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Abstract: The motion of an individual particle in a circular channel flow induced with fluid injection
is considered. Analysis takes into account drag and gravitational forces acting on an individual
particle. The change in the radial structure of the flow in a channel with fluid injection on the motion
of a particle is studied. A number of simplifying assumptions about the structure of the fluidflow in
the channel makes it possible to obtain an analytical solution of the problem for particles. The results
of a qualitative analysis of particle trajectories in the channel with fluid injection are compared with
numerical simulations. The singular points of the particle trajectory are found in a wide range of
characteristic non-dimensional parameters of the problem. The modes of motion of an individual
particle in a channel with fluid injection are classified depending on the Stokes and Froude numbers.
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1. Introduction

In the products of solid propellant combustion, along with the gas-phase component,
there are solid and liquid combustion products of metal powders [1,2]. Simulation of two-
phase flows of combustion products plays an important role in the study of intra-chamber
processes in solid propellant rocket motors (SRM). The addition of solid particles to the
flow complicates the flow pattern, which is associated with a variety of properties (inertia
and concentration) of dispersed particles, which lead to the implementation of numerous
flow regimes [3]. The concentration of particles is one of the main physical parameters
that determine the characteristics of the movement of the dispersed phase, as well as the
degree of its influence on the fluidflow [4]. In a dispersed medium, zones free of particles
(fragmentation of the phase volume) and regions with intersecting particle trajectories
can appear, at the boundaries of which the concentration of the dispersed phase increases
sharply [5].

Analytical solutions of the Euler or Navier–Stokes equations contribute to a better
understanding of the qualitative features of stationary and non-stationary flows. They
allow estimating the domain of applicability of simplified mathematical models (inviscid
fluid, slow flows, boundary layers) and are indispensable for validation of numerical and
approximate methods. In the approaches developed in [6–8], self-similar solutions of the
continuity equation and the momentum equations are found under the assumption of
a linear dependence of the axial velocity on one of the spatial coordinates and uniform
injection from the channel walls. An experimental validation of the analytical solution
corresponding to the vortical flow of an inviscid incompressible fluid is carried out in [9–12],
in which measurement data were obtained from the distributions of axial velocity and
pressure at various Reynolds numbers.

The influence of compressibility increases at a sufficiently large distance from the
inlet section of the channel, which leads to the filling of the axial velocity profile [12,13].
Turbulence has a rather weak effect on the structure of the mean flow, with the exception
of the region adjacent to the outlet section of the channel, where there is a significant
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acceleration of the flow, and the mean velocity profile becomes flatter [11]. The movement
of the burning surface of the channel (the effect of non-stationarity of the process) has a
comparatively weak effect on the velocity and pressure distributions [14]. The presence of
a laminar flow region, which occupies the entire flow region (depending on the Reynolds
number), is confirmed by [15,16].

To find a class of analytical solutions describing the flow of a viscous incompressible
fluid in channels induced by fluid injection, methods of group analysis [17] are applied.
The stability of the flow in a semi-infinite round pipe with a closed left end is considered
in [18].

To take into account the influence of particles on the fluid flow, a joint calculation of
the motion of the fluid and dispersed phases is required. Under certain restrictions on the
particle size (the Stokes law for the particle drag) and the geometry of the computational do-
main (plane or axisymmetric channel), it is possible to construct analytical or approximate
solutions that are convenient for making qualitative estimates and verifying numerical
calculations. The mode of single particles is one of the simplest modes of particle-laden
flow, which is realized at a low concentration of the dispersed phase. Obtaining new
solutions is associated with the use of new dependencies describing the fluid flow and
taking into account the influence of additional forces. Analytical or approximate solutions
describing the motion of particles make it possible to find the limiting trajectory of particles
(separatrix), to study the features of the concentration of the dispersed phase and their
deposition on the wall [19,20].

Investigations of flows with particles in combustion chambers are related to the model-
ing of slagging of sections of the channel [21,22], combustion of aluminum particles [23,24],
transport of particles by vortical structures and their interaction with an oscillating flow-
field [25,26], and combustion instability [27,28]. The particle motion in channels with fluid
injection and their influence on the characteristics of the carrier flow are studied in [29–32].
The motion of a particle in a propellant channel is considered in [33,34], in which an ap-
proach that simplifies the implementation of mathematical models of two-phase flows
is proposed.

This study presents analytical solutions of equations describing the motion of an
individual particle in a channel with fluid injection from walls, as well as the results of a
numerical simulation of particle motion under the influence of non-turbulent factors. The
influence of gravitational force on the motion of a particle is discussed and the domains of
their applicability are investigated. The combustion surface is modeled by the injection
surface of a mixture of fluid and particles, the parameters of which are known and do not
depend on the place of injection and the presence of body forces.

2. Flow Induced by Fluid Injection

A flow in a circular channel, formed by injection of a mixture of fluid and dispersed
particles with given parameters along the normal to the channel surface is considered. Flow
is in a potential field of body forces, the vector of which is normal to the centerline of the
channel. This model describes a gas-particle flow in a horizontal channel in the presence
of gravity. It is assumed that the gravitational effects do not altered flowfield. The affect
particle motion only.

A quasi-developed flow of a viscous incompressible fluid in a sufficiently long cylin-
drical channel with fluid injection is simulated, when the flow quantities, normalized on
the velocity on the channel centerline, change slightly along its length. Fluid injection is
uniformly distributed along cylindrical wall. The x axis is aligned with the centerline of
the channel, and the y axis is normal to it (Figure 1). The radius of the channel is h, and the
injection velocity vw is the same at all points of the channel surface and directed along the
normal to it. The spreading of the fluid occurs symmetrically with respect to plane x = 0
(mirror symmetry of the flow).
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Figure 1. Flow induced by fluid injection.

The channel radius h is chosen as characteristic scale for variables with the dimension
of length, and the injection velocity vw is chosen as characteristic scale for variables with
the dimension of velocity. The characteristic time is introduced as the ratio of the channel
radius to the injection velocity, h/vw. Potential body forces do not affect the fluid velocity
in the channel [20], therefore the fluid velocity field is described by the relations that take
place in the vortical flow of an inviscid incompressible fluid

u
vw

= π
x
h

cos
[

π

2

( r
h

)2
]

,
v

vw
= −h

r
sin
[

π

2

( r
h

)2
]

. (1)

In this case, the influence of viscous effects manifests itself in rather narrow channels,
while the influence of compressibility should be taken into account in long channels
(Figure 2). The solid lines correspond to the results of numerical simulation [20], the dotted
lines correspond to the vortical flow of an inviscid incompressible fluid, the symbols •
correspond to experimental data. Profiles of axial velocity predicted with the developed
model (solid lines) are flatter in the core region and steeper in the near wall region than those
computed in vortical flow (dashed lines). The distributions of radial velocity computed
with turbulence model and model of vortical flow are in a good agreement. Compressibility
effects play an important role in a long channel leading to a flatter profile of axial velocity.
Impact of Reynolds number on profiles of axial and radial velocities in flow induced by
wall injection is small.
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Figure 2. Axial velocity profiles in a channel for x/h = 5 (a); 15 (b); 30 (c). Solid lines correspond
to the results of numerical simulation [20], dashed lines correspond to vortical flow described by
Equation (1), and symbols bullet correspond to experimental data [8].

The influence of viscous effects on the flow structure in a channel with double-sided
injection manifests itself mainly in the axial region, changing the fullness of the axial
velocity profile (Figure 3). In a circular channel, as the injection intensity increases, the
axial velocity profile becomes less filled and tends to a cosine profile (1) at Re→ ∞. The
radial velocity profiles differ relatively little from each other in a wide range of injection
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velocities. The maximum radial velocity is located at some distance from the channel wall
and exceeds the injection velocity.
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Figure 3. Profiles of axial velocity (a) and radial velocity (b) in a channel. Lines 1 and 2 correspond to
the velocity profiles in channels with weak (Re→ 0) and strong (Re→ ∞) injection.

Particles are non-deformable spheres of the same diameter; their collisions and their
effect on the fluid are neglected. In the model of interaction between a particle and a carrier
flow, the drag force and gravity force are taken into account. The drag coefficient of a
particle is found from the Stokes law.

The appearance of body forces complicates the problem, since the flow becomes three-
dimensional. In this case, the flow parameters in the radial plane of the channel do not
depend on the axial coordinate x (Figure 4).
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Figure 4. Frame of reference.

3. Governing Equations

In the discrete-trajectory approach, the equations describing the motion of a particle
are written in Lagrangian variables and integrated along the trajectories of individual
particles in a known (computed in advance) fluidfield.
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The equation describing the translational motion of a spherical particle has the form

mp
dvp

dt
=

1
2

CDρSm
(
v− vp

)2
+ fp, (2)

where mp is particle mass, Sm is particle midsection area, v and vp are fluid velocity and
particle velocity, respectively. The term fp in Equation (2) includes forces of different nature,
but different from the drag force, the account or disregard of which depends on the specific
problem (for example, the gravity force is fp = mpg). The drag coefficient is represented as

CD =
24

Rep
fD(Rep).

The function fD takes into account the correction for the inertia of the particle. The
Reynolds number in the relative motion of a particle and fluid is found by the formula

Rep =
2rpρ

∣∣v− vp
∣∣

µ
,

where rp is particle radius.
A kinematic relation is added to Equation (2), which makes it possible to calculate the

radius vector of the particle’s center of mass

drp

dt
= vp. (3)

The temperature of a particle affects its motion through a correction to the drag
coefficient. In many flow regimes, such a correction is small and is not taken into account.

Equations (2) and (3) are integrated along the particle trajectory and require the initial
conditions (the coordinates and translational velocity of the particle at time t = 0). The
fluid velocity is calculated at the points lying on the particle trajectory, v = v(rp).

4. Transformation of Coordinates

The motion of the particle is described in the Cartesian coordinate system. The
equations describing the motion of a particle have the form

dup

dt
=

s(r)xp − up

Stk
; (4)

dvp

dt
=

p(r)yp − vp

Stk
; (5)

dwp

dt
=

p(r)zp − wp

Stk
− Fr. (6)

Here, r2 = y2
p + z2

p. The functions s(r) and p(r) in (1) are found from the relations

s(r) = π cos
(π

2
r2
)

, p(r) = − 1
r2 sin

(π

2
r2
)

.

Equations (4)–(6) are supplemented with kinematic relations that allow calculating the
coordinates of the particle
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dxp

dt
= up; (7)

dyp

dt
= vp; (8)

dzp

dt
= wp. (9)

At the initial time t = 0 the particle is on the channel wall, therefore

xp0 = x0, yp0 = cos α, zp0 = sin α.

The particle is injected from the wall along the normal to the surface, which gives

up0 = 0, vp0 = v0yp0, wp0 = v0zp0.

Here, α and v0 are the initial coordinate and initial velocity of the particle in the
cylindrical coordinates (angle and velocity on the injection surface), and α ∈ [0, 2π] and
v0 ∈ [0, 1].

The motion of a particle in a channel is determined by the Stokes and modified
Froude numbers

Stk =
ρpd2

pvw

18µh
, Fr =

hg
v2

w
,

where g is gravitational acceleration.

5. Qualitative Analysis

The radial structure of a two-phase flow in a channel is determined by the system of
Equations (4)–(9) and the corresponding initial conditions. Qualitative methods for the
analysis of dynamical systems make it possible to systematize and generalize the solutions
of the problem under various initial conditions and dimensionless parameters.

5.1. Zone of Gradient Flow

Near the channel centerline (r ∼ 0, in practice for r < 0.5) functions are replaced by
linear relations

s(r) = π, p(r) = −π

2
.

For small radii, the radial velocity gradient is equal to −π/2 and does not depend on
the radial coordinate.

In the gradient flow zone, the system of Equations (4)–(9) becomes linear

Stk
d2xp

dt2 +
dxp

dt
+ πxp = 0; (10)

Stk
d2yp

dt2 +
dyp

dt
+

π

2
yp = 0; (11)

Stk
d2zp

dt2 +
dzp

dt
+

π

2
zp + Sf = 0. (12)

The parameter Sf is the product of the Stokes number and the Froude number
(Sf = Re Fr).
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Equations (10)–(12) are integrated independently of each other. A new variable is introduced

ẑp = zp +
2
π

Sf.

Then, Equations (11) and (12), describing the motion of a particle in the cross section
of the channel, take the form

Stk
d2yp

dt2 +
dyp

dt
+

π

2
yp = 0; (13)

Stk
d2ẑp

dt2 +
dẑp

dt
+

π

2
ẑp = 0. (14)

At the initial time ẑp0 = zp0 + 2Sf/π.
Equations (13) and (14) have the same form and are independent of each other. The

introduction of a new variable makes it possible to eliminate the dependence on the Stokes
and Froude numbers (parameter Sf). In the coordinate system (yp, ẑp), the flow in the
gradient zone is axisymmetric and does not depend on body forces.

The characteristic equation for Equations (13) and (14) has the form

Stkλ2 + λ +
π

2
= 0.

Solving a quadratic equation, find its roots

λ1,2 =
−1± (1− 2πStk)1/2

2Stk
.

The roots of the characteristic equation show that there is a critical Stokes number
Stk∗ = 1/2π, which determines the change in qualitatively different two-phase flow
regimes. For Stk < Stk∗, the particle does not cross the channel centerline (particle trajecto-
ries do not qualitatively differ from streamlines). For Stk > Stk∗ there is an intersection of
the particle trajectory with the channel centerline.

The form of particle trajectories on the plane (yp, ẑp) with an arbitrary parameter Sf
is obtained from the special case corresponding to Sf = 0. Particle trajectories are straight
lines if the initial velocity vector of the particle at the boundary of the gradient zone is
directed to a singular point located at the origin of the coordinate system (Figure 5), which
requires that the condition

up0

vp0
=

ẑp0

yp0
.

Index 0 refers to the coordinates and initial velocity of the particle at the boundary of
the gradient zone.

The particle trajectories obtained from the solution of Equations (13) and (14), under
the specified condition and any Stokes number, are straight lines directed from the initial
point on the injection surface to the singular point at the center of the channel. The
oscillatory motion in the neighborhood of the singular point, which occurs at Stk > Stk∗, is
along this straight line.

From a physical point of view, a singular point is a projection of the corresponding
asymptote of the particle trajectories in the longitudinal section of the channel onto the
radial plane. The singular point characterizes the limiting state of the particle at an unlim-
ited time of its motion. The type of singular point depends on the Stokes number and its
critical value.
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Sf = 0

Sf > 0

2Sf/π

z

y

y

1

2

Figure 5. Particle trajectories in the gradient zone without (1) and with (2) of body forces.

At Stk < Stk∗ the particle trajectories monotonically approach the singular point
(stable node). Particle trajectories are similar to streamlines. At Stk > Stk∗, an oscillatory
regime (with damping) of particle motion along a straight line relative to a singular point
(stable focus) is observed. Under these conditions, a specific flow zone is formed in the
channel with its characteristic counter-oscillatory motion of particles. As the Stokes number
increases, this zone expands. Since the concentration of particles in this zone increases, and
the probability of their collision increases, to study the flow region with counter-oscillatory
motion of particles, more advanced models are required, including, in particular, the effects
of interaction of particles and coupling effects.

In the absence of body forces (Sf = 0), the singular point is at the center of the channel
(the flow is axisymmetric). In the presence of body forces, the singular point is displaced in
the direction of the vector of these forces. Approximately at Sf < 0.7, the singular point is
in the region of the gradient fluid flow. The particle trajectories in the radial section of the
channel, as in the case of Sf = 0, are still straight lines and are directed to a singular point,
the type of which does not change within the gradient zone. The transition to the original
coordinate system is graphically carried out by its shift along the z axis by 2Sf/π (Figure 5).

5.2. General Case

In the range 0.7 < Sf < 1, Equations (4)–(9) describing particle motion are non-linear,
which complicates their analysis and leads to the need to use numerical methods of analysis.

The gradient zone occupies the central, but smaller in terms of cross-sectional area,
part of the channel. Outside this zone, the analysis is carried out on the basis of the original
model described by Equations (10)–(12).

With the accepted direction of the gravity vector, the coordinates of singular points
are found from the conditions

α∗ = −
π

2
,

1
r∗

sin
(π

2
r∗
)
= Sf.

Singular solution points exist only on the z axis in the lower part of the channel.
For small radii (for r → 0), an approximate relation for the singular point coordinate

is obtained, which is valid for the gradient flow zone

r∗ =
2
π

Sf.
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The dependence of the radial coordinate of the singular point r∗ on the parameter Sf is
shown in Figure 6. Line 1 corresponds to the numerical solution, and line 2 corresponds to
an approximate relation valid for the gradient zone of the flow.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1
r
*

Sf

2

1

0.86

0.71

Figure 6. Dependence of the radial coordinate of a singular point on the Stokes and Froude numbers.

For Sf = 0, there is one singular point, which is located at the origin of the coordinate
system. As Sf increases, the singular point moves along line 1 obtained by the numerical
solution. For small r and Sf, line 1 is approximated with good accuracy by line 2. The
position of the outer boundaries of the gradient zone is found at r ≈ 0.7, which takes place
at Sf ≈ 0.7.

For Sf = 1, the second singular point appears at r∗ = 1 (on the injection surface). As
Sf increases further, the singular points approach each other (along line 1). For Sf = 1.07
and r∗ = 0.86 these singular points merge and disappear. For Sf > 1.07, there are no
singular points.

A connection between the presence and position of singular points on the phase plane
and the kinematic structure of a two-phase flow in a channel is analyzed. On the phase
plane, at the origin of the coordinate system (rp, vp), there is a single singular point of the
node type (particles do not cross the channel centerline) or focus (particles cross the channel
centerline) depending on the Stokes number.

When body forces are taken into account, the singular point is displaced from the
origin of the coordinate system down along the z axis. Changes in the structure of a two-
phase flow in the longitudinal section of the channel are schematically shown in Figure 7
(at Stk = 0.1). For each Froude number, two trajectories of particles injected from the upper
(z = 1) and lower (z = −1) surfaces of the channel are presented.

0

1

−1

r =0
*

r =0.86
*

r =0.71
*

r =0.24
*

0 0.5 1.0 1.1 Sf

y/h

Figure 7. Change in the structure of two-phase flow in a channel with increasing Froude number.
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As the Froude number increases, the asymptote of the axial (along the x axis) particle
trajectories, defined as z = r∗, shifts downward. At Sf = 1 the second singular point
appears (such as a saddle). This state characterizes a new quality of the system, when the
drag force acting on the particle from the side of the fluid at the bottom of the channel are
balanced by the mass force in opposite direction. This state is dynamically unstable, and
with a slight increase in the initial velocity of the particles, they are carried away into the
flow. At Sf ≈ 1.07, which corresponds to the extreme value of the radial fluid velocity in the
channel at r∗ ≈ 0.86, both singular points merge. In this case, the particles from the upper
half of the channel reach the asymptote of the trajectories (r∗ ≈ 0.86), while the particles on
its lower side are held by body forces. The zone free from particles of the corresponding
size that appeared at Sf = 1 reaches its maximum size. For Sf > 1.07 there are no singular
points. This leads to a new qualitative change in the flow regimes when the asymptote
of the trajectories and the zone without particles disappear. Particles in the lower half of
the channel cannot leave the blowing surface, and particles leaving the upper half of the
channel also fall here (given sufficient time of motion). A further increase in the Stokes and
Froude numbers (parameter Sf) does not cause qualitative changes in the flow.

6. Parameter Expansion Method

A modeling of two-phase flows in channels with fluid injection is analyzed with the
parameter expansion method.

6.1. Velocity of Non-Equilibrium Motion

The motion of a Stokes particle of variable size, taking into account the body forces, is
described by Equation (2), which is written in a dimensionless form

dvp

dt
= B

(
vg − vp

)
+ Fr, (15)

where B = 1/(Stk δ2), δ = rp/rp0. Index 0 refers to the start time.
The general solution of Equation (15), which is a linear ordinary differential equation

of the 1st order, is presented as the sum of the general solution of the uniform equation and
a partial solution of the non-uniform equation, vp = v̂p + ṽp. The general solution of the
uniform equation has the form

v̂p = C1 exp(−F).

To find a partial solution of non-uniform equation, the method of expansion into a
series in terms of the parameter is used

ṽp = vg +
∞

∑
k=1

(−1)kStkk dkvg

dtk .

Restricting the expansion to terms of the first order of smallness, the solution of
Equation (15) takes the form

vp = C1 exp(−F) + vg + Stk
(
Fr− vgt

)
δ2. (16)

Here

F =
1

Stk

t∫
0

dτ

δ2(τ)
, C1 = vp0 − vg − Stk

[
Fr−

(
vgt
)

0

]
.

The relation (16) shows that at Stk → 0 the two-phase flow tends to equilibrium
(vp → vg). For Stk 6= 0 and rp → 0, flow reaches equilibrium state, vp → vg. At the final
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stage of evolution, the particles also come into a state of dynamic equilibrium with the
fluid. For δ = 1, a solution for a particle of constant size is obtained (rp = rp0).

The particle coordinates are found by resolving the kinematic relation

drp

dt
= vp. (17)

Integration of Equation (17) over time from 0 to t, for δ ≡ 1 gives

rp = C2 − C1 Stk exp(−t/Stk) + vg t + Stk
(
Fr t− vg

)
. (18)

Since the time in the relation (18) enters the term with the Stokes number as a factor,
and the role of the exponential term decreases with decreasing Stokes number, the time of
the equilibrium phase motion is used as the time.

The integration constants, C1 and C2, are determined from the initial conditions. At
time t = 0, the particle is on the channel wall, therefore

xp(0) = xp0, yp(0) = 1, up(0) = 0, vp(0) = −φ,

where φ is the parameter of the initial velocity non-equilibrium of the phases.
The obtained solution is linear with respect to the Stokes number and satisfactorily

describes the particle trajectories in short channels. For Stk→ ∞ it qualitatively incorrectly
reflects the behavior of the particle velocity.

Let us assume that at t 6 tb, where tb is the burning time of a particle, the change in
particle size is described by the equation

rp = rp0(1− t/tb)
1/q.

For q = 2, which corresponds to the theoretical model of droplet combustion, the
particle velocity is found from the relation

vp = C(1− Ft)1/(HStk) + vg + (1− Ft)
(
Fr− vgt

)
Stk.

The motion of a particle of variable size is determined by the parameter H = tp/tb,
which is equal to the ratio of the time the particle stays in the channel tp = L/vw and the
burning time of the particle tb = dq

p0/k. The parameter characterizing the combustion of
aluminum is represented as

H =
kL

vwdq
p0

.

As H increases, the conditions for particle combustion in the channel improve. For
H = ∞ the particle burns on the channel surface, and for H = 0 the particle does not burn.

The Stokes number characterizes the velocity non-equilibrium of the phases. For
Stk → 0 the particle is completely entrained by the fluid, while for Stk → ∞ its motion
occurs independently of the fluid (for example, under the action of body forces). In the
intermediate region, as the Stokes number increases, the velocity lag of the particle relative
to the fluid increases.

At Stk→ 0, all parameters, excluding the combustion parameter H, become negligible,
and a equilibrium two-phase flow with burning particles is characterized only by the
parameter H.

6.2. Domain of Applicability of the Solution

The ratio (16) is transformed to the following form∣∣vg − vp
∣∣ = C1 exp(−F) + Stk

(
Fr− vgt

)
δ2. (19)
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The first term in the right side (19) determines the influence of the initial conditions,
the second term is the mass forces, and the third term is the flow gradient. The criterion
for the admissibility of the expansion of the particle velocity into a series in terms of the
parameter is the condition for the smallness of the degree of velocity non-equilibrium of
the phases ∣∣∣∣vg − vp

vg

∣∣∣∣� 1.

In this case, the smallness of the Stokes number is not required. For example, for a
gradientless flow, the obtained relations are exact for any Stokes number.

The equilibrium conditions correspond to the case C1 ≡ 0. There is no influence of the
initial conditions on the further motion of the particle, and the equilibrium initial velocity
is found from the relation

vp0 = vg +
[
Fr−

(
vgt
)

0

]
Stk.

The intensity of attenuation of the influence of the initial state of the particle is deter-
mined by the Stokes number, and when a particle of variable mass moves, the influence of
the initial conditions depends on its size.

Body forces affect the rate of non-equilibrium motion of phases through the Froude
criterion. The influence of body forces increases with increasing Stokes number, decreases
as δ decreases, and manifests itself to the greatest extent in low-velocity regions.

In a gradientless flow dvg/dt = 0, and there is no influence of the gas-dynamic factor.
For dvg/dt 6= 0 the influence of the gas-dynamic factor increases as the Stokes number
increases and decreases along with δ. The value of the derivative dvg/dt depends on the
geometric shape of the channel and reaches its maximum value in narrow channels and in
places where the flow turns.

Taking the injection speed as the characteristic speed, and the ratio of the free vol-
ume of the combustion chamber to the fuel combustion area (u = vw, L = W/S) as the
characteristic size, the Stokes number is written as

Stk =
ρpd2

p0

18µ

vwS
W

,

where W and S are volume and cross-sectional area of combustion chamber. When the
propellant burns out, the parameter S/W decreases, which leads to a decrease in the degree
of velocity non-equilibrium of the phases due to the weakening of the influence of the
gas-dynamic factor.

6.3. Solution for Strong Injection

In channels with strong injection (vw → ∞), the relations (16) and (18) are presented in
the analytical form. The particle coordinates are found from the relations

x = x0ch2(t/2),

y =
4
π

atan
[
exp

(
−π

2
t
)]

.

The time in the equilibrium motion of the phases is

t =
−2
π

ln
∣∣∣tan

(π

4
y
)∣∣∣ = −1

π
ln
∣∣∣∣1− cos(πy/2)
1 + cos(πy/2)

∣∣∣∣.
The constants of integration are found from the initial conditions

C1 = π2Stkxp0, C2 = 1− φ− Stk.
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Up to the terms O(Stk2), the following relations, which give the velocities and coordi-
nates of the particle at an arbitrary moment of time, are valid

up = ug +
π2

4
Stk xp0 exp(−t/Stk)− π2

4
Stk xp;

vp = vg + (1− φ) exp(−t/Stk)− Stk
[π

4
sin
(
πyp

)]
;

xp = x− π

2
Stk x cos

(π

2
y
)

;

yp = y− φStk− (1− φ)Stk exp(−t/Stk) + Stk sin
(π

2
y
)

.

The velocity distributions of the dispersed phase in the channel are shown in Figures 8
and 9 (results are normalized to the maximum velocity in the cross section, um, and injection
velocity, vw). Lines 1 correspond to the carrier flow, and lines 2–5 correspond to particles
of various sizes. The influence of the initial non-equilibrium flow leads to deformation of
the radial velocity profile of the dispersed phase near the injection surface. In general, the
distributions of the radial velocity differ relatively little from each other in a wide range of
problem parameters.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/h

u/um

1

2

3

4

5

Figure 8. Distributions of axial velocity of particle for Stk = 0.025 (2); 0.05 (3); 0.075 (4); 0.1 (5). Line 1
correspond to fluidflow.
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Figure 9. Distributions of radial velocity of particle for φ = 1 (a) and φ = 0 (b). Lines 2–5 correspond
to different Stokes numbers Stk = 0.025 (2); 0.05 (3); 0.075 (4); 0.1 (5). Line 1 correspond to fluidflow.
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7. Numerical Results

The results of numerical simulation are shown in Figures 10 and 11 for particles of
different sizes. The Froude number is 1, and the Sf parameter is varied by appropriately
changing the Stokes number. For each Stokes number, two trajectories for zp0 = ±1 (lower
and upper walls of the channel) are given, and the position of the singular point (if it exists)
is indicated. The prime corresponds to the particles injected from the bottom of the channel.
The results are obtained at different initial particle velocity.

It follows from the calculations that for particles injected from the upper part of the
channel, a change in the initial velocity has practically no effect on the shape of the phase
trajectories (Figure 11a). Particles injected from the lower half of the channel turn out to be
more sensitive to changes in the initial conditions (Figure 11b).

For Sf = 0.1, the singular point shifts slightly down along the z axis, and its type is
a stable node. When Sf is increased to 0.5, the singular point type changes from node to
focus. Accordingly, the type of phase trajectories also changes, which in the vicinity of the
singular point acquire a damped oscillatory character. An increase in the initial particle
velocity slightly affects the results.

For Sf = 1, the flow structure in the channel becomes more complicated. Due to
the fact that the singular point is close enough to the lower surface of the channel, and
the amplitude of particle oscillations near this point is significant, conditions arise for
them to fall out of the flow. Particles located at the bottom of the channel at the initial
moment at vp0 = 0 cannot leave the injection surface. However, an increase in the initial
velocity module violates this dynamic equilibrium and leads to separation particles from the
injection surface of the channel and their involvement in the flow, followed by asymptotic
approximation to the corresponding singular point.
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Figure 10. Trajectories of particle for vp0 = 0 (a) and vp0 = 1 (b) with different Stokes numbers
Stk = 0.1 (1); 0.5 (2); 1.0 (3); 1.5 (4).
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Figure 11. Solutions on phase plane (vp, zp) for vp0 = 0 (a) and vp0 = 1 (b) with different Stokes
numbers Stk = 0.1 (1); 0.5 (2); 1.0 (3); 1.5 (4).
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For Sf = 1.5 there are no singular points on the phase plane. Particles leaving the
upper half of the channel eventually reach the lower surface, from which they cannot leave
at zero initial velocity. An increase in the initial velocity of the particles leads to a temporary
removal of particles from the lower part of the channel into the flow, followed by their
fallout onto the same surface.

The trajectories of particles emerging from different points on the injection surface of
the channel are shown in Figure 12 (for Fr = 1).

π/2

π

3π/2

0

π/2

π

3π/2

0

(a) (b)

Figure 12. Trajectories of particles in cross section of channel for Sf = 0.5 (a) and Sf = 1 (b).

At Sf = 0.5, a specific zone of counter-oscillatory motion of particles is formed in
the vicinity of the singular point. As the Sf parameter increases to 1, this zone expands,
deforms, and captures the lower part of the channel. The change in the structure of this
flow zone is accompanied by the precipitation of some particles from the flow onto the
channel surface.

Depending on the Stokes number, the singular point is either a node or a focus. Outside
the gradient zone, the critical Stokes number, which characterizes the change in the type of
singular point, gradually increases as the singular point moves away from the center of
the channel.

For Sf = 1, a second saddle-type singular point appears on the channel surface. The
presence of two singular points, their relative proximity to each other and to the channel
walls leads to the formation of a complex structure of a two-phase flow. New effects arise,
in particular, the precipitation of particles from the flow onto the channel walls and the
impossibility of their detachment from the injection surface. This is due to the fact that the
oppositely directed drag and mass forces acting on the particles are approximately equal.
As a consequence, under these conditions, the influence of secondary factors increases, for
example, the initial velocity of particles on the injection surface.

8. Conclusions

A qualitative analysis of the trajectories of an individual particle in a channel with
fluid injection from walls has been carried out. The computational domain is divided into
a zone of gradient flow, in which the linearized equations of particle motion are applied,
and a near-wall zone, in which an approximate solution of the problem is obtained. The
results of the qualitative analysis are compared with numerical calculations, on the basis of
which the singular points of the individual particle trajectory are found for various Stokes
and Froude numbers.

The distributions of the dispersed phase parameters were obtained up to terms linear
with respect to the Stokes number. Factors influencing the rate of non-equilibrium motion
of phases are identified, and the domains of applicability of the obtained solution are
investigated. The velocity and concentration distributions of particles in channels with
strong injection are derived.
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