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Abstract: In this paper, we incorporate experimental measurements from high-quality databases to
construct a machine learning model that is capable of reproducing and predicting the properties of
ionic liquids, such as electrical conductivity. Empirical relations traditionally determine the electrical
conductivity with the temperature as the main component, and investigations only focus on specific
ionic liquids every time. In addition to this, our proposed method takes into account environmental
conditions, such as temperature and pressure, and supports generalization by further considering the
liquid atomic weight in the prediction procedure. The electrical conductivity parameter is extracted
through both numerical machine learning methods and symbolic regression, which provides an ana-
lytical equation with the aid of genetic programming techniques. The suggested platform is capable
of providing either a fast, numerical prediction mechanism or an analytical expression, both purely
data-driven, that can be generalized and exploited in similar property prediction projects, overcoming
expensive experimental procedures and computationally intensive molecular simulations.
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1. Introduction

The investigation of complex materials has raised ever-growing interest among re-
searchers in the area of fluid mechanics. Following an in-depth understanding of the
internal atomic/molecular structure and the physics behind the imposed interaction mech-
anisms, advanced simulation techniques and experimental procedures are incorporated in
order to extract the fluid properties and open the road to advances in the manufacturing
and controlling of novel devices. The numerical modeling of such processes has always
been an efficient, fast, and accurate choice for addressing these objectives, posing as the
alternative to complex, time-consuming, and costly experiments. Among the proposed
computational methods, machine learning (ML) techniques have now become a standard,
showing remarkable efficiency, reduced processing time, and accuracy [1,2].

The existence of a certain number of data in a reliable database is a prerequisite for the
adoption of ML. Data-driven approaches have been exploited to deal with complex physical
processes, which are not described by analytical expressions and are mostly difficult to
measure [3]. In most studies, the research data are obtained via limited experimental
conditions. For fluid and material research, experimental results may not be sufficient
to meet the ML demands, limiting its further development. Even when the research
data are enriched with simulation results, and therefore sufficient, there may also be
inherent processing difficulties because of the large number of input features to extract
the desired prediction [4]. Therefore, high-quality training data production [5], along with
ML adoption complimentary to simulation and experiments [6], can progress material
discovery and investigation.

In material science and engineering, the field of application is enormous. Imaging data
from microscopic studies and advanced informatic tools have been exploited for material
characterization [7], and images from molecular dynamic (MD) simulations have been
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used to predict ice nucleation from ambient water [8]. The construction of potential energy
surfaces (PESs), which had traditionally been a demanding ab initio simulation task, has
been boosted by the Gaussian process regression (GPR) methods [9,10]. ML has also been
successfully incorporated for the prediction of behavior from data in the fields of biological,
biomedical, and behavioral sciences [11]. Fluid research has much to profit from reduced
order models, turbulence modeling, fluid property extraction, and potential map creation
with ab initio accuracy [12,13].

All these applications are only a small percentage of the true potential data science
and ML have to offer. The new research directions focus on integrating physics-oriented
parameters and domain knowledge with the proposed ML models. Physics-informed
techniques have been suggested, integrating the knowledge of fundamental physics inside
an algorithmic procedure [14]. Moreover, as a step toward explainable and generalizable
ML, the method of symbolic regression (SR) has evolved, providing not only accurate pre-
dictions but also, more significantly, mathematical expressions that describe the phenomena
under investigation, beyond classical regression methods [15,16].

In this paper, ML is approached from the perspective of ionic liquids (IL), a class
of solvents that have lately attracted increasing attention due to their unique properties.
Their important feature is that the melting point is so low that they remain liquid at
ambient temperature, while common salts are usually solid at ambient temperature and
melt at several hundred degrees Celsius [17]. Their other characteristic properties include
negligible vapor pressure, high thermal and chemical stability, high ion conductivity, and
nonflammability [18]. IL properties might as well be tuned for a specific application
by the proper manipulation of anions and cations, from catalysis and electrochemistry
to liquid crystal development, fuel production, and as electrolytes in lithium batteries,
supercapacitors, and fuel cells [19]. ILs may serve as unique solvents in electrochemical
processes where the use of water is forbidden [20], such as in electroplating and the
electrodeposition of metals. Moreover, they are capable of dissolving organic compounds
of great biological and ecological importance, such as enzymes, proteins, and cellulose [21].

The experimental measurements of ILs’ physical quantities, such as conductivity,
viscosity, and density, as a function of temperature or pressure, are usually performed with
optofluidic and microscopic techniques [22,23], and empirical relations have been drawn
to guide the experiments [24]. On the other hand, research efforts on property calculation
have been mainly based on trial-and-error methods to bind anions and cations to constitute
an IL of desired properties. Computational property estimation can bring research to the
next level through the incorporation of novel ML methods [25]. Recent studies refer to ML
techniques for ILS property prediction, such as viscosity and electrical conductivity [26],
CO2 capture capability [27], density, heat capacity, and thermal conductivity [28], among
others, trying to depict the relationship between property and molecular structure, and
environmental conditions.

Next, we present ML data-driven methods to extract the electrical conductivity, σ,
of ionic liquids, both in numerical and analytical form. The incorporated data and pre-
processing methods are presented, the ML techniques are described, and the validity of
the predictions is discussed. We conclude that the proposed ML-based method is able
to reproduce the electrical conductivity values for complex ILs, taking into account the
environmental conditions (temperature and pressure) and the molecular weight of the IL
of interest. To our knowledge, there has not been another numerical or analytical method
able to extract IL properties from these three input parameters, and it can provide a fast
and efficient choice to replace/complement timely and costly experiments, especially when
the experimental conditions are extreme.

2. Materials and Methods
2.1. The Electrical Conductivity of Ionic Liquids

The physical properties of ILs, such as viscosity, conductivity, and density, are vital
for the characterization of salt as being appropriate for a given application or not [29].
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The electrical conductivity of ILs is primarily important for the understanding of their
behavior and the applications that may profit from tuning their value. ILs can remain at
a liquid state for a wide range of temperatures, and many electrochemical applications
would incorporate them as solvents. Thus, it becomes clear that there is a need to define
the possible parameters that affect electrical conductivity. In most of the studies in the
literature, the temperature is the only parameter taken into account and is usually analyzed
through the Vogel–Fulcher–Tammann (VFT) curves on the measured data [30,31]. The
empirical VFT equation is given by

σ = σ∞e
−B

T−T0 (1)

which is also examined in its linear form as

ln(σ) = ln(σ∞)− B
T − T0

(2)

where the maximum conductivity is σ∞, and the activation energy for conduction is
Ea = B·kB, where kB is the Boltzmann constant, both of which are derived from fitting
the experimental measurements [32], and T0 is the Vogel temperature.

Another empirical relation connects σ with the molecular volume Vm, i.e., the sum of
ionic volumes of the constituent ions as [33].

σ = ce−dVm (3)

where c and d are the empirical constants of the best fit on the experimental data, while
approaches that replace experimental measurements with computational models have been
also proposed [34].

2.2. Electrical Conductivity Data

For the computational model adopted in this paper, we followed the steps shown
in the flowchart in Figure 1. The modeling started with database creation. High-quality
experimental data (2274 points) from the NIST IL-Thermo database [35,36] were gathered
for pure ionic liquids, with electrical conductivity being the property of interest. The
parameters that affect electrical conductivity, as shown from the experiments, are the
temperature, T, the pressure, P, and the liquid molecular weight, Mw. Table S1 (see
Supplementary Material File S1) presents all the details for data origin and characteristics,
while the IL database is provided in Supplementary Material File S2. The details on the
incorporated experimental methods can be found in the respective references [32,37–60].
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2.3. Pre-Processing

It is common practice before entering the ML procedure, that data are normalized to
restrict the input value range.

−
x =

x− xmean

xstd
(4)

A correlation check was also performed in order to ensure that the input variables are
not correlated to each other, and Figure 2 presents the correlation matrix. It is shown that
no kind of correlation existed between the inputs, while the output was mostly correlated
to temperature, T.
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Figure 2. Correlation matrix for the three inputs and the output, σ.

The statistical information for the input data can be obtained from the pair plot
diagram in Figure 3. The distribution of the three input parameters, T, P, and Mw, and
the output, σ, is shown. The investigated ionic liquid is distinguished by the value of the
molecular weight, which, in this paper, ranged from 108.1 ≤ Mw ≤ 556.18. The temperature
and pressure conditions were 203.4 K ≤ T ≤ 528.55 K, and 0.1 MPa ≤ P ≤ 250.9 MPa,
respectively. The output was in the range of 3×10−7 S/m ≤ σ ≤ 19.3 S/m.

2.4. Machine Learning

A supervised machine learning algorithm accepts a number of input data, is trained by
a percentage of the data, and enters a computational process to extract the predicted values
for the model’s output(s) [61]. Data quality and quantity are important factors here. When
representative data (uniformly distributed) existed, and their number was adequate to train
the algorithm, the predicted output was obtained, as long as the incorporated algorithm
was able to capture their behavior. The verification of the result was made by the remaining
part of the input dataset (testing set). The training/testing set percentage on the total data
points was taken here as 80/20.

Here, we incorporated six different numerical ML algorithms, namely the multiple
linear regression (MLR), k-nearest neighbor (KNN), decision tree (DT), random forest (RF),
gradient boosting regressor (GBR), and multi-layer perceptron (MLP) models, to propose
the one that provided the best fit to our experimental data. These were implemented with
aid of the respective functions from the sci-kit learn Python package [62]. Moreover, the
symbolic regression (SR) algorithm was constructed and adjusted from a Julia package [63],
in order to provide an analytical expression exclusively extracted from the data and gen-
eralizable to electrical conductivity predictions for all input cases, even those outside the
data range.
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2.4.1. Multiple Linear Regression

Regression analysis refers to either a univariate method to analyze the relationship
between a dependent variable and one independent variable or a model with one dependent
variable and more than one independent variable, in which case it is called multiple linear
regression (MLR) [64]. In MLR (Figure 4a), we consider n independent input variables,
linearly combined to extract the dependent variable Y as

Y =
3

∑
i=1

wiXi + b (5)

where w1, w2, and w3 are the weights imposed on the three respective inputs X1 = T,
X2 = P, X3 = Mw, and b is a bias term.

2.4.2. k-Nearest Neighbors

The k-nearest neighbor (k-NN) algorithm selects k training points over a local region
of a data point x and labels neighboring points on the basis of the Euclidean distance
(Figure 4b). Each sample is a pair including an input vector and the desired output.
After grouping the calculated distances from the lowest to the highest, the most prevalent
outcome from the first k rows is the predicted result [65]. This algorithm is oftentimes
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accurate; however, there are cases where it may result in slow execution speed and large
memory requirements [66].
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2.4.3. Decision Trees

The decision tree (DT) algorithm functions in the sense of a tree flowchart, with nodes,
branches, and leaves. Each node represents a test on a feature, and each branch represents
the result of that test [67]. The DT mo’el’s response is predicted by following the decisions
from the start to the end node (the leaf), as shown by the dotted line in Figure 4c. The
feature space is recursively partitioned based on the splitting attribute. Each final region
is assigned a value to estimate the target output. The DT algorithm is considered easy
to apply, although it might need contribution from other statistical methods to prevent
overfitting [68].

2.4.4. Random Forest

A random forest (RF) algorithm consists of various DTs working in parallel (Figure 4d).
Each tree outputs a different prediction, and their average is taken as the final prediction.
Higher accuracy is usually obtained when the number of trees in the forest increase. In
the literature, it has been shown that the random forest (RF) algorithm is much simpler
to implement, than complex neural network structures, and has been the most accurate
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choice for fluid applications, such as slip length estimation [69] and the extraction of fluid
transport properties [12,70]. All the trees’ outputs are averaged (b is the trees’ number) by

Y =
1
b

b

∑
j=1

Yb
(
X′

)
(6)

providing an even more accurate result than the single-tree structure, hence less prone
to overfitting.

2.4.5. Gradient Boosting Regressor

The gradient boosting regressor (GBR) algorithm is another implementation of a
decision tree algorithm that combines various simple functions (learners) that constitute
an ensemble function. Initial learners may be weak, but when combined, they may form
strong learners. GBR follows three main steps sequentially: It optimizes the loss function,
spots the weaker learner, and improves it by adding more trees to increase accuracy [71].
As shown in Figure 4e, the sequential DTs were incorporated, and the output of each one
was weighted to enter the next DT. The weights were selected in a way to minimize the
induced errors [72].

2.4.6. Multi-Layer Perceptron

The traditional perceptron, when presented in multiple layers, i.e., the input, the
output, and a number of internal hidden layers, constitute the multi-layer perceptron (MLP)
algorithm. The number of hidden layers is usually determined by trial and error, although
there have also been various methods proposed, such as genetic programming [73]. Here,
we considered three hidden layers, each one with 20 nodes, with Adam stochastic solver [74]
and a learning rate equal to 0.5 (Figure 4f). The data flow between neurons depends on
the activation functions applied in every internal node and a weight function imposed
on every input. These weights are adjusted so that the predicted output resembles the
expected output with minimum error. The training of the MLP was performed iteratively,
with backward computation capability.

2.4.7. Symbolic Regression

SR can also be represented by tree structures (Figure 4g); however, here, the tree nodes
are mathematical operators, and leaf nodes correspond to input variables/constants [75].
The algorithm begins by considering a random parent tree structure, calculates the mean
squared error (MSE) of the specific implementation, and follows an iterative procedure,
in which a node or a branch of nodes is substituted until the minimum MSE is achieved,
with low complexity. Complexity refers to the number of leaves and nodes used in the
proposed SR tree. The Julia-based SR algorithm by Cranmer et al. [63], which we have
widely incorporated in similar works [16,76], accepts a set of mathematical operators
{+,−, ∗, /, ,̂ e, log} and the input variables {T, P, Mw} and creates an equation pool, from
which it selects the best candidates that adhere to the Pareto front, i.e., those that present
the minimum MSE values and small complexity, along with physical correspondence to
the problem.

Although more computationally intensive and demanding, SR is capable of providing
an analytical expression at hand, which, if it fits the dataset under investigation, is superior
to other ML techniques, since it can be easily applied for a wide range of inputs. However,
care has to be taken so that this expression remains simple and is bound to physical
laws [76].

2.4.8. Metrics of Accuracy

A number of popular metrics were applied to every algorithmic result to determine
which one best satisfies the accuracy criteria. These were the coefficient of determination,
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R2, the mean absolute error (MAE), the mean squared error (MSE), and the average absolute
deviation (AAD) [77], as shown in Equations (7)–(10):

R2 = 1−
∑n

i=1

(
y∗exp.,i − y∗exp .

)2

∑n
i=1

(
y∗exp.,i − y∗pred,i

)2 (7)

with y∗exp. the mean value of the expected output:

MAE =
1
n

n

∑
i=1

∣∣Yi −Y
∣∣ (8)

where Yi = y∗exp,i − y∗pred,i and Y = 1
n ∑n

i=1 Yi.

MSE =
1
n

n

∑
i=1

(
Yi −Y

)2 (9)

AAD(%) =
100
n

n

∑
i=1

∣∣∣y∗exp,i − y∗pred,i

∣∣∣
y∗exp,i

(10)

3. Results and Discussion
3.1. Partial Dependence

To analyze the effect of each input parameter on the acquired electrical conductivity
value, σ, a partial dependence plot was constructed (Figure 5). The partial dependence plot
calculates the average marginal effect on the σ prediction when only one input variable
changes its value, and, in parallel, the remaining inputs remain constant. The estimation of
the partial dependence (normalized value) is shown on the vertical axis and the respective
input on the horizontal axis. In Figure 5a, it is observed that the molecular weight signifi-
cantly affected σ, especially on smaller values around 200–230. The effect of temperature
was prominent, especially for the values above 270 K (Figure 5b). On the other hand,
pressure had only a slight, inversely linear effect on σ for small pressure values, since
partial dependence decreased as the pressure increased (Figure 5c). Furthermore, it seems
that σ was practically unaffected by P for the values above 100 kPa.
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3.2. Machine Learning Results

The results from the application of the numerical ML algorithms on the electrical
conductivity dataset are gathered in Figure 6a–f, in identity plots that estimate the model’s
accuracy by fitting the experimental and predicted data on the 45◦ diagonal line. The
prediction is more accurate when the data points are set close to the line [78].
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The linear regression method (MLR) in Figure 6a presented a rather poor fit for
the ionic liquid data. This is somehow expected if we take into account the empirical
relations from Equations (1)–(3), where the electrical conductivity value seems to have
logarithmic dependence on the temperature or molecular volume. Thus, we expected that
nonlinear ML methods would achieve better results. The KNN algorithm in Figure 6b
showed better performance than MLR. Nevertheless, the three tree-based algorithms that
follow in Figure 6c–e, i.e., DT, RF, and GBR, respectively, fit well on the experimental
data, as it seems that their tree structure was better suited to the problem. The neural
network (NN) architecture in Figure 6f did not achieve adequate prediction capability for
the specific implementation (three hidden layers of 20 nodes each). We also tested different
architectures with trial-and-error procedures but did not manage to obtain better results.
However, NNs are a distinct field of investigation, and further investigation is needed to
find the optimal architecture, which is beyond the scope of this paper. Conclusively, it was
shown that most of the algorithms investigated here (except for MLR) achieved acceptable
prediction performance on the available dataset.

The accuracy metrics for the fittings shown in Figure 6, such as R2, MSE, MAE, and
AAD, are shown in Table 1. The table values confirmed our observations that the three-
based algorithms achieved the best fit on the data, as the coefficient of the determination
reached values close to unity (R2 = 0.99), while a minimum number of errors were expressed
by MAE and MSE, compared with the remaining algorithms. However, the AAD values
differed significantly. The AAD value expresses the average sum of the errors derived from
the distance of the predicted data around the experimental base data. From Table 1, it is
evident that the GBR method is superior to RF, followed by DT.
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Table 1. Accuracy metrics and comparison of 6 ML algorithms for the ionic liquids’ dataset.

Algorithm R2 MAE MSE AAD

MLR 0.69701 1.02 2.287 663720.1

KNN 0.91344 0.381 0.755 1265.019

DT 0.98916 0.138 0.098 536.7186

RF 0.98919 0.16 0.097 1635.613

GBR 0.98886 0.137 0.1 271.6886

MLP 0.86707 0.706 1.107 35444.57

Let us now turn our attention to finding the most important input feature that controls
the internal mechanism of the algorithmic decisions for the GBR. The feature importance
plot in Figure 7a presents an estimation of the importance of each input variable on the
prediction of the electrical conductivity value. Temperature, T, was found to be the most
important parameter that guided the decisions between the DTs and the branches of the
GBR architecture. This is in agreement with the widely used empirical Equations (1)–(2),
where T is the only parameter that affects electrical conductivity. The next important
feature was the molecular weight, Mw, as it was the main parameter in the proposed model
that differentiated between the various types of incorporated ILs. Pressure, P, had only a
small effect on the final result. As is also shown in the partial dependence plot of Figure 5,
P affected σ only for small values (around P = 100 kPa), and no effect was observed above
this limit.
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Another important outcome to aid in the interpretation of the ML model is the learning
curve diagram in Figure 7b, which reveals if the proposed algorithm was efficiently trained
on the dataset. This is connected to the ability of the algorithm to make new predictions.
Here, we observe that the cross-validation score increased as the number of training data
points increased, reaching the highest value after about 1500 data points. This is evidence
that the dataset used in this model (2274 data points) is capable of providing accurate
predictions that could be generalized in research cases inside and outside the range of the
parameters that constitute the dataset.

3.3. Obtaining an Analytical Expression

Symbolic regression is capable of providing analytical expressions to fit the dataset
under investigation, without a priori knowledge of the system. This means that the SR
algorithm starts with the random construction of expressions and iteratively searches for
the best candidate equation. The proposed equations are of various complexity levels,
and the choice of a simple or a more complicated one depends on the application and the
desired accuracy. Here, we present three possible expressions that describe the electrical
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conductivity, σ, of ionic liquids, with input variables T, Mw, and P. Table 2 presents the
mathematical expressions, along with calculated metrics.

Table 2. The three SR-extracted equations for electrical conductivity and their respective accuracy
metrics. Comp. is the equation complexity.

Equation Comp. R2 MAE MSE AAD

σ1 = e(T−Mw)/P 6 0.760 1.234 2.846 2,660,488.8

σ2 = 17.335(T−259.461)(T−210.814)
(Mw+0.113·T)(Mw+P)

19 0.857 0.727 1.392 149,183.5

σ3 = 7.558
0.955
√
|T(2P−Mw)|+Mw
T−262.014

20 0.883 0.728 1.160 3,551,375.7

The SR algorithm proposed three different classes of solutions, namely an exponential
form (σ1), a nonlinear fractional form (σ2), and a combined fractional/square root form
(σ3). These forms appeared at most in the output expression pool. We have to note
here that the SR output included a total of 20 equations, with increasing complexity
Comp. = 1–20, per iteration run, for 40 parallel runs (for more details refer to [76]), i.e.,
800 candidate expressions.

We observe that Equation σ1 captured the exponential behavior shown in empirical
Equation 1; however, one could not directly compare the two equations since Equation σ1
considered Mw and P apart from T. Nonetheless, this is a simple equation that captures the
ionic liquid physical behavior, with satisfying error metrics, but its disadvantage is the high
AAD value, denoting increased distance from the real experimental values. The increased
complexity of Equations σ2 and σ3 yielded better error metrics, with Equation σ3 reaching
R2 = 0.883 and Equation σ2 having the smallest AAD = 149,183.5.

4. Conclusions

Ionic liquid research is a field of investigation mainly based on experimental mea-
surements, and fundamental information is hard to obtain. The need for incorporating
novel computational techniques has opened the road to ML techniques that can assist in
this direction.

We incorporated various ML algorithms in this paper that showed a good fit on the
employed ionic liquid dataset for the electrical conductivity prediction. The best fit was
obtained for the GBR algorithm, for which its tree-based procedure and the ensemble
approach to processing the data successfully captured the electrical conductivity behavior.
Notwithstanding the fact that numerical ML algorithms performed well on their predictions,
the SR-based investigation also presented in this paper approached the problem analytically,
providing mathematical expressions that can be used without further implications, thus
overcoming the black-box nature of numerical ML algorithms.

We believe that by further enriching the dataset with the values deriving from either
experiments or carefully established molecular simulations, ML data-driven techniques can
become part of the property calculations of ionic liquids. It is of importance to suggest novel
evolutional processes, reliable pre- and post-processing techniques, and physics-oriented
justification to establish an integrated computational platform that can be used by scientists
and engineers who wish to harness the vast volume of data involved in their field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/10.3390/fluids7100321/s1, Table S1: The database of ILs incorporated for our
model, with 2274 data points; Table S2: Ionic Liquids Database.
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