obtained
satisfy the boundedness of mass transport requirement. This is, e.g., not the case for the
cases with implementation errors presented in Figure 3: such model results disagree with
the boundedness of mass transport because concentration values below zero and above
one are obtained. For all the cases presented below, it was found that the boundedness
requirements were satisfied by model solutions.

2.3. Computational Cost

The computational cost of the presented method depends very much on the conver-
gence behavior of Fourier representations involved. The stationary solution is driven
by the convergence of y∗ eigenfunctions. A scaling analysis reveals that Un(y2∗) ∼
(q1 − q2)Pey/n2 at sufficiently high n, where q1 and q2 are positive and negative numbers
of order unity (which are related to the two contributions to an in Table A1). Correspond-
ingly, transitional solution contributions scale with w2(y2∗, 0) ∼ q1Pey/n2, where q0 is
a positive number of order unity. The easiest way to see these scalings is to multiply
series contributions with the inverse scaling to demonstrate that series contributions do
not change with n and parameter variations. Let us suppose the convergence requirement
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that the related Fourier series contributions need to be smaller than 10−9. This implies
the condition Pey/N2 ≤ 10−9, i.e., N ≥ 104.5Pe1/2

y ≈ 3.2× 104Pe1/2
y . For usual values

Pey ≤ 1, this condition can be easily satisfied (in less than a minute). A corresponding
scaling analysis of x∗ eigenfunctions involved in the transitional solution part shows that
w1(x2∗, 0) ∼ (−1)n+1qPe(1 + 2/Pe)/n3, where q is a positive number of order unity. By
using again a convergence criterion that corresponding Fourier series contributions need
to be smaller than 10−9, the corresponding convergence condition reads Pe/N3 ≤ 10−9

for sufficiently high Pe, this means N ≥ 103Pe1/3. For Pe = (102, 103, 104), for example,
one finds N ≥ (4.6× 103, 104, 2.2× 104). Such simulations take much less than a minute
on a personal computer. A very essential observation is the following. In contrast to the
stationary solution s(x∗, y∗), the transitional solution w(x∗, y∗, t∗) = cinw1(x∗, t∗)w2(y∗, t∗)
is given by separated variations in x∗ and y∗. This makes computations by orders of mag-
nitude more efficient because a double loop over x∗ and y∗ eigenvalues does not appear.

c

d =10

=1Pey

=10A
3

=100Pe

no b0

m

2b0

m

0.5 b0

m

( )a

y
*
/D

no b0

p

2 b0

p

0.5 b0

p
( )b

d =1

=1Pey

=10A
3

=100Pe

c

y
*
/D

Figure 3. The concentration distribution along y∗ from y1∗ (lower bound) to y2∗ (upper bound) for
reference parameters Pey = 1, Pe = 102, A = 103, and δ = 10 in (a) and δ = 1 in (b) at x∗ = 0
(dashed lines). The red lines refer to the neglect of βm

0 or β
p
0 , respectively, eigenfunction contributions.

The blue and green lines refer to a modification of βm
0 or −β

p
0 , respectively, by the given factors

(2 and 0.5).

The computational development of the simulation method leads to four observations.
(i) The computational method is computationally highly efficient: exact solutions are
obtained on a personal computer in less than a minute. (ii) A specific question related
to the computational cost is about the scaling of cost with model parameters such as the
Péclet numbers involved (Pe and Pey). It was shown that such model parameter variations
have very minor effects on the solution convergence with respect to both the stationary and
transitional solution. (iii) One key element of correct solutions is the exact iterative solution
of eigenvalue equations for all parameter regimes, which represents a challenging task. An
efficient algorithm for handling this question was presented here. (iv) Another key element
is, in particular, the correct identification of the lowest order eigenvalues for all parameter
regimes, otherwise the method simply does not work.

3. Model Application

Results using the model obtained are presented now by focusing for simplicity on the
stationary solution (the transitional solution is discussed in Section 3.2)

c = c
(

x∗, y∗ − y1∗|A, Pe, Pey, δ). (10)

The parameters involved are given by Equation (6). As shown in the Appendix A
in the paragraph below Equation (A6), the critical parameter that separates different
eigenvalue regimes is given by p = 2/δ − (1 + 2/δ)Pey/2 (see also the illustration
in Figure 4). To restrict attention, it is assumed that δ ≥ 0. According to the BC,
s(x∗, y2∗) + [δ/2][∂s/∂y∗](x∗, y2∗) = 0, which implies a negative concentration gradient
at y2∗; this is equivalent to the calculation of a concentration (of oil) that has at the lower
boundary y1∗ a larger value than at the upper boundary y2∗. It is worth noting that the
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assumption δ < 0, which implies decreasing concentration values toward the lower bound-
ary, may well be in conflict with the boundedness of mass transport for the conditions
considered because concentration values larger than unity can be obtained.

d

Pey

advection

dominated

< 0p> 0p

diffusion

dominated

Figure 4. Parameter regimes: the black curve shows Pey values for which p = 2/δ − (1 +

2/δ)Pey/2 = 0.

3.1. FSM: Flow Regimes and Equivalent OC

The concentration distribution at x∗ = x2∗and y∗ = y1∗ is shown in Figure 5 for
varying parameters A, Pe, Pey, and δ. The most relevant observation is that p = 2/δ−
(1 + 2/δ)Pey/2, which separates different eigenvalue regimes and also separates different
concentration regimes; see Figure 5a. For p < 0, one finds high concentration values which
do not change much with δ. We refer to this case as blocked flow below. For p > 0, one
finds much lower concentration values which are, approximately, linearly controlled by δ.
We refer to this case below as unblocked flow. The critical Pey for which p = 0 reads Pec =
4/(2 + δ), which is bounded, 0 ≤ Pec ≤ 2. Hence, p can be written p = 2(1− Pey/Pec)/δ.
Here, Pey/Pec represents a normalized Péclet number. By introducing L f = PecD̂c/V̂, it
can be written Pey/Pec = (y2 − y1)/L f . Correspondingly, the conditions for the unblocked
(blocked) flow regimes are given by

y2 − y1 < L f (y2 − y1 > L f ), (11)

respectively. Here, L f represents a characteristic length scale which depends only on flow
properties. Equation (11) state, therefore, the requirement that the domain height has to be
sufficiently small to enable unblocked flow. The relationship between unblocked/blocked
flow and diffusion/advection-dominated flow regimes can be seen as follows. In unblocked
flow, the diffusion dominates: molecular transport governs this regime basically unaffected
by the directional influence of advection. It is, therefore, very natural to identify the
unblocked (blocked) flow regimes as diffusion (advection)-dominated flow. According to
p = 2(1− Pey/Pec)/δ, a Péclet number Pey/Pec smaller (larger) than unity is the condition
to have diffusion (advection)-dominated flow.

Figure 5b–d shows the same huge discrepancies between blocked and unblocked flow
regimes seen in Figure 5a. Figure 5c,d indicates an equivalence between Pe and inverse A
effects. The structure of A curves can be seen as follows. An increased A−1 = (y2 − y1)/x2
is equivalent to a decreased x2, which implies a higher Û to keep Pe = Ûx2/D̂c unchanged.
The higher the Û, the higher is the concentration reduction. The same mechanism implies
Pe effects: an increased Pe is equivalent to a higher Û. With respect to Figure 5b, it is
worth noting the following. According to Equation (A4), the x∗/x2∗ dependence of the
concentration distribution is basically controlled by U/V: x∗/x2∗ variations will disappear
if U/V vanishes. This case is almost irrelevant to applications, because usually U >> V.
For Pey > 1 in Figure 5b, one finds Pe/(APey) = U/V < 0.1, i.e., this range of variations
is unlikely to be seen in applications. For Pey ≤ 1, the Pey = V̂(y2 − y1)/D̂c effects
result from the following. An increased Pey implies a larger y2 − y1 and x2 to keep A
unchanged. This implies a smaller Û to keep Pe constant. Hence, an increased Pey increases
the concentration.
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c

d

=10Pe
2

=1Pey =10A
3

( )a< 0p

Pey

d =10

=10Pe
2

=10A
3

( )b< 0p

c

Pe

( )c

d =10

=1 ( < 0)Pe py

=10A
3

=0.1

( 0)

Pe

p >
y

c

10
3 -1
A

( )d

d =10

=100Pe

=1 ( < 0)Pe py

=0.1

( 0)

Pe

p >
y

c

Figure 5. The concentration distribution at x∗ = x2∗, y∗ = y1∗ (dashed lines) and y∗ = y2∗ (solid
lines) for reference parameters δ = 10, Pey = 1, Pe = 102, and A = 103. Variations of δ, Pey, Pe, A are
shown in (a), (b), (c), and (d), respectively. The reference parameters kept constant are also given. In
(a,b), the vertical line separates p > 0 and p < 0 cases. In (c,d), both p > 0 and p < 0 cases are shown.

Spatial concentration distributions are shown in Figures 6 and 7. The figures confirm
the close relation between Pe, A−1 and Pey effects. As discussed above, an increase in
Pe and A−1 reflects an increase in Û, i.e., a change in Pe can be accomplished by a cor-
responding change in A−1. An analysis of such changes in the blocked flow regime (by
looking at requirements for equivalent variations) reveals that increasing Pe by a factor k is
approximately equivalent to dividing A by k1.5. The relation between Pey and A variations
is slightly different; see the discussion related to Figure 5. Different patterns can be seen for
U/V < 0.1. However, according to the discussion related to Figure 5, this is the regime of
little relevance to applications. Apart from this regime, an analysis shows that multiplying
A by a factor k is approximately equivalent to multiplying Pey with a factor slightly larger
that k (1.2k or 1.3k), i.e., there is an equivalence of Pey and A variations.

The huge discrepancy between the high-concentration blocked flow and much lower-
concentration unblocked flow regimes can be seen again in Figures 6 and 7. In addition to
this difference, there is another factor coming into play: U/V = Pe/(APey), which controls
the x∗/x2∗ variation according to R = [1 + (1 + β2

n)U2/V2]1/2. In the small U/V regime,
which is of little relevance to applications (see above), one finds the following features. For
U/V = 0.05− 0.1, there are almost linear variations; see Figure 7b,c. For U/V < 0.05, one
finds relatively minor concentration variations along x∗/x2∗, including almost constant
concentration values if U/V << 0.05; see Figure 7b. This is the region where U/V has
almost no influence on the concentration distribution. Otherwise, for U/V > 0.1, one
observes a significant (exponentially) spatial concentration reduction, even for the blocked
flow regime; see Figure 7c. Regarding the y∗/∆ variations shown in Figure 6, there are
almost homogeneous concentration distributions. The latter is a consequence of two facts:
the inflow distribution at y∗ = y1∗, and the boundedness of scalars which excludes the
appearance of minimum and maximum values in between boundary values.
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Figure 6. The concentration distribution along y∗ from y1∗ (lower bound) to y2∗ (upper bound) at
x∗ = 0 (dashed lines) and x∗ = x2∗ (solid lines). Reference values δ = 10, Pey = 1, Pe = 102, and
A = 103 are considered in (a–d) in conjunction with variations of δ, Pey, Pe, A. In (e,f), complementary
cases to (c,d) are considered to cover the p > 0 case, where Pey = 0.1 in contrast to Pey = 1 in (c,d).
The reference parameters kept constant are also given. The black dots on curves indicate p > 0 cases.
The x∗ = 0 profiles are unaffected by Pe, A variations. In (e,f), all solid curves coincide.
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Figure 7. The concentration distribution (a–f) along x∗ at y∗ = y2∗ (solid lines) by following the
notation applied in Figure 6. The dashed lines show the results of model Equation (12).

3.2. Zeroth-Order Model

The relevance of the lowest eigenvalue contributions is certainly of interest. To address
this question, the stationary FSM is reduced to only these contributions by considering
s0(x∗, y∗) = ey∗ a0X0(x∗)U0(y∗). By involving the BC Equation (A13), a more appropriate
writing reads s0(x∗, y∗) = f (y∗)X0(x∗), i.e.

s0(x∗, y∗) =

= c1

(
1− (y∗−y1∗)

2

∆(∆+δ)

)
e(1−R0)x∗ 1+R0−(1−R0)e−2R0(x2∗−x∗)

1+R0−(1−R0)e−2R0x2∗
,

(12)
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where R0 = [1 + (1 + β2
0)U

2/V2]1/2, x2∗ = Pe/2, ∆ = Pey/2, and U/V = Pe/(APey).
Depending on negative or positive p values, one needs to use either βm

0 or β
p
0 , respec-

tively, in R0. Here, β
p
0 and βm

0 have to be found iteratively by solving Equation (A8) and
Equation (A10), respectively; this means they are found via

β
p
0∆ = arctan

{
β

p
0

1 + δ(1 + [β
p
0 ]

2)/2

}
, βm

0 ∆ = arctanh
{

βm
0

1 + δ(1− [βm
0 ]

2)/2

}
. (13)

Figure 8 demonstrates that simple approximations for these eigenvalues (simple functions
of Pey or δ) are unavailable, meaning that they need to be determined iteratively via
Equation (13). A simple alternative is to use an online calculator [58] to accurately solve
the equations considered. According to Figure 8, zero eigenvalues may be found if Pey =
Pec = 4/(2 + δ). The model Equation (12) is referred to below as zeroth-order model
(ZOM). For given model parameters ∆(∆ + δ) = Pey(Pey + 2δ)/4, R0, and Pe, this model
completely specifies the structure of the concentration distribution via the imposed BC
f (y∗) and X0(x∗), which represents exponential decay along x∗.
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Figure 8. Eigenvalues βm
0 and −β

p
0 as function of (a) Pey (depending on δ) and (b) δ (depending on

Pey). The vertical lines separate βm
0 from −β

p
0 .

The performance of Equation (12) is also shown in Figure 7. It may be seen that the
performance of this model is excellent with one minor exception: the U/V < 0.05 cases
in Figure 7b. However, as discussed in relation to Figure 5, this is a case that is almost
irrelevant to applications. On the one hand, the performance of Equation (12) reveals the
fundamental relevance of including the eigenvalues of lowest order. On the other hand,
this performance enables it to perform accurate simulations based on the simple analytical
model Equation (12).

Figure 9, where the same cases are considered as in Figure 7, confirms the assumption
that the same applies to the transitional solution (a constant initial value c(x∗, y∗, 0) = cin =
1 is considered): the reduction of Equations (A17)–(A19) to only considering the lowest
eigenvalue contributions results in transitional solutions that do not show any visible
difference from the complete solutions (A17)–(A19). As given in regard to the stationary
solution, this fact enables the use of a simple analytical formula for performing highly
accurate simulations.

First, the ZOM is very beneficial regarding the characterization of the concentra-
tion distribution by global maximum and minimum values, which exist because of
the boundedness of mass transport. The spatial concentration distributions shown in
Figures 6 and 7 reveal a global concentration maximum and minimum at (x∗, y∗) = (0, y1∗)
and (x∗, y∗) = (x2∗, y2∗), respectively. The ZOM then provides the maximum and mini-
mum values

smin = s0(x2∗, y2∗) = c1

[
1− ∆/(∆ + δ)

]
X0(x2∗), smax = s0(0, y1∗) = c1. (14)

Thus, by involving Pey = 2∆, the stationary ZOM solution is found to be bounded by
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c1

[
1−

Pey

Pey + 2δ

]
X0(x2∗) ≤ s0(x∗, y∗) ≤ c1. (15)

Second, the ZOM is very beneficial regarding the estimation of model parameters,
which are required to apply the ZOM and FSM and are relevant to scaling questions
(upscaling). The aspect ratio A = x2/(y2 − y1) is known, but a relevant question is
about how δ, Pe = Ûx2/D̂c, and Pey = V̂(y2 − y1)/D̂c can be determined. This question
is not trivial because Pe = Ûx2/D̂c and Pey = V̂(y2 − y1)/D̂c involve the membrane
diffusivity D̂c, which is difficult to measure, and δ, too, is difficult to determine on the
basis of s(x∗, y2∗) + [δ/2][∂s/∂y∗](x∗, y2∗) = 0. This question is considered by assuming
the measured values of the stationary solution provided by the ZOM. It is possible to
address this question in a more general set up, but for simplicity, it is assumed here that
U/V is known in addition to A. Because of X0(0) = 1, it is found that s0(0, y∗) = f (y∗) =
c1(1 − (y∗ − y1∗)

2/[∆(∆ + δ)]). Hence, concentration values taken at two appropriate
positions enable us to determine ∆ = Pey/2 and δ. Because U/V is known, δ, Pey, and
Pe = APeyU/V are found.
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Figure 9. The concentration distribution (a–f) as function of time t∗ at x∗ = x2∗, y∗ = y2∗ (solid lines)
by considering the same cases as in Figure 7 (solid lines). The dashed lines show the results of using
only the lowest eigenvalue contributions in Equations (A17)–(A19): there is no visible difference to
solid curves.

Third, the ZOM can be used to obtain exact conclusions about the equivalence con-
ditions for model parameter variations discussed in Section 3.1. As a first example, let us
consider s0(x∗, y1∗) = c1X0(x∗) by excluding variations of Pe and δ. In this case, X0(x∗) is
affected by variations of Pey and A only via (1 + β2

0)/[Pe/(APey)]2 in R0. Then, variations
of A can be compensated by variations of Pey which ensure an unchanged X0(x∗). As a
second example, let us consider s0(x∗, y1∗) = c1X0(x∗) by excluding variations of Pey and
δ. Then, X0(x∗) is unchanged in response to A variations if Pe is calculated by the condition
to have an unchanged X0(x∗). As a third example, let us consider the parameter ∆/(∆ + δ),
which determines the minimal concentration along y∗ according to Equation (15). This
parameter can be used to balance membrane fouling reflected by a change in δ from δ1 to δ2.
The latter requires to determine a change ∆2 of ∆1 such that ∆1/(∆1 + δ1)= ∆2/(∆2 + δ2).
The latter requirement can also be written δ2/δ1 = Pey,2/Pey,1. This means an increase in
δ2 (a reduced flux) can be compensated by a corresponding higher Pey.
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4. Summary

An analytical FSM for the mass transport in membrane systems is presented here.
Our method is computationally highly efficient and exact, i.e., no independent evidence
is needed for model results, only the implementation needs justification. Evidence for
the validity of results and computational features is described in Sections 2.2 and 2.3.
Our conclusions were obtained by Fourier analysis, which provides analytical results that
cannot be obtained by experimental or numerical studies.

Let us summarize the answers obtained in regard to the questions Q1–Q5 presented
in Section 1. For doing so, the OCs (A, Pe, Pey, δ) are assumed to be known; questions in
this regard can be addressed by following the discussion at the end of Section 3.2. Based
on our core results, the identification of flow separation conditions y2 − y1 ≶ L f (see
Equation (11)), the discussions of equivalent OC variations (see Section 3), and the ZOM
s0(x, y) = f (y)X0(x) (see Equation (12)), there are the following conclusions:

1. Arguably, our most relevant observation is that p = 2(1− Pey/Pec)/δ, which sepa-
rates different eigenvalue regimes and also separates different mass transport regimes,
in particular diffusion (p > 0, y2 − y1 < L f ) and advection (p < 0, y2 − y1 > L f )-
dominated regimes. These regime separation conditions compare geometric condi-
tions (the domain size) with the characteristic length scale L f imposed by the flow.
Given a membrane size considered, knowledge of the regime separation conditions
is beneficial for the understanding of upscaling requirements, i.e., the use of lab re-
sults for pilot- and full-scale applications; with respect to the same flow properties,
upscaling can imply transitions from very efficient to very inefficient flow regimes. A
very relevant observation is that diffusion-dominated and advection-dominated flow
regimes correspond to unblocked (low concentration values) and blocked (high con-
centration values) flow. Hence, the mathematical characterization of the dominance of
one process has relevant physical consequences. Advection-dominated flow implies
blocked flow because the dominance of advection inhibits molecular diffusion, i.e.,
the reduction in concentration gradients.

2. Knowledge of analytical equivalence conditions for A, Pe and Pey parameter varia-
tions for cases of practical relevance enables the use of various parameter variations
to realize desired effects (under conditions where certain parameter variations are
inappropriate). The understanding of several ways to accomplish regime changes
enables transitions to preferred flow regimes (see the discussion related to Figure 7).
The ZOM can provide exact conclusions about equivalent variations of OCs.

3. The FSM, but in particular the ZOM, provide an answer to question Q3 about the
understanding of the overall mass transport and characteristic mass distribution
features: for both flow regimes, the ZOM explains the difference between (input and
output) boundary values implied by OCs and characteristic concentration variations
in between these bounds. In particular, the ZOM enables the explicit calculation of
global maximum/minimum concentration values c1(1− Pey/[Pey + 2δ])X0(x2∗) ≤
s0(x∗, y∗) ≤ c1, which is helpful for the understanding of concentration variations.

4. Based on the FSM, the ZOM s0(x, y) = f (y)X0(x) was presented, which be can be
easily applied. The ZOM performance was found to be excellent for all regimes of
practical relevance; see above. The significant advantages offered by the ZOM are
described above (see second and third points).

5. According to Equation (2), the mass transport is affected by mass transport properties
(diffusivity D̂c), mass transport initial and BCs, and the structure of the velocity field.
The transport properties are known, and there is no problem to exactly satisfy mass
transport initial and BCs. Although the velocity field is only approximately repre-
sented, the boundedness property of mass transport ensures then proper transitions
between the imposed exact BCs, i.e., more complex flow conditions can be covered by
the method considered.
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Our conclusions support the membrane system design via providing relevant guide-
lines for applications; see the preceding paragraph, in particular the conclusions regarding
questions Q1–Q3. It can be expected that the results obtained provide valuable guide-
lines for CFD and experimental studies, even under conditions where spacers and other
effects are present (see the conclusion to question Q5). Direct applications of our method
to membrane system design are not the scope of our paper, the latter requires extensive
comparisons with corresponding CFD results for a wide range of parameter variations.

The results presented may be seen as modeling of the solute concentration of oil-in
an oil-in-water emulsion (see the reference to a corresponding stochastic particle system
in Section 2.1). However, in fact, the same equations can be used to model a variety of
other systems, as, for example, saltwater systems for brackish water and seawater reverse
osmosis. It is worth noting that the method presented actually represents a design strategy
that can be applied to other (radial) geometries; it can be extended to three-dimensional
analyses, and it can be applied with other initial and boundary conditions. Results obtained
on this basis can be expected to provide valuable additional information and conclusions
in support of numerical and experimental studies of membrane systems.
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Nomenclature

A aspect ratio, x2/(y2 − y1)

c dispersed phase concentration
cin initial value in c(x∗, y∗, 0) = cin
c1 model parameter, see Equation (A13)
DM molecular diffusion coefficient
Dc capillary diffusion coefficient
D̂c Dc/εp
f (y) imposed boundary condition
g(x, y) imposed initial condition
L f characteristic length, PecD̂c/V̂
Pe Péclet number, Ûx2/D̂c
Pey Péclet number, V̂(y2 − y1)/D̂c
Pec critical Péclet number, 4/(2 + δ)

p parameter, 2/δ− (1 + 2/δ)Pey/2
R parameter, [1 + (1 + β2

n)U2/V2]1/2

s, w stationary, transitional solutions
t time
t∗ non-dim., V̂2t/(4D̂c)
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Un shifted y eigenfunction
U, V velocities in x, y directions
U/V non-dim., Pe/(APey)

Û, V̂ U/εp, V/εp
Xn x eigenfunction
x, y positions in space
x1, x2 x domain bounds
y1, y2 y domain bounds
x∗, y∗ non-dim., Ûx/(2D̂c), V̂y/(2D̂c)

x2∗ non-dim., Ûx2/(2D̂c) = Pe/2
y1∗, y2∗ non-dim., V̂y1/(2D̂c) , V̂y2/(2D̂c)

β0, βm
0 , β

p
0 eigenvalues, see Equations (12) and (13)

∆ non-dim., y2∗ − y1∗ = Pey/2
δ−1 membrane permeability in Equation (4)
εp membrane porosity
ν kinematic viscosity
()min,max minimum, maximum values
()0 zeroth order contributions

Appendix A. Stationary and Transitional Solutions

Appendix A.1. Stationary Solution

The stationary solution satisfies the stationary partial differential equation

2
U2

V2
∂s

∂x∗
+ 2

∂s
∂y∗

=
U2

V2
∂2s
∂x2∗

+
∂2s
∂y2∗

, (A1)

combined with non-homogeneous BCs,

s(0, y∗) = f (y∗), ∂s
∂x∗

(x2∗, y∗) = 0, ∂s
∂y∗

(x∗, y1∗) = 0,
s(x∗, y2∗) +

δ
2

∂s
∂y∗

(x∗, y2∗) = 0.
(A2)

The solution s(x∗, y∗) of Equation (A1) can be obtained by separation of variables [56]. It
reads

s(x∗, y∗) =
N

∑
n=0

sn = ey∗
N

∑
n=0

anXn(x∗)Un(y∗), (A3)

where N → ∞ is supposed. The x∗ eigenfunctions, which read the eigenvalues βn of y∗
eigenfunctions, are given by

Xn(x∗) = e(1−R)x∗ 1 + R− (1− R)e−2R(x2∗−x∗)

1 + R− (1− R)e−2Rx2∗
, (A4)

where R = [1 + (1 + β2
n)U2/V2]1/2. Equation (A3) applies the modification Yn(y∗) =

ey∗Un(y∗) of y∗ eigenfunctions, which simplifies the ordinary differential equation (ODE)
for y∗ eigenfunctions because of a vanishing first-order derivative. For n = 1, 2, . . ., the
modified eigenfunctions are found to be given by

Un(y∗) = βncos[βn(y∗ − y1∗)]− sin[βn(y∗ − y1∗)]. (A5)

For the case n = 1, 2, . . . considered, the y∗ eigenvalues βn satisfy the equation

π−1βn(y2∗ − y1∗)− n = π−1arctan
{

βn

1 + δ(1 + β2
n)/2

}
. (A6)

This equation can be solved iteratively starting with βn = nπ/(y2∗− y1∗) on the right-hand
side (RHS). The solution is obtained after fewer than 20 iterations. The converged solution
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can be written βn = νπ/(y2∗ − y1∗), where ν refers to the shifted eigenvalue (in contrast to
n). Depending on the BCs (the setting of δ), it turns out that ν is bounded, n ≤ ν ≤ n + 1/2.
Here, the lower and upper limits correspond to δ→ ∞ and δ = 0, respectively.

However, there are also contributions for n = 0. In particular, these contributions
are determined by the sign of p = 2/δ− (1 + 2/δ)∆, where ∆ = y2∗ − y1∗ is applied [56].
Here, p arises from the BCs of U [56]. One finds 0 = U′(y1∗)− p1U(y1∗) and 0 = U′(y2∗) +
p2U(y2∗), where p1 = −1 and p2 = 1 + 2/δ. The latter implies p = p1 + p2 + p1 p2∆. Let
us consider these two cases in the following two paragraphs (the consideration of p = 0
has little practical value because it implies a specific setting for ∆ which can be avoided).

(a) Case p > 0: In this case, there is one additional positive eigenvalue (denoted by
β

p
0 , p refers to a positive eigenvalue) below β1 = π/(y2∗ − y1∗). The eigenfunction follows

Equation (A5),

Up
0 (y∗) = β

p
0cos

[
β

p
0(y∗ − y1∗)

]
− sin

[
β

p
0(y∗ − y1∗)

]
. (A7)

The eigenvalue β
p
0 is determined by the solution of Equation (A6) with n = 0,

β
p
0(y2∗ − y1∗) = arctan

{
β

p
0

1 + δ(1 + [β
p
0 ]

2)/2

}
. (A8)

This equation was solved iteratively in the same way as Equation (A6) by applying, how-
ever, 1000 iterations starting with βm

0 = 10−8.
(b) Case p < 0: In this case, there is one additional negative eigenvalue (denoted by

βm
0 , m refers to a negative eigenvalue). The corresponding eigenfunction reads

Um
0 (y∗) = βm

0 cosh[βm
0 (y∗ − y1∗)]− sinh[βm

0 (y∗ − y1∗)] =

= γ−1
2 eβm

0 (y∗−y1∗) + γ+1
2 e−βm

0 (y∗−y1∗),
(A9)

where βm
0 is given by the solution of

βm
0 (y2∗ − y1∗) = arctanh

{
βm

0
1 + δ(1− [βm

0 ]
2)/2

}
. (A10)

An alternative formulation of this equation, which is based on the solution of the quadratic
equation for βm

0 , reads

βm
0 = − 1

δ tanh(βm
0 ∆)

+

√
1

δ2tanh2(βm
0 ∆)

+ 1 +
2
δ

. (A11)

The latter equation was found to deal correctly with the limit βm
0 → 1. It was numeri-

cally solved in the same way as Equation (A8) by applying 1000 iterations starting with
βm

0 = 10−6.
The coefficients an in Equation (A3) are chosen such that the stationary solution s

matches an imposed boundary function f (y∗) at x∗ = 0; this means s(0, y∗) = f (y∗).
The key for deriving the coefficient formula is to make use of the orthogonality of Un(y∗)
eigenfunction,

∫ y2∗
y1∗

Un(y∗)Um(y∗)dy∗ = δnmw2
n, where the squared norm w2

n of Un is given
in Table A1.



Fluids 2022, 7, 369 16 of 20

Table A1. Fourier coefficients an and am
0 of the stationary solution, where ap

0 = a0.

Positive eigenvalues

an = c1
sin(βn∆)

w2
n

e−y2∗ − c1
e−y2∗ [k1ncos(βn∆) + k2nsin(βn∆)]− 4βne−y1∗

w2
n∆(∆ + δ)(1 + β2

n)2
,

k1n = 2βn

[
2 + (1 + β2

n)∆
]
, k2n = 1− 2β2

n +
[
1 + (1 + β2

n)∆
]2

,

w2
n =

1 + β2
n

2
∆− 1− β2

n
4βn

sin(2βn∆) +
1
2

cos(2βn∆)− 1
2

Negative eigenvalue

am
0 = c1

sinh(βm
0 ∆)

w2
m

e−y2∗ − c1
e−y2∗

[
k1mcosh(βm

0 ∆) + k2msinh(βm
0 ∆)

]
− 4βm

0 e−y1∗

w2
m∆(∆ + δ)(1− [βm

0 ]
2)2

,

k1m = 2βm
0

[
2 + (1− [βm

0 ]
2)∆

]
, k2m = 1 + 2[βm

0 ]
2 +

[
1 + (1− [βm

0 ]
2)∆

]2
,

w2
m =

1
2
−

1− [βm
0 ]

2

2
∆ +

(1− βm
0 )

2

8βm
0

e2βm
0 ∆ −

(1 + βm
0 )

2

8βm
0

e−2βm
0 ∆

By using this property, one obtains

an =
1

w2
n

∫ y2∗

y1∗
e−y∗ f (y∗)Un(y∗)dy∗. (A12)

The requirement for the imposed function f (y∗) is that it needs to satisfy the BCs. In order
to do so, it is assumed that

f (y∗) = c1

{
1− (y∗ − y1∗)

2

∆(∆ + δ)

}
. (A13)

The use of this expression in Equation (A12) provides an as given in Table A1. The ab-
breviations ap

0 and am
0 are used to refer to the coefficients related to positive and negative

eigenvalues, respectively. It is worth noting that w2
n and w2

m refer to the squared norm of
Un and Um

0 , respectively. In correspondence to the notation used before, w2
0 refers to the

squared norm of Up
0 . With respect to am

0 , there arises a question about the limit βm
0 → 1,

which is relevant to some parameter regimes. In this limit case, one finds am
0 to be given by

am
0 = c1

sinh(βm
0 ∆)

w2
m

e−y2∗ − c1
1− e−2∆(1 + 2∆ + 2∆2)

4w2
m∆(∆ + δ)

e−y1∗ . (A14)

The latter expression was applied for |βm
0 − 1| ≤ 10−8. The model (A3) obtained in this

way represents the stationary Fourier series model (FSM).

Appendix A.2. Transitional Solution

The transitional solution satisfies the non-stationary equation,

∂w
∂t∗

+ 2
U2

V2
∂w
∂x∗

+ 2
∂w
∂y∗

=
U2

V2
∂2w
∂x2∗

+
∂2w
∂y2∗

, (A15)

combined with homogeneous BCs,

w(0, y∗, t∗) = ∂w
∂x∗

(x2∗, y∗, t∗) = ∂w
∂y∗

(x∗, y1∗, t∗) = 0,
w(x∗, y2∗, t∗) + δ

2
∂w
∂y∗

(x∗, y2∗, t∗) = 0,
(A16)

and the initial condition w(x∗, y∗) = g(x∗, y∗). The solution w(x∗, y∗, t∗) of Equation (A15)
can be found via separation of variables. It is given by

w(x∗, y∗, t∗) = cinw1(x∗, t∗)w2(y∗, t∗), (A17)
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where (by supposing N → ∞ and M→ ∞)

w1(x∗, t∗) =
M

∑
m=1

cmsin(αmx∗)exp
{

x∗ − (1 + α2
m)[U/V]2t∗

}
, (A18)

w2(y∗, t∗) =

= ∑N
n=0 bn

[
βncos[βn(y∗ − y1∗)]− sin[βn(y∗ − y1∗)]

]
exp
{

y∗ − (1 + β2
n)t∗

}
.

(A19)

With respect to w2(y∗, t∗), the terms of zeroth order are provided in dependence on p
as described above regarding the stationary solution; see cases (a) and (b). This means,
for p > 0 Equation (A19) is applied, whereas sin[. . .] and cos[. . .] are replaced by the
corresponding sinh[. . .] and cosh[. . .] functions for p < 0.

In consistency with Table A1, the y∗ Fourier coefficients (which were determined by
the condition to integrate to one, meaning no initial y∗ variation was considered) are given
in Table A2.

Table A2. y∗ Fourier coefficients bn and bm
0 of the transitional solution (bp

0 = b0).

Positive eigenvalues

bn =
sin(βn∆)

w2
n

e−y2∗ , w2
n =

1 + β2
n

2
∆− 1− β2

n
4βn

sin(2βn∆) +
1
2

cos(2βn∆)− 1
2

Negative eigenvalue

bm
0 =

sinh(βm
0 ∆)

w2
m

e−y2∗ , w2
m = −

1− [βm
0 ]

2

2
∆ +

1 + [βm
0 ]

2

4βm
0

sinh(2βm
0 ∆)− 1

2
cosh(2βm

0 ∆) +
1
2

The corresponding x∗ Fourier coefficients can be calculated on the basis of the orthogonality
property of x∗ eigenfunctions,

∫ x2∗
0 sin(αnx∗)sin(αmx∗)dx∗ = δnmw2

x, where the squared
norm of x∗ eigenfunctions is given by

w2
x =

x2∗
2
− sin(2αmx2∗)

4αm
. (A20)

The x∗ eigenvalues αm in Equation (A18) satisfy the equation

π−1αmx2∗ − n = −π−1arctan(αm). (A21)

Here, n = 1, 2, . . . refers to non-disturbed eigenvalue numbers. The technique to solve
this equation for n = 1, 2, . . . is equivalent to the solution of Equation (A6) related to the
stationary solution, where 20 iterations were applied. There is one positive eigenvalue
below α1 = π/x2∗ which is included in the solution of Equation (A22) for n = 1, 2, . . ..

With respect to the x∗ Fourier coefficients, the condition reads

cm =
1

w2
x

∫ x2∗

0
e−x∗g(x∗)sin(αmx∗)dx∗, (A22)

where g(x∗) is an imposed x∗ profile. Regarding the latter,

g(x∗) = cinex∗−x2∗
[
1 + (x2∗ − x∗)(1 + 1/x2∗)

]
x∗/x2∗ (A23)

is applied. This function follows the ex∗ variation of w1(x∗, t∗); the factor ex2∗ is included for
normalization. The function g(x∗) is positive, bounded, and correctly satisfies the x∗ BCs;
this means g(0) = 0 and g′(x2∗) = 0. By using Equation (A22), the x∗ Fourier coefficients
obtained read

cm =
2(1 + 1/x2∗)e−x2∗

x2∗w2
xα3

m

[
1− cos(αmx2∗)

]
. (A24)
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The model Equation (A17) obtained represents the transitional Fourier series model (FSM).
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