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Abstract: Hybrid RANS-LES methods are supposed to provide major contributions to future turbu-
lent flow simulations, in particular for reliable flow predictions under conditions where validation
data are unavailable. However, existing hybrid RANS-LES methods suffer from essential problems. A
solution to these problems is presented as a generalization of previously introduced continuous eddy
simulation (CES) methods. These methods, obtained by relatively minor extensions of standard
two-equation turbulence models, represent minimal error simulation methods. An essential obser-
vation presented here is that minimal error methods for incompressible flows can be extended to
stratified and compressible flows, which opens the way to addressing relevant atmospheric science
problems (mesoscale to microscale coupling) and aerospace problems (supersonic or hypersonic flow
predictions). It is also reported that minimal error methods can provide valuable contributions to the
design of consistent turbulence models under conditions of significant modeling uncertainties.

Keywords: computational fluid dynamics (CFD); large eddy simulation (LES); Reynolds-averaged
Navier–Stokes (RANS) equations; hybrid RANS-LES methods

1. Introduction

The introduction of two-equation turbulence models in the frame of Reynolds-averaged
Navier–Stokes (RANS) equations is seen to be a very relevant milestone of the development
of simulation methods for turbulent flows [1,2]. The specific advantage of such methods is
their much improved ability to provide proper scale information (the characteristic length
scale of turbulent motions) for turbulent flow simulations. However, it is well known that
such methods seriously suffer from their inability to reflect the physics of flows that cannot
be properly modeled, as is the case for separated turbulent flows. Reliable simulations of
such flows (as illustrated, for example, in Section 3) require the inclusion of flow resolution.

The first method used to overcome this problem is the introduction of flow-resolving
simulation methods, as given by large eddy simulation (LES). The LES concept is actually
simple. A much smaller characteristic length scale of turbulent motions is applied than that
used in RANS. (Usually, the filter width ∆ is used as the length scale.) The consequence is
the need to use much finer computational grids than those applied in RANS. Thus, LES
suffers from its huge computational requirements, especially in regard to simulations of
wall-bounded turbulent flows at a high Reynolds number (Re). The practical consequence
is that LES is inapplicable to many high Re flows that need to be considered. A concrete
illustration of the dimension of this problem is given in Section 3.1.

The second method applied to overcome the fundamental shortcomings of RANS
methods is the hybridization of RANS and LES (i.e., the development of hybrid
RANS-LES) [3–5]. We have traditionally applied methods such as wall-modeled LES (WM-
LES) [6–8] and detached eddy simulation (DES) [4,9–11], as well as a variety of other meth-
ods, including scale-adaptive simulation (SAS) methods [4,12,13], lattice Boltzmann (LB)
methods [14], Reynolds stress-constrained LES (RSC-LES) [15], unified RANS-LES [16–22],
partially averaged Navier–Stokes (PANS) [23], partially integrated transport modeling
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(PITM) methods [24,25], and continuous eddy simulation (CES) methods [5,26–32]. The
problem is that such hybrid RANS-LES methods suffer from fundamental problems. In
particular, under conditions where validation data are unavailable, the problem is that such
methods cannot reliably deal with simulations of flows that require flow resolution (see the
explanations in Section 2). Thus, such methods face the same problem as RANS equations.

It has to be expected that this development will continue for a long time, as long as
there is no clarification of what specifically causes the problems of existing RANS-LES
methods, what the implied consequences are, and how it is possible to overcome these
issues. The latter questions will be addressed here in Sections 2–4, respectively. Specific
emphasis is placed on the explanation of the structure of novel minimal error hybrid
simulation methods, which generalize CES methods (see the illustration in Figure 1). These
methods may be seen as a relatively simple, mathematically exact modification of the
originally introduced RANS two-equation turbulence models. A specific motivation is to
significantly extend the corresponding methods developed thus far to the modeling of
stratified and compressible flows. Section 5 describes applications of the novel methods
presented thus far, and the conclusions are presented in Section 6.

RM

MM

LES RANS-LES CES

disconnected MM, RM:

MM

hardly MM:

RANS

Goal: reliable and feasible predictions of high separated turbulent flows in absence of validation dataRe

only MM:

MM RM

unreliable too expensive unreliable

connected MM, RM:

RM+MM=const.

Figure 1. Abilities of computational methods in regard to reliable and feasible predictions of high Re
flows that require flow resolution. Here, hybrid RANS-LES refers to popular methods, MM (RM)
refers to modeled (resolved) motion, and CES refers to continuous eddy simulation.

2. Basic Problems of Existing Hybrid RANS-LES Methods

The most relevant problem P1 of hybrid RANS-LES is (particularly under conditions
where validation data are unavailable) the lack of predictive power of flow simulations
that require the inclusion of flow resolution. A physically correct simulation mechanism
requires a swing between the amounts of resolved motion (fluctuations implied by the
grid and Re) and the modeled motion imposed by the model equations. The model’s
contribution needs to decrease (increase) in response to a higher (lower) amount of resolved
motion. However, in existing hybrid RANS-LES methods, the model does not receive
(correct) information about the amount of resolved motion [32], which does not allow a
(proper) model response. This implies the following: simulations for which validation data
are hardly available (see the challenges described in Section 3) will involve a certain amount
of resolved motion, which changes with the grid and Re. Then, if there is no guidance
about an appropriate set-up of modeled motion, such simulations will produce random
results in general. In particular, Re effects calculated on this basis cannot be considered
to be reliable. By taking reference to Figure 1, an illustration of this problem is given in
Figure 2.

RM implied
by grid & Re

a) Desired: RANS-LES swing

+ MMs =const.

b) Reality: random model MM MM ; unreliable predictions at high- s Re

RM implied
by grid & Re

+
MM: imposed,
indep. of RM

=const. MM MMs+ -

Figure 2. Problem P1 illustration. MM (RM) refers to modeled (resolved) motion, and MMs is MM
implied by swing. (a) Desired: RANS-LES swing. (b) Reality: random model MM – MMs, with
unreliable predictions at high Re.
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The second problem P2 is closely related to P1. In many cases, we need reliable hybrid
methods that are (1) applicable on coarse grids in almost RANS mode and (2) reliable
hybrid methods that are applicable in almost resolving mode independent of the LES
resolution requirements (which are hard to assess and control). The essential ingredients to
properly deal with these requirements are (1) a stable dependence of the modeled length
scale on the resolved length scale (the latter reflects fluctuations (i.e., this stable dependence
of length scales ensures a stable involvement of fluctuations even under almost RANS
conditions)) and (2) an appropriate representation of the characteristic LES length scale
independent of the filter width ∆. Existing hybrid RANS-LES methods do not involve these
ingredients (i.e., they cannot reliably cover these two regimes).

The third problem P3 of existing popular hybrid RANS-LES methods is the lack of
guidance through exact theory, which has several consequences. Most hybrid RANS-LES
methods were introduced on the basis of empirical reasoning, but some hybrid RANS-
LES methods were introduced on the basis of sound theoretical concepts [5]. However,
there is the question of which theoretical concept should be preferred. The lack of an
answer to this question leads to a large variety of potential methods that can be used
in applications. In addition, existing hybrid RANS-LES methods suffer from significant
uncertainty in their predictions in the absence of validation data. For example, the WMLES,
DES, and PANS results depend significantly on the model option settings [5]. Thus, it is
usual practice to choose such settings to produce the best possible agreement with the
available data. The search for the best model and best model set-up is demanding and
time-consuming. Another problem is implied by the fact that hybrid RANS-LES methods
include a RANS component, but such RANS equations can be significantly affected by
modeling uncertainties, in particular for stratified and compressible flows.

3. Challenges

Concrete examples for the relevance of such RANS problems will be given next. In partic-
ular, Section 3.1 addresses the need to overcome the problem P1, whereas Sections 3.2 and 3.3
illustrate the requirement to also overcome the problems P2 and P3.

3.1. NASA’s CFD 2030 Vision

There are many computational challenges related to incompressible flow, such as
NASA’s 2030 Computational Fluid Dynamics (CFD) Vision Report challenge to accomplish
LES of a powered aircraft configuration across the full flight envelope [33–36]. This case
focuses on the ability of CFD to simulate the flow about a complete aircraft geometry at
the critical corners of the flight envelope including low-speed approach and takeoff condi-
tions, transonic buffet, and possibly undergoing dynamic maneuvers, where aerodynamic
performance is highly dependent on the prediction of turbulent flow phenomena such as
smooth body separation and shock–boundary layer interaction [34]. A specific overview of
the essential further steps required to deal with the challenge was provided by Slotnick
and Mavriplis [37].

A specific indication of this challenge arises from the computational cost analysis
offered by Probst et al. [35] and the Federal Republic of Germany’s research centre for
aeronautics and space (DLR), which considers the cost of resolving LES simulations of
a full three-dimensional (3D) wing of an aircraft at flight Re. The conclusion of this
conservative cost estimation was the following: Even with exclusive access to the largest
existing cluster of Xeon-CPUs comparable to DLR’s “Tianhe-2A” with almost 5 million
cores, such a simulation would take around 650 years when extrapolated linearly. The
computational cost required for addressing this partial problem clearly demonstrates the
relevance of properly functioning hybrid RANS-LES models. In particular, as pointed out
by Slotnick et al., progress toward this goal can be measured through the demonstration of
effective hybrid RANS-LES and WMLES simulations with increasing degrees of modeled
versus resolved near-wall turbulence structures with increasing geometric complexity [34].
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However, existing hybrid RANS-LES methods face significant problems in this regard (see
Section 2).

3.2. Atmospheric Mesoscale to Microscale Coupling

Another motivation for the development of exact hybrid RANS-LES models arises
from the coupling of atmospheric mesoscale and microscale simulations (The term mi-
croscale simulation refers here to methods aiming at flow resolution, in contrast to flow
modeling). The latter is an essential requirement to predict, for example, the performance
of wind farms under the influence of large-scale weather processes. The usually related
problems of such simulations are shown in Figure 3. A direct coupling of simulation
methods as illustrated in Figure 3 is inappropriate, as the outer RANS simulation blocks
the simulation of resolved motions in the inner domain, and (depending on the set-up)
the abrupt decay of modeled motion in the transition region can provide inappropriate
boundary conditions for the outer RANS simulation. Thus, it needs a transitional region
between the two RANS and LES regions which applies relatively coarse grids. This implies
a fundamental problem (referred to as the Terra Incognita problem by Wyngaard [38]): such
simulations contradict basic RANS or LES principles, their value is at least questionable.

Usual coupling problems:
- inconsistent turbulence equations
- inconsistent scaling assumptions
- inconsistent resolved motion
- inconsistent modeled motion

Microscale

LES

O m

( )

~ ( )D

Mesoscale RANS

O km

( )

~D ( )

Figure 3. Typical problems related to the coupling of mesoscale (RANS) and microscale (LES)
methods, where ∆ refers to the characteristic grid size used in simulations.

There are obvious requirements for dealing with this problem. It needs hybrid RANS-
LES equations that are able to cover both LES and RANS regimes (including the need
that the length scale information used in the RANS is able to provide correct length
scale information for LES independent of the LES filter width ∆). The most important
requirement is the model’s ability to respond correctly to the amount of resolved motion by
appropriate changes of the model’s contribution to the simulation. In other words, it needs
minimal error hybrid RANS-LES models, which have this ability. Because of the coarse
grids that usually need to be applied for atmospheric boundary layer (ABL) simulations,
a specific aspect of the problem considered is the need for hybrid RANS-LES simulation
methods that work stably in the almost RANS regime. As a matter of fact, it also needs
a significant extension of previously developed methods: the inclusion of stratification
effects, which is needed to simulate ABL processes. The latter is affected by modeling
questions (see the discussion below Equation (22)). Thus, in addition to the need to deal
with problem P1 described Section 2, it also requires solutions to problems P2 and P3 in
this case.

3.3. High Angle of Attack Supersonic and Hypersonic Flow Predictions

The challenges described in Section 3.1 are significantly enhanced if aircraft are con-
sidered which fly at very high (supersonic or hypersonic) speeds. Commercial transports
rarely fly at an angle of attack larger than 10◦, but tactical aircraft and missiles can fly at
much higher angles of attack [39]. Therefore, on top of the problems described in Section 3.1,
additional challenges arise from the much bigger variety of flow separation induced by
angle of attack variations and structural flow variations induced by compressibility [16].
Arguably, the biggest challenge of such flow simulations arises from the questionable
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basis given by model equations for compressible flows. There is, for example, an ongoing
debate about the structure of the dissipation rate equation considered in conjunction with
the modeled kinetic energy equation (see [40,41] and the discussion below Equation (26)).
It is worth noting that such RANS model issues are transferred to LES models via the
required k transport equation [42]. Correspondingly, existing hybrid RANS-LES methods
that combine RANS and LES components suffer from the same problem.

First, the conclusion is the same as in regard to the problems described in Section 3.1:
it needs hybrid RANS-LES models which properly function under significant variations of
resolved motion. Second, another question concerns the theoretical basis of such simula-
tions. The possibility to develop minimal error hybrid methods depends on the structure
of the model equations considered. This leads to the question of whether the minimal error
design approach can provide valuable guidelines for the establishment of compressible
flow models. Given the lack of a theoretical basis to deal directly with this issue, it is
difficult to see which other approaches can help to overcome this relevant problem. Third,
the development of exact hybrid RANS-LES models is needed because of the following.
Different from the need for such methods described in Section 3.2 (which requires well-
functioning methods under almost RANS conditions), for highly compressible flows, we
need methods that can be used as resolving methods independent of the LES resolution
requirements. This ability is is the most reliable way to deal with several flow physics
questions (e.g., about structural compressibility effects) that need clarification. Thus, in
addition to the need to address the problem P1 described in Section 2, we see here again
the need for solutions to the problems P2 and P3.

4. Minimal Error Methods

Mimimal error hybrid simulation methods will be presented in the following three
subsections in regard to incompressible flows, stratified flows, and compressible flows. It is
worth noting that the presentation of such methods for incompressible flows in Section 4.1
provides the technical basis for extensions to the stratified and compressible flows in
Sections 4.2 and 4.3, respectively.

4.1. Incompressible Flows

The design of minimal error methods will be described first for incompressible flows
with respect to the widely used k− ε model (other turbulence models were considered
elsewhere [32]). The suitability of this model is well known in the context of RANS equa-
tions. Evidence for the suitability of this model to also provide resolved motions on
appropriate grids is given by corresponding PANS [23] and PITM [24,25] methods. The
model considered is given by the incompressible continuity equation ∂Ũi/∂xi = 0 and the
momentum equation

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
. (1)

Here, D/Dt = ∂/∂t + Ũk∂/∂xk denotes the filtered Lagrangian time derivative, and the
sum convention is used throughout this paper. Ũi refers to the ith component of the spa-
tially filtered velocity. We have here the filtered pressure p̃, the constant mass density
ρ, the modeled energy k, the constant kinematic viscosity ν, and the rate-of-strain tensor
S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2. The modeled viscosity is given by νt = Cµkτ = Cµk2/ε.
Here, ε is the modeled dissipation rate of the modeled energy k, τ = k/ε is the dissipa-
tion time scale, and Cµ has a standard value Cµ = 0.09. For k and ε, we consider the
transport equations

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε. (2)
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The diffusion terms reads Dk = ∂[νt ∂k/∂xj]/∂xj, Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj, and P = νtS2

is the production of k, where S = (2S̃mnS̃nm)1/2 is the characteristic shear rate. Cε1 is a
constant with a standard value Cε1 = 1.44, and σε = 1.3. In RANS, α = Cε2 /Cε1 , where
Cε2 = 1.92 [2] implies α = 1.33.

One possibility to hybridize Equation (2) is to consider a variable α∗ (instead of a
constant α) combined with an appropriate calculation of α∗:

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α∗

)
+ Dε. (3)

The diffusion terms are adjusted accordingly such that we have the expressions
Dk = ∂[ν∗t ∂k/∂xj]/∂xj and Dε = ∂[(ν∗t /σε) ∂ε/∂xj]/∂xj. The setting of ν∗t will be addressed
below. The determination of α∗ will be described by applying variational analysis. We
consider variations of model parameters (α∗) and related variations of model variables
(such as k and ε). The question is which model coefficient satisfies the variation equations
implied by the turbulence model considered. The analysis follows the approach presented
in [26]. The technical framework applied to derive these results was provided by an anal-
ysis of Friess et al. [11]. The significant difference with the latter findings is that Friess et
al. focused on a different question: for given PANS/PITM-type relations between model
coefficients and resolution indicators, they determined the equivalence criteria for hybrid
methods based on other turbulence models. A relevant assumption made throughout this
paper is that the energy partition (δk/k and δε/ε; see below) does not change in space and
time. This assumption is not a restriction but a desired stability requirement, as it ensures
that physically equivalent flow regions are equally resolved without significant oscillations
of δk/k or δε/ε [26–28].

In an exact analysis option O1, we set ν∗t = νt,tot in Dk = ∂[ν∗t ∂k/∂xj]/∂xj and
Dε = ∂[(ν∗t /σε) ∂ε/∂xj]/∂xj and introduce a hybridization error λ1 as a residual of the
ε equation:

λ1 = Cε1

ε2

k

(P
ε
− α∗1

)
+ Dε −

Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ 1− Dk
ε
− α∗1

)
+ Dε −

Dε

Dt
, (4)

where the k equation is used to replace P/ε in the previous expression. The subscript 1
refers to option O1. The normalized error reads as follows:

λ1

ε
=

Cε1

τ
(1− α∗1) +

Cε1

k

(Dk
Dt
− Dk

)
− 1

ε

(Dε

Dt
− Dε

)
. (5)

Justification for the normalization applied can be obtained by taking the variation of λ1 and
combining the terms that involve λ1. In the first order of variations (denoted by δ), we have

δ(Dk/Dt)
Dk/Dt

=
δDk
Dk

=
δk
k

,
δ(Dε/Dt)

Dε/Dt
=

δDε

Dε
=

δε

ε
. (6)

Correspondingly, we find that the variation of the last two terms in Equation (5) disappears
because of

δ
[1

k
Dk
Dt

]
= δ

[Dk
k

]
= δ

[1
ε

Dε

Dt

]
= δ

[Dε

ε

]
= 0. (7)

Thus, the variation of Equation (5) provides

δ
(λ1

ε

)
=

Cε1

τ
(1− α∗1)

[ δα∗1
α∗1 − 1

− δτ

τ

]
. (8)

An extremal error is found by setting the first variation equal to zero:

δα∗1
α∗1 − 1

=
δτ

τ
. (9)
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This equation can be integrated from the RANS state to a state with a certain level of
resolved motion

∫ α∗1
α dx/(x− 1) =

∫ τ
τtot

dy/y. We obtain it in this way:

α∗1 = 1 + τ+(α− 1), (10)

where τ+ = τ/τtot refers to the modeled-to-total time scale ratio, which is calculated as L+

(see the explanations in regard to optionO2 below). For all models considered in this paper,
we find a zero second variation, and we need to ask whether λ1 provides a minimum or
maximum error. The results were equal to the variational results obtained by considering
λ1 = 0; that is, the analysis presented implies minimal error models.

A different analysis option O2 is as follows. The analysis option O1 is exact, but the
disadvantage is the need to involve νt,tot in the equations solved in the simulations. The
latter is avoided in analysis optionO2, where the substantial derivatives Dk/Dt and Dε/Dt
are neglected in regard to the derivation of model coefficients. This approach appears to be
well justified for most applications. It was found to work very well in previous applications
to periodic hill flows [27]. Correspondingly, we consider (the subscript 2 refers to the
analysis option O2) ν∗t = νt in Dk and Dε in conjunction with the hybridization error:

λ2 = Cε1

ε2

k

(P
ε
− α∗2

)
+ Dε = Cε1

ε2

k

(
1− Dk

ε
− α∗2

)
+ Dε, (11)

where the k equation is used again to replace P/ε in the previous expression. The normal-
ized error reads as follows:

λ2

k2 =
Cε1

L2

(
1− α∗2

)
− Cε1

εDk
k3 +

Dε

k2 , (12)

where the modeled length scale L = k3/2/ε is introduced in the first term on the right-hand
side (RHS). Because of ν∗t = νt, we find in the option O2 in the first order of variations
the relations

δDk/Dk = 3δk/k− δε/ε, δDε/Dε = 2δk/k, (13)

which imply that the variation of the last two terms in Equation (12) disappears because of

δ
[ εDk

k3

]
=

εDk
k3

[ δDk
Dk

+
δε

ε
− 3

δk
k

]
= 0, δ

[Dε

k2

]
=

Dε

k2

[ δDε

Dε
− 2

δk
k

]
= 0. (14)

Thus, the variation of Equation (12) provides

δ
[λ2

k2

]
=

Cε1

L2

(
1− α∗2

)[ α∗2
α∗2 − 1

− δL2

L2

]
. (15)

An extremal error is found by setting the first variation equal to zero:

δα∗2
α∗2 − 1

=
δL2

L2 . (16)

This equation can be integrated from the RANS state to a state with a certain level of

resolved motion:
∫ α∗2

α dx/(x− 1) =
∫ L2

L2
tot

dy/y. We obtain in this way

α∗2 = 1 + L2
+(α− 1), (17)

where L+ = L/Ltot refers to the modeled-to-total length scale ratio. A relevant tech-
nical detail is the calculation of L+ (τ+ is calculated correspondingly). The turbulence
length scale resolution ratio L+ = L/Ltot involves the modeled (L) and total contributions
(Ltot) [26]. The modeled contribution is calculated by L = 〈k〉3/2/〈ε〉, where the brackets
refer to the averaging over time. The total length scale is calculated correspondingly by
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Ltot = k3/2
tot /εtot. Corresponding to ktot = 〈k〉 + kres, εtot is the sum of the modeled and

resolved contributions εtot = 〈ε〉+ εres. Here, the resolved contributions are calculated by
kres =

(〈
ŨiŨi

〉
−
〈
Ũi
〉〈

Ũi
〉)

/2, εres = ν
(〈

∂Ũi/∂xj∂Ũi/∂xj
〉
−
〈
∂Ũi/∂xj

〉〈
∂Ũi/∂xj

〉)
.

The consideration of Equation (3) is one possibility to hybridize the equations consid-
ered. Another possibility is to consider

Dk
Dt

= P− ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε, (18)

where the dissipation ε in the k equation is modified by introducing the unknown ψα. By
following the analysis of Equation (3), we consider the hybridization error λ1 in analysis
option O1:

λ1 = Cε1

ε2

k

(P
ε
− α1

)
+ Dε −

Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ ψα −
Dk
ε
− α1

)
+ Dε −

Dε

Dt
, (19)

where the k equation is used to replace P/ε in the previous expression. The comparison
with Equation (4) shows the equivalence of both approaches, provided that α∗ = 1+ α−ψα.
The comparison of the corresponding λ2 in analysis optionO2 leads to the same conclusion.

4.2. Stratified Flows

In regard to stratified flows, we begin with describing the typical structure of an ABL
microscale model [43]. We have the incompressible continuity equation ∂Ũi/∂xi = 0, and
the momentum and potential temperature equations read as follows:

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
− εikn fkŨn − gi, (20)

DΘ̃
Dt

=
∂

∂xk

[( ν

Pr
+

νt

Prt

) ∂Θ̃
∂xk

]
+ Sθ . (21)

Here, Θ̃ is the potential temperature. In addition, gi is the gravity vector, fk is the Coriolis
vector, and εijk is the Levi-Civita symbol. In the Θ̃ equation, we have the molecular and
turbulent heat diffusivities ν/Pr and νt/Prt, where Pr and Prt are the Prandtl number and
turbulent Prandtl number, respectively. The effect of radiation can be taken into account
via the source term Sθ . Equations (20) and (21) are combined with the k− ε model [43]:

Dk
Dt

= P + Pb − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+ Cb

Pb
ε
− α
)
+ Dε. (22)

The diffusion terms read Dk = ∂[νt ∂k/∂xj]/∂xj and Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj, and
P = νtS2 is the production of k. In regard to Equation (2), Cε1 has a standard value
Cε1 = 1.44, σε = 1.3, and α = Cε2 /Cε1 = 1.33 in RANS equations. The effect of buoyancy
is reflected by the buoyancy production Pb = −RiP/Prt, where Ri = βg∂Θ̃/∂x3S−2 is the
gradient Richardson number [16,44–46]. The buoyancy coefficient Cb is characterized by a
large uncertainty: its values range from −1.4 to +1.45 [47,48], including Cb = 1 [49]. For
simplicity, we assume Cb = 1 in the following, in line with the recommendation of Mellor
and Yamada [49].

Corresponding mesoscale models actually represent equivalent or simplified versions
of the microscale model given by Equations (20)–(22). A hierarchy of model versions can
be considered [50–54]. Several options will be considered in the following with the under-
standing that the model version considered is applied to both the microscale and mesoscale.

The first option is referred to as CES-MIME. CES stands for continuous eddy simula-
tion, and MIME stands for microscale-mesoscale model, meaning that the model can be
continuously applied through microscales and mesoscales. This model is equivalent to
Equations (20)–(22). Although the use of this model on the mesoscale is not the common
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choice, there exist several applications of corresponding models [55–59]. One possibility
for hybridizing this model is to consider a variable α∗ (instead of a constant α) combined
with an appropriate calculation of α∗. Hence, in conjunction with Cb = 1, we consider

Dk
Dt

= P + Pb − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+

Pb
ε
− α∗

)
+ Dε. (23)

We introduce the hybridization error according to the analysis option O1 in conjunction
with replacing νt in Dk = ∂[νt ∂k/∂xj]/∂xj and Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj by νt,tot:

λ1 = Cε1

ε2

k
(p− α∗1) + Dε −

Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ 1− Dk
ε
− α∗1

)
+ Dε −

Dε

Dt
, (24)

where the abbreviation p = (P + Pb)/ε is used. It turns out that this equation is equal to
Equation (4), which means that the implications presented above are recovered. The same
conclusion is obtained in regard to the analysis according to option O2, where νt is not
replaced by νt,tot in the diffusion terms. Another possibility for hybridizing the CES-MIME
model version is to hybridize the k equation via introducing ψα. This means we consider

Dk
Dt

= P + Pb − ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+

Pb
ε
− α
)
+ Dε. (25)

The same analysis as that presented in Section 4.1 leads to the conclusion that this approach
represents an equivalent approach as long as the model coefficients are properly related by
α∗ = 1 + α− ψα.

The second option is the CES-MIME-AE model. This model is a reduced version of
CES-MIME, where ε in Equations (20)–(22) is provided by an algebraic expression (AE
refers to an algebraic ε equation). This option is, for example, applied in conjunction with
Mellor and Yamada’s level 2.5 closure model [49] (see also the last paragraph of Section 4.2),
which is a standard model applied for mesoscale simulations [60]. A usually applied ε
expression reads ε = Cµk3/2/(

√
2Sml). Here, Sm is a stability function, and l is a length

scale that is algebraically provided [43]. A corresponding analysis of the CES-MIME-AE
model version is presented in Appendix A.

A third option is the CES-MIME-HH set-up, which is a reduced version of either
the CES-MIME or CES-MIME-AE model where horizontal transport processes are ne-
glected [49,61,62] (HH refers to horizontal homogeneity of the ABL). With respect to this
model option, the analysis in Section 4.2 shows that this option is independent of the
hybridization, and the hybridization functions α∗ and ψα are unaffected. Given that the
neglect of horizontal transport is often considered to be appropriate in a mesoscale model,
the consequence of this simplification will be a discontinuous transition between mesoscale
and microscale models, (Usually, the neglect of horizontal transport processes will be at
least questionable for microscale simulations.) but this assumption will not hamper the
combined model’s ability to maintain a meaningful balance of resolved and modeled motions.

Another often-applied approximation is to replace the turbulent viscosity νt with
algebraic expressions depending on the vertical coordinate and stability. In this case, there
is no need for a k or an ε equation [43]. However, this modeling assumes that the turbulent
viscosity is always fully modeled in terms of RANS-type variables (total variables). This
concept does not provide a meaningful basis for hybridization. Thus, this option is not
considered here.

In regard to the developments presented here, it is worth noting that the applicability
of these methods is not limited to eddy viscosity models, applied for simplicity. The same
approach can be applied, for example, in the frame of Reynolds stress models, as given by
Mellor and Yamada’s closure model [49,60] (see the explanations given in Appendix B).
A Reynolds stress model is a k equation extended by Reynolds stress anisotropy and
combined with a scale model (usually for ε), which provides scale information for the
Reynolds stress model via τ = k/ε or L = k3/2/ε. If an ε transport equation is involved,
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then the hybridization can be driven through the ε equation as described above. If an
algebraic ε expression is applied, then the hybridization can be driven by the k equation
implied by the Reynolds stress model as described above. This case is usually considered
in Mellor and Yamada’s closure model because the original Mellor and Yamada master
length scale formulation provides inappropriate results [60].

4.3. Compressible Flows

Compressible flow modeling will be addressed by considering the spatially filtered
mass density ρ̄, and tilde variables will be used to reflect the mass density-weighted
variables by following the notation used above. The continuity and momentum equations
considered are then given by

Dρ̄

Dt
= −ρ̄S̃kk,

DŨi
Dt

= −1
ρ̄

∂( p̃ + 2ρ̄k/3)
∂xi

+
2
ρ̄

∂ρ̄(ν + νt)S̃ik
∂xk

. (26)

Here, D/Dt = ∂/∂t+ Ũk∂/∂xk, and the modeled viscosity is given by νt = Cµkτ = Cµk2/ε.
Many different methods have been applied to provide k and ε for compressible
flows [16,40,41,63–65]. We follow the usual approach of involving explicit compressibility
corrections (the dilatational dissipation εd and pressure dilation Πd) only in the k equa-
tion [63–65]:

Dk
Dt

= P +
Πd
ρ̄
− ε− εd + Dk,

Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε. (27)

The production is given here by P = νtS2 − (2k/3)S̃nn. The usual models for εd and
Πd, which are not applied because there is no need to do so, are εd = α1M2

t ε and
Πd/ρ̄ = −α2M2

t P + α3M2
t ε [63], where α1, α2 , and α3 are the model parameters and the

turbulence Mach number is defined by M2
t = 2k/a2, where a refers to the speed of sound.

For simplicity, we only consider the option to hybridize the k equation via introducing
ψα in the following. This means we consider

Dk
Dt

= P− (ψα + pd)ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε, (28)

where pd = [εd −Πd/ρ̄]/ε, the production to dissipation ratio due to dilatational com-
pressibility effects, is introduced as an abbreviation. These equations are equivalent to
Equation (18), where ψα is replaced with ψα + pd. The same analysis presented above
implies that α∗ = 1 + pd,tot + α− ψα − pd, where pd,tot refers to the total value of pd. In the
two options O1 and O2 considered, we have α∗1 = 1 + τ+(α− 1) and α∗2 = 1 + L2

+(α− 1)
(see Equation (10) and Equation (17)). Hence, the incompressible flow models presented
above can be easily extended to the compressible flow.

5. Applications: Periodic Hill Flow Simulations

In regard to the problems P1, P2, and P3 of the hybrid RANS-LES model described
in Section 2, we observe the following. The analysis presented in Section 4 provides the
desired guideline with respect to problem P3. For several turbulence model structures
and hybridization types, the use of the minimal error technique provides exactly one
optimal computational method. A question that is unaddressed in this way is about the
computational performance differences of different model structures and hybridization
options. The analysis presented in Section 4 also provides a solution to the problem P2.
With respect to the almost RANS regime, the relationship α∗2 = 1 + L2

+(α − 1), (for an
example, see Equation (17)), implies a stable dependence of the modeled length scale
L = k3/2/ε calculated via the k − ε model on the resolved length scale involved in the
definition of L+. In regard to the almost LES regime, the modeled length scale L = k3/2/ε
calculated via the k− ε model can serve as an LES length scale independent of the LES filter
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width ∆ (i.e., the usual LES resolution requirement that ∆ needs to be sufficiently small
does not apply). However, an answer to the question of whether the methods presented in
Section 4 can also overcome the problem P1, which requires a well functional “RANS-LES
swing”, requires computational evidence.

The latter question was addressed by the simulations of periodic hill flows reported
in [27]. Figure 4 illustrates the flow configuration considered, a channel flow (flowing from
the left to the right) with periodic restrictions (hills). This considered flow configuration
is often used for the evaluation of turbulence models. It creates a variety of relevant flow
features such as separation, recirculation, and natural reattachment. The hill crest is located
at (x/h, y/h) = (0, 1). The height h and bulk velocity Ub are used as scaling variables, they
define Re. The simulations were performed by using the OpenFOAM CFD Toolbox [66]. A
CES model formulation corresponding to optionO2 was applied, including the comparison
of different hybridization options. A range of Re and grids was considered. Re ranged from
Re = 37, 000 to Re = 500, 000. The data for model validation were only available for the
Re = 37K case [67]. Several grids were used, with the finest (coarsest) grid applied having
500, 000 (120, 000) grid points. The grids were referred to as G500 and G120, respectively. An
almost complete flow resolution was accomplished at Re = 37K using the finest G500 grid,
and an almost RANS simulation was accomplished at Re = 500, 000 using the coarsest
grid (G120).

Figure 4. Periodic hill flow velocity streamlines obtained by CES at Re = 37, 000 on G500 (G500 refers
to 500, 000 grid points). Reprinted with permission from [27]. Copyright 2020 AIP Publishing.

The observations obtained by these simulations are the following:

• Problem P1: The most relevant fact is the conclusion that the “RANS-LES swing” was
fully functional. There was a stable redistribution between the resolved and modeled
motions, depending on the grid and Re variations. In particular, a spatially relatively
uniform mode variation reflected by the resolution indicator L+ was found.

• Problem P2: In regard to the almost RANS regime, a stable generation mechanism
of turbulent velocity fluctuations was observed. In particular, fluctuations were
not extinguished even for very high Re values and very coarse grids. In regard to
the almost LES regime, it was found that the characteristic length scale provided
by CES, which was independent of the LES filter width ∆, properly worked. The
LES simulations performed on this basis (with 500, 000 grid points) showed better
performance than almost resolving LES using 20 million grid points.

• Problem P3: Another relevant observation is that different model hybridization op-
tions worked equally well; there were hardly differences regarding the simulation
results obtained. This fact confirms the applicability of the CES approach to at least
several turbulence model structures, as long as the “RANS-LES swing” is functional.

6. Summary

The current stagnation of the development of computational simulation methods for
turbulent flows was addressed here by clarification of what specifically causes the problems
of existing RANS-LES methods, what the implied consequences are, and how it is possible



Fluids 2022, 7, 368 12 of 17

to overcome these issues (see Sections 2–4). The facts presented here can be summarized
as follows:

1. The minimal error approach presented here (which generalizes CES methods) min-
imizes the hybridization error among many other hybrid RANS-LES methods. It
provides a theoretical solution to the problems P1, P2, and P3. Applications demon-
strated the excellent performance of such simulation methods (see Section 5). It is
essential to note that these methods represent a relatively minor extension of standard
two-equation turbulence models.

2. An essential observation presented here is that minimal error methods for incompress-
ible flows [32] can be extended to stratified and compressible flows. This opens the
way to addressing relevant atmospheric science problems (mesoscale to microscale
coupling) and aerospace problems (supersonic and hypersonic flow predictions) (see
the discussions in Section 3). It was argued that such simulations need, in particular,
the ability to perform reliable predictions under almost RANS and almost LES conditions.

3. Hybrid RANS-LES models are based on RANS equations, and such RANS equa-
tions face relevant modeling questions, particularly for stratified and compressible
flows. Minimal error methods are in line with standard modeling options, and they
exclude many other options. Thus, minimal error methods can provide valuable
contributions to the design of consistent turbulence models. In regard to compressible
flows, models are excluded that include a variety of compressibility effects in the ε
equation [40,41]. In regard to stratified flows, a welcome byproduct of considering
the hybridization of the closure model of Mellor and Yamada [49] (see Appendix B) is
the correct specification of the length scales involved, which is seen as a major issue
of such simulations.

4. From a more general view point, the relevance of the minimal error methods presented
is the following. We need reliable methods to simulate high Re flows. LES models and
experiments are restricted by resolution requirements, and popular hybrid RANS-LES
models are known to be unreliable. In this situation, minimal error methods can
provide an error-free simulation contribution in response to the flow resolution (see
the illustration in Figure 2). The latter is the essential requirement for providing
reliable predictions under conditions where validation data are unavailable.
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Appendix A

Let us consider the CES-MIME-AE model, which makes use of an algebraic expression
for ε instead of using the transport equation considered in the CES-MIME version. Because
of the lack of an ε transport equation, the basis for this approach is given by the k equation

Dk
Dt

= P + Pb − ψαε + Dk = (p− ψα)ε + Dk. (A1)



Fluids 2022, 7, 368 13 of 17

Here, ψα appears as an unknown function considered for setting up the hybridization, and
the abbreviation p = (P + Pb)/ε was used. Then, the latter equation can be written:

p− ψα =
1
ε

Dk
Dt
− Dk

ε
. (A2)

In an exact analysis option O1, we have Dk = ∂[νt,tot ∂k/∂xj]/∂xj, and Dk/Dt is
involved. The hybridization error λ1 divided by k reads as follows:

λ1

k
=

ψα − p
k

+
1
kε

(Dk
Dt
− Dk

)
. (A3)

Here, ε is unaffected by variations. This is a requirement, the assumption of an algebraic
model is equivalent to assuming that ε is given by its total value. Equation (7) applies,
leading to the fact that the variation in the last two terms on the RHS disappears. The
variation of Equation (A3) then implies

δ
[λ1

k

]
=

ψα − p
k

( δ(ψα − p)
ψα − p

− δk
k

)
. (A4)

By setting the first variation equal to zero, we have

δ(ψα − p)
ψα − p

=
δk
k

. (A5)

We can integrate from the RANS state to a state with a certain level of resolution to obtain

ψα = p + k+(1− ptot), (A6)

where ptot refers to the total value of p (including contributions such as ktot and εtot).
In the analysis option O2, we have Dk = ∂[νt ∂k/∂xj]/∂xj, and Dk/Dt is not involved.

The hybridization error λ2 divided by k3 reads as follows:

λ2

k3 =
ψα − p

k3 − Dk
k3ε

. (A7)

According to Equation (14), the variation of the last term on the RHS disappears, and we
obtain the variational equation

δ
[λ2

k3

]
=

ψα − p
k3

( δ(ψα − p)
ψα − p

− 3
δk
k

)
. (A8)

We set the first variation equal to zero and obtain

δ(ψα − p)
ψα − p

= 3
δk
k

(A9)

Then, we integrate from the RANS state to a state with a certain level of resolution to obtain

ψα = p + k3
+(1− ptot). (A10)

Appendix B

We consider a usual, incompressible flow Lagrangian stochastic particle model for the
position x∗i , velocity U∗i , and scalar (potential temperature) Θ∗ [16]. We have dx∗i /dt = U∗i
combined with

dU∗i
dt

= Γ̃i −
[ c∗1

2τ
δik − c∗2

∂Ũi
∂xk

](
U∗k − Ũk

)
+ Fi + (C0ε)1/2 dWi

dt
,
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dΘ∗

dt
= Ω̃−

c∗θ1
τθ

(
Θ∗ − Θ̃

)
. (A11)

The terms Γ̃i and Ω̃ ensure consistency with the mean velocity and potential temperature
equations, respectively [16]. With respect to the velocity field, we applied the usual
Rotta assumption. In regard to the scalar field, we excluded a stochastic source term and
specified the scalar mixing frequency with c∗θ1/τθ . This mixing frequency is not assumed
to be proportional to τ−1 (τθ refers to the scalar dissipation time scale and is related to
the scalar dissipation rate by εθ = kθ/τθ , where kθ = θ̃2/2). In addition, dWi/dt refers to
the derivative of a Wiener process [16], and c∗1 , c∗2 , c∗θ1, and C0 are the model parameters.
The body forces involved are represented by Fi = −εikn fkU∗n − βθ giΘ∗. Here, βθ is the
coefficient of thermal expansion (the inverse reference temperature).

The particle model Equation (A11) implies the following exact Reynolds stress equa-
tions [16,28]:

Dũiuj

Dt
+

∂τijk

∂xk
− Pij + βθ

(
gjũiθ + giũjθ

)
+ fk

(
εjknũnui + εiknũnuj

)
= −

c∗1
τ

(
ũiuj −

2k
3

δij

)
+ 2c∗2

(∂Ũi
∂xk

ũkuj +
P∗
3

δij

)
− 2

3

(
c∗1 + c∗2

P∗
ε
− 3

2
C0

)
εδij, (A12)

Dũiθ

Dt
+

∂τikθ

∂xk
− Piθ + βθ gi θ̃2 + fkεiknũnθ = −

[ c∗1
2τ

+
c∗θ1
τθ

]
ũiθ + c∗2 ũkθ

∂Ũi
∂xk

, (A13)

Dθ̃2

Dt
+

∂τkθθ

∂xk
− 2Pθ = −2

c∗θ1
τθ

θ̃2. (A14)

We have here P∗ = −ũkun∂Ũn/∂xk, where τijk, τijθ , and τiθθ refer to the corresponding
triple correlations, and we introduce the abbreviations

Pij = −ũkuj
∂Ũi
∂xk
− ũkui

∂Ũj

∂xk
, Piθ = −ũiuk

∂Θ̃
∂xk
− ũkθ

∂Ũi
∂xk

, Pθ = −ũkθ
∂Θ̃
∂xk

. (A15)

The consistency of these equations with the definitions of the dissipation rates ε = k/τ

and εθ = kθ/τθ in the transport equations for k = ũnun/2 and kθ = θ̃2/2 requires two
coefficient relations:

c∗1 + c∗2 P∗/ε− 3C0/2 = 1, c∗θ1 = 1/2. (A16)

Equations (A12)–(A14) agree with the level 4 closure model of Mellor and Yamada [49],
with the exception of Mellor and Yamada’s neglect of higher-order anisotropy effects,
leading to an isotropic version of the c∗2 term on the RHS of Equation (A12) (which then
reads 8kc∗2 S̃ij/3) and the neglect of the last term in Equation (A13). A comparison of the
coefficients applied here with coefficients `1, `2, Λ1, and Λ2 applied by Mellor and Yamada
reveals, in conjunction with c∗θ1 = 1/2, the relations

c∗1
τ

=
(2k)1/2

3`1
,

4c∗2
3

= 2C1, ε =
(2k)3/2

Λ1
,

c∗1
2τ

+
1

2τθ
=

(2k)1/2

3`2
,

c∗θ1
τθ

=
(2k)1/2

Λ2
, (A17)

We find, in addition to the relationship C1 = 2c∗2/3, the following condition for `1, `2, Λ1
and Λ2:

(`1, Λ1, `2, Λ2) =
( 1

2c∗1
, 3,

1
c∗1 + Γ

,
3

2c∗θ1Γ

)23/2

3
L. (A18)

Here, L = k1/2τ and the mechanical-to-scalar time scale ratio Γ = τ/τθ are involved. (A
constant Γ = 1.5 was applied for stratified flow [68,69]) Equations (A12)–(A14) receive
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scale information via τ or L; that is, τ or L needs to be provided in a physically meaningful
way under changing stratification.
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