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Abstract: This work presents a numerical study of the collective motion of two freely-swimming
swimmers by a hybrid method of the deep reinforcement learning method (DRL) and the immersed
boundary-lattice Boltzmann method (IB-LBM). An active control policy is developed by training a
fish-like swimmer to swim at an average speed of 0.4 L/T and an average orientation angle of 0°.
After training, the swimmer is able to restore the desired swimming speed and orientation from
moderate external perturbation. Then the control policy is adopted by two identical swimmers in the
collective swimming. Stable side-by-side, in-line and staggered formations are achieved according
to the initial positions. The stable side-by-side swimming area of the follower is concentrated to a
small area left or right to the leader with an average distance of 1.35 L. The stable in-line area is
concentrated to a small area about 0.25 L behind the leader. A detailed analysis shows that both the
active control and passive self-organization play an important role in the emergence of the stable
schooling formations, while the active control works for maintaining the speed and orientation in
case the swimmers collide or depart from each other and the passive self-organization works for
emerging a stable schooling configuration. The result supports the Lighthill conjecture and also
highlights the importance of the active control.

Keywords: immersed boundary-lattice Boltzmann method; deep reinforcement learning; fish school-
ing; collective motion; side-by-side swimming; in-line swimming

1. Introduction

Collective motion, or schooling, is ubiquitous in fish swimming for reasons such as
reproduction [1], avoidance of predators [2], and search for prey [3,4]. Apart from the social
relations, the roles of hydrodynamics in schooling have long been the interest of many
researchers [5-11].

As the simplest model of schooling, the collective motion of two fishes has been
extensively studied in experiments and numerical simulations. Different hypotheses exist
on how hydrodynamics influence the formation of schooling. One important hypothesis is
the so-called Lighthill conjecture [6], which conjectures that the interaction forces between
the fish and the water push and pull the swimmers into a specific stable formation, such as
the atoms in a crystal lattice. To test this hypothesis, a variety of research has been devoted to
the emergence of collective locomotion of a two-body self-propelled system. Ramananarivo
et al. [12] experimentally studied two synchronized flapping wings in in-line swimming
in rotational orbits. The up-and-down flapping motion is prescribed, but the motion in
the direction transverse to the flapping is a result of the wing-fluid interaction. Multiple
stable arrangements can emerge from the flow-mediated coupling alone and the forward
speed of the in-line wings is faster than a single wing. Zhu et al. [13], Dai et al. [14],
Park and Sung [15] numerically investigated the self-propelled swimming of foil pairs in
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different initial arrangements. Several stable configurations are spontaneously formed
and self-sustained purely by the fluid-body interactions, including in-line, side-by-side,
and staggered formations. The propulsive velocity of the school is also enhanced. In order
to maintain specific configurations and avoid the utilization of active control, the swimmers
in the above studies are not allowed to yaw or move laterally. Therefore, those studies
only probed the 1-DoF (degree of freedom) stability of the arrangements. Recently, Kurt
et al. [16] measured the 2-DoF stability of schooling arrangements and found that many
of the 1-DoF stable formations are unstable once the lateral movement is allowed. In fact,
only the side-by-side arrangement is stable in 2-DoF cases. In addition, Novati et al. [17]
and Bergmann and Iollo [18] studied the 3-DoF swimming of self-propelled swimmers
arranged in different configurations and found that the swimmers would end up in collision
or divergence if they were allowed to yaw.

The above studies mainly focus on the emergence of a 1-DoF or 2-DoF collective
motion in a self-propelled system, but the 3-DOoF stability of two free swimmers is not yet
studied. We note that this is due to the difficulties of maintaining fixed 3-DoF formations
in the absence of active control. The main purpose of this work is to numerically realize
the stable 3-DoF schooling by introducing active control and reveal the hydrodynamic
mechanism underlying the emergence of the schooling formation. Specifically, the deep
reinforcement learning (DRL) method is adopted to develop the control strategy. This
method is adopted by a variety of works to study the free swimming problems, including
path following [19,20], collective motion [17,21,22], point-to-point navigation [23-29], rheo-
taxis and position holding in a Kdrmdn vortex street [30]. Effective navigating strategies are
developed from the learning. In this work, a control policy is developed by training a fish
to swim in a specific speed and orientation with DRL. After training, the fish can restore
the desired swimming speed and orientation from moderate external perturbation. Then
the control policy is adopted by two identical swimmers in collective swimming. The core
idea is that the swimmers tend to maintain a given formation if they always try to maintain
the same swimming speed and orientation, thus the adjustment of the formation is due to
passive self-organization.

This research advances our understanding of the Lighthill conjecture in the emergence
of schooling formation. For the first time, we achieve different stable 3-DoF schooling
by introducing appropriate active control in the numerical simulation. We discover that
stable side-by-side and in-line configurations arise in the 3-DoF free swimming of fish
pairs. Moreover, we reveal that both active control and passive self-organization play an
important role in the emergence of stable schooling formations.

The rest of the paper is organized as follows. Numerical models, IB-LBM and multi-
agent DRL are simply introduced in Section 2. The results of the simulation are discussed
in Section 3. The conclusions are provided in Section 4.

2. Methodology
2.1. Kinematic Model of the Fish

Here, it is assumed the shapes of the fishes in schooling are identical, which are the
same as in Reference [30]. The half-thickness of the body is mathematically approximated by

d—02610\/7—03112 ! +0.1371 ! 2—00791 ! 3—00078 ! ' (1)
L L ' L ' L ' L ' L)’

where [ is the arc length along the mid-line of the body, and L is the body length, which is a
constant during swimming [31].

The motion of the fish body includes three parts: the body undulation in the local
coordinate system (represented by the mid-line lateral displacement k; in x;—y; system),
the translation of the mass center (r), and the body rotation around the mass center (repre-
sented by the orientation angle 8). The undulatory motion can be taken as the superposition
of different waves propagating from head to tail. Usually the waveform is sinusoidal-based,
the draw of which is that the undulating parameters cannot be smoothly changed online.
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Therefore, a polynomial-based undulation is adopted to allow smooth change of the wave-
form. In order to implement the DRL in an easy way as explained later, the kinematics
of the newest generated waves can be changed every half cycle. In the n-th half cycle,
the mid-line lateral displacement is determined by

(1, f) = /Ol sin(6,)dl, @)

6,(1,t) = %h H”(t—tOn) - H 3)

n

where 0; is the deflection angle of the mid-line with respect to axis x;, as shown in Figure 1,
Ay is the wavelength, T, is the period, f is the time, tp, = 0 for n = 1 and Z;‘_l T, forn > 1,
and h is the waveform function described by

h(Q) = co+ a1l + c2l* +c30° + cal* + s, 4)

where ¢g_5 can be determined by 7(0) = (61ax)n—1, "(An/2) = (B1max)n, B (0) = K (A, /2) =
0, h"(0) = —h(0)(27t/Ay_1)?, and B (A /2) = —h(Ay/2)(27T/ Au)?. (Bpax )n is the maxi-
mum deflection angle at the tail tip of the n-th half wave.

X

Figure 1. A schematic illustration of the motion of the fish.

The translational and rotational motion of the fish is determined by the FSI in the
global coordinate system according to Newton’s laws of motion. The FSI equations are
solved by an explicit FSI coupling method as in References [30,32].

2.2. Immersed Boundary-Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is a numerical method used to simulate the fluid
dynamics. Instead of solving the Navier-Stokes equations, the LBM solves the discrete
lattice Boltzmann equation, which governs the kinematics of the mesoscopic particles,

fi(r + ciAt, t+ At) — fi(r,t) = Q;(r,t) + AtGi(r, t), i=0,..,8 ()

where f is the particle density distribution function, r = (x, y) is the space coordinate, c;
is the discrete lattice velocity, At is the time step, (); is the collision operator, and G,; is the
source term representing the body force. A detailed description of this equation can be
found in Reference [33]. f in the whole flow field can be acquired from a well-defined
boundary condition, such as the no-slip velocity condition on the boundary of the swimmer
model. Once f is known, the macroscopic physical quantity such as fluid density, pressure
and velocity can be computed from

1 Atg

p=Y.fi p=pcs, u= p<2fici+2>/ 6)
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where ¢; is the lattice speed of sound in the fluid, and g is the body force. Then the force
and torque on the swimmer model can be computed from those macroscopic physical quan-
tities. In addition, a diffusion immersed boundary method (IBM) [34-36] is utilized to
handle the boundary condition at the fluid-structure interface. In this method, the in-
fluence of the boundary on the fluid is represented by a distribution of body force on
the background Eulerian mesh nodes. Compared to body conformal methods [37-39],
the grid generation in IBM is much easier for complicated shapes [35,40,41]. A multi-block
geometry-adaptive Cartesian mesh (Figure 2) is coupled with the IB-LBM to accelerate the
computation. A detailed description of this numerical scheme and its validation can be
found in References [30,34,42—45].

Figure 2. Near-boundary grid structure of a fish-like body.

2.3. Deep Reinforcement Learning

DRL is a machine learning method combining reinforcement learning with an artificial
neural network. DRL has gained extensive attention due to its success in complex real-
world problems [46]. In this study, a specific DRL method called deep recurrent Q-network
(DRQN) [47] is adopted, in which a long-short-term-memory recurrent neural network
(LSTM-RNN) is used to process time-sequential data. In this method, a smart agent learns
to achieve a specific goal by interacting with its environment [23]. The agent can sense
the state of the environment (denoted by s) and take actions (denoted by a) to affect it.
In addition, the agent will receive a reward (denoted by rd) for each action indicating how
good the action is. The core idea is that the agent tries different actions in different states
and finds a policy (denoted by 71(s, a), describing the probability of selecting each action in
the different states) that maximizes the long-term reward.

The interaction procedure between the environment (IB-LBM) and the agent (DRL)
is shown in Figure 3. The interaction is divided into a sequence of discrete steps n =
0,1,2,3,---. At steps n, the agents detect state s;;, and select action a,, based on policy
7(s,a). Then the environment is changed under the influence of the action. At step
n + 1, in response to the change of the environment, the agent receives reward rd, 1,
and finds itself in a new state s, 1. A detailed explanation of the procedure can be found
in References [30,48]. Validations of the current solver can be found in Reference [30] for
the hybrid method of DRL and IB-LBM.
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Figure 3. The interaction procedure between IB-LBM and DRL.

3. Results and Discussion
3.1. Learning to Maintain a Given Speed and Orientation

In this section, a fish is trained to maintain its swimming speed and orientation to a
given value. Its body length is L and its waving period is T. The goal is to swim along
the x-axis at a constant average speed @ = 0.4 L/T. The goal is reflected by defining a
reward as

rd = —\/(ax —04L/TP + 2, @)

where rd is the reward of the swimmer, and i, and i, are the swimmer’s average speeds
along x-axis and y-axis, respectively. In addition, the position of the leader r is restricted to
a confined area of 20 L x 10 L.

A comprehensive representation of the environment state is very important for accu-
rate motion control. Theoretically, it should include the information of the fish itself and the
ambient flow. The information of the fish includes the body kinematic parameters, position,
orientation, velocity, angular velocity, acceleration and angular acceleration of the body.
The flow information includes the flow velocity and pressure in the whole flow field. In
addition, the historical evolution of the flow should also be considered. The information
is too complicated to be considered in a simple definition of the state. Therefore, we have
conducted tests with different environment information [30]. The results show that only
considering the actions, orientations, and velocities in the last four periods is enough to cap-
ture the flow dynamics and can realize relatively high accurate motion control. Therefore,
the state is defined by a tuple

Sy = . 8)

(ﬁx)n—S/ (ﬂy)n—S/ 0n-8, an-s

The swimmer propels itself by periodically generating a traveling wave propagating
from head to tail, as defined by Equations (2) and (3). The period is T and the body
wavelength is fixed at A = L. The amplitude set is defined as 6;,,,,, = 10°, 15°, 20°, 25°, 30°,
35°,40°, 45° and 50°. This parameter set forms an action base of nine components.

The simulation is performed for a Reynolds number of Re = pL?/Tu = 2500.
Considering the desired forward swimming speed ## = 0.4 L/T, this is equivalent to
Re, = piiL/p = 1000 for a steady swimmer. It should be noted that this is not a typi-
cal Reynolds number for an adult fish, rather it is representative of a juvenile fish less
than 5cm in length. This Reynolds number is used to reduce the computational cost
by considering laminar flow, while still demonstrating the effectiveness of the control
method. The computational domain of 80L x 80L is divided into eight layers of the block
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with about 5.8 x 10* initial points. The minimum nondimensional mesh spacing is
Ax/L = Ay/L = 0.01 near the inner boundaries, and the nondimensional time step size is
At/T = 0.001. The learning rate is « = 0.001.

The learning process is divided into a series of episodes. In each episode, the leader
is initially placed in the right boundary of the confined swimming area with the initial
orientation angle 6y varying between —60° and 60°. The positions and orientations of the
swimmer are then determined by the FSI with the actions. Once the swimmers exceed
the confined area, the episode ends and another starts. Figure 4 shows the change history
of the speed u and orientation angle 6 of the swimmer when the fish starts with different
initial orientations after learning for 1000 episodes. In all cases, the fish successfully aligns
itself with the x-axis and remains its average swimming speed close to 0.4 L/T.

051
0.4}

03fF ¢

uT/L

0.2}

0.1}

Figure 4. Single smart swimmer: (a) The change history of the speed for different initial orientation
angles; and (b) the change history of the orientation angle for different initial orientation angles.

Figure 5 shows the change history of the lateral displacement of the tail tip when
the fish starts with an initial orientation angle 6y = 45°. Figure 6 shows the gestures of
the fish and the vorticity contours at different instants. As can be seen, the fish adopts a
higher-right-amplitude flapping to turn clockwise to align with the x-axis. Then it adopts
a symmetric and constant-amplitude flapping to maintain its orientation and speed. It is
noted that asymmetric corrective movement is adopted occasionally.



Fluids 2022, 7, 41 7 of 19

0.3 ;
r 1
02f |
g |
0.1F
<
B 0
0.1F !
: 1
02f |
g |
. v
03010 20 30 40 50 60
4T
Figure 5. The lateral movement of the tail of a single smart swimmer with an initial orientation
angle 45°.
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Figure 6. Vorticity contours behind a single smart swimmer at four typical instants: (a) t/T = 4.3,
(b)t/T =48,(c)t/T =16.3, (d) t/T = 16.8. The range of the vorticity contours is from —7.5 to 7.5.
Note that the flow inside the body-occupied region is introduced by the IB-LBM, which however
does not affect the solution in the physical region.



Fluids 2022, 7, 41

8 of 19

3.2. The Collective Motion of Two Smart Swimmers

In the last section, a swimmer learns a robust control policy to maintain its swimming
speed and orientation. The logic of the control policy is simple: (1) if the fish is not
swimming in the desired orientation, asymmetric flapping is used to turn into the desired
orientation; (2) if the fish is in the desired orientation, appropriate symmetric flapping
is used to achieve the desired speed and maintain the orientation. Theoretically, if two
swimmers adopt the same control policy, it would be easier for them to swim together.
Therefore, in this section, the collective motion of two identical smart swimmers with the
same control policy is tested in the confined swimming area. As shown in Figure 7, a leader
and a follower is identified, and the relative position and orientation of the follower with
respect to the leader in the local coordinate system of the leader (x;; — y;,4) are represented
by dx, 6y and 6.

Follower .-~

Leader X,

Figure 7. A schematic illustration of the relative position of the swimmers.

A total of 177 different cases are tested in which the initial relative orientation J6 = 0°
and the initial relative positions are as shown in Figure 8. In all cases, the swimmers drive
their body according to the policy learned in the above section. The relative positions of
the swimmers recorded every half a period are shown in Figure 9. The result shows that
different stable formations are achieved according to the initial relative position, as shown in
Figure 9. For simplicity, the flow field around the leader is divided into five different areas:
front, rear, close wake, far wake and far area, as shown in Figure 8. If the initial relative
position is in the front or rear area, the swimmers will form stable side-by-side swimming.
If the initial relative position is in the close wake area, the swimmers will form stable in-line
swimming. If the initial relative position is in the far or far wake area, the swimmers will
form stable staggered swimming. The stable staggered swimming area is located in the
far area, and highly diverse formations arise according to the initial formations. We noted
that this is because the swimmers can easily maintain their original formations when the
hydrodynamic interaction between the swimmers is negligible. The stable side-by-side
area is located in a small area left or right to the leader with a distance of about 1.35L.
The stable in-line area is located in a small area about 0.25L behind the leader. It is to be
noticed that the emergence of the stable side-by-side and in-line formations from the highly
diverse initial formations is due to the passive self-organization of hydrodynamics, since
the swimmers always tend to maintain a given formation instead of actively alter it. In order
to understand the hydrodynamic mechanism underlying the passive self-organization,
three typical cases are studied in detail.
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)

Figure 8.

The initial relative positions of the follower in different test cases.

Stable side-by-side area

Stable staggered area

e in-line area

x,/L

2

Figure 9. The traces of the follower in the local coordinate system of the leader in different test cases.

In the first case, the initial relative position is chosen as éx = 0.4 L and éy = 0.4 L.
The relative trace of the head tip recorded every half a period is shown in Figure 10a,
and the change history of the swimming speed, orientation angle and the lateral movement
of the tail tip are, respectively, shown in Figure 10b—d. As can be seen, the follower is firstly
behind the leader. However, it accelerates rapidly and exceeds the leader in a few periods.
Then the leader catches up with the follower gradually until they swim side-by-side in a
stable formation. Meanwhile, the orientation angles of both swimmers grow quickly at the

beginning and then gradually restore to the initial situation.
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Figure 10. Collective swimming starts in front area: (a) The trace of the head tip, (b) the change of

the speed, (c) the change of the orientation angle, (d) the lateral movement of the tail tip.

The gestures of the swimmers and the flow velocity and vorticity contours are shown
in Figure 11. As can be seen, at the first few periods (Figure 11b,c), Vortex 1 (for simplicity,
the newest generated counterclockwise vortex is called Vortex 1) has a strong influence on
the posterior part of the leader and the middle part of the follower, making them rotating
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counterclockwise (0 becomes larger). In addition, the vortex triggers forward flow near the
follower and backward flow near the leader, which significantly accelerates the follower
and decelerates the leader, as shown in Figure 10b. A few periods later (Figure 11d), the
follower is very close to the leader and Vortex 1 between the swimmers exerts strong
attraction force to the posterior part of them, leading to the counterclockwise rotation of
the leader and the clockwise rotation of the follower. These rotations cause the swimmers
to move in different directions. It is noted that this process is irreversible, which means that
the swimmers will continuously swim in different directions and eventually separate (see
the videos of the swimmers without active control in the Supplementary Materials). In other
words, the passive mechanism does not support stable 3-DoF side-by-side swimming. This
highlights the importance of active control in maintaining the stable side-by-side swimming.
However, in this case, the smart swimmers are able to adjust their orientations actively.
As shown in Figure 10c,d, the swimmers adopt highly asymmetric flapping to restore their
orientations when the swimmers are deviated from their original orientations. Due to those
active adjustments, the swimmers gradually restore their orientations and move parallel to
each other, as shown in Figure 11e,f. It is to be noticed that in Figure 11e, the follower has
exceeded the leader. Meanwhile, Vortex 2 instead of Vortex 1 becomes the most influential
vortex, gradually accelerating the leader until the swimmers move parallel to each other. It
is noted that this is a passive balance mechanism since the swimmers do not actively chase
each other.

In the second case, the initial relative position is chosen as éx = L and dy = 0.8 L.
The relative trace of the head tip recorded every half a period is shown in Figure 12a,
and the change history of the swimming speed, orientation angle and the lateral movement
of the tail tip are, respectively, shown in Figure 12b—d. As can be seen, the relative motion
of the follower can be divided into two stages. In Stage 1, the follower swims towards
the middle part of the leader. In Stage 2, the follower swims away until it reaches the
stable side-by-side position as in the first case. Considering the relative position in Stage
2 is close to that in the first case, the underlying mechanism is also similar. Therefore,
the performance of the swimmers in Stage 2 is no longer discussed here. The follower
is initially located parallel to the tail tip of the leader. However, it swims towards the
leader with higher speed and reaches the middle part of the leader at the end of Stage 1.
Meanwhile, the orientation angles of both swimmers grow gradually. Compared to the first
case, the growth of the orientation angles is much smaller especially for the leader. In fact,
the leader is rotating slower than the follower in this case, leading to the follower directly
facing the leader.

The gestures of the swimmers and the flow velocity and vorticity contours are shown in
Figure 13. As can be seen, Vortex 1 has a strong influence on the anterior part of the follower,
making it rotate counterclockwise (6 becomes larger) to face the leader. The vortex also
triggers forward flow near the follower, which accelerates it gradually. It is noticed that the
influence on the leader is much smaller than in the first case and in Stage 2. This is because
the distance between the swimmers is relatively large, thus weakening the hydrodynamic
interaction. In addition, this motion could lead to the collision of the swimmers (see the
video in the Supplementary Materials). However, the collision is avoided in this case
because the swimmers continuously adjust their flapping to resist the rotations and restore
their original orientations (parallel to the x-axis). As can be seen in Figure 12d, frequent
asymmetric flapping is adopted by the swimmers to parallelize the orientations. Due to
these adjustments, the follower enters the front area of the leader before running into it.
Thereafter, the mechanism described in the first case automatically separates the swimmers
and leads them to stable side-by-side swimming.
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t/T=0
Follower

t/T=4.93

1/T=6.66

()

Figure 11. Vorticity contours behind the fish during side-by-side swimming initiated in the front area
at six typical instants: (a) t/T =0, (b) t/T = 3.84, (c) t/T = 4.93,(d) t/T = 6.66, (e) t/T = 9.47,
and (f) t/T = 32. The range of the vorticity contours is from —7.5 to 7.5.
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the speed, (c) the change of the orientation angle, (d) the lateral movement of the tail tip.

Figure 12. Collective swimming starts in the rear area: (a) The trace of the head tip, (b) the change of
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t/T=0
Follower
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Figure 13. Vorticity contours behind the fish during side-by-side swimming initiated in the rear area
at four typical instants in Stage 1: (a) /T =0, (b) t/T = 3.84, (c) t/T = 15.87,(d) t/T = 17.86. The
range of the vorticity contours is from —7.5to 7.5.

It should also be noticed that the fishes take more than 30 periods to completely restore
the speed and orientation, while in the single-fish case it takes less than 10 periods. It means
that the control policy learned by the fish is not strong enough to quickly restore the speed
and orientation in the presence of the hydrodynamic interaction between the fish. It can
be speculated that if a more intense active adjustment strategy is utilized, the swimmers
can better counteract the influence of hydrodynamic forces and restore their speeds and
orientations more quickly. This mild adjustment strategy highlights the passive interaction
of the fishes and thus is a good way to investigate the passive hydrodynamic mechanism
of the schooling.

In the third case, the initial relative position is chosen as éx = 1.6 L and éy = 0.0 L.
The relative trace of the head tip recorded every half a period is shown in Figure 14a,
and the change history of the orientation angle and the lateral movement of the tail tip are,
respectively, shown in Figure 14b,c. As can be seen, the follower is drawn to the leader and
oscillates around the tail tip of it. Meanwhile, the orientation angles of both swimmers vary
frequently, leading to the frequent adjustment movement of the swimmers.
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Figure 14. Collective swimming starts in close wake area: (a) The trace of the head tip, (b) the change
of the orientation angle, (c) the lateral movement of the tail tip.

The gestures of the swimmers and the flow velocity and vorticity contours are shown
in Figure 15. Two different situations can be identified. The first situation is when the
follower is in direct contact with the leader’s wake vortices, as shown in Figure 15b,c.
As can be seen, the vortices are pushed to one or the other side of the follower, forming
vortex pairs. The vortex pairs strengthen the lateral wake flow along a particular direction,
thus push the follower out of the wake area. The second situation is when the follower is
out of the wake vortices, as shown in Figure 15d. As can be seen, the vortices no longer
form vortex pairs, and Vortex 1 alone has a strong influence on the follower. This is similar
to Stage 1 of the second case. As is discussed, the follower should be drawn to the tail.
However, since the distance between the swimmers is larger, the follower is only drawn
back to the first situation where it is in direct contact with the wake flow. It is noted that
this is a passive balance mechanism relying on the strength of the vortices. If the follower
is located in the far wake area where the vortices are vastly weakened, it cannot be pulled
back to the wake flow by the vortices and eventually swims out of the wake flow.
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Figure 15. Vorticity contours behind the fish during in-line swimming at four typical instants:
(@)t/T=0,(b)t/T=20.22,(c)t/T =33.66,(d) t/T = 37.06. The range of the vorticity contours is
from —7.5to0 7.5.

4. Conclusions

The collective motion of two freely-swimming smart swimmers has been numerically
studied by a hybrid method of the deep reinforcement learning method (DRL) and the
immersed boundary-lattice Boltzmann method (IB-LBM). An active control policy is devel-
oped by training a fish to swim in a specific speed and orientation. After training, the fish
is able to restore the desired swimming speed and orientation from moderate external
perturbation.

Then the control policy is adopted by two identical swimmers in the collective swim-
ming. Results show that stable side-by-side, in-line and staggered formations are achieved
according to the initial positions. The stable staggered formation is diverse since the hydro-
dynamic interaction between the swimmers is negligible. The stable side-by-side area is
concentrated at a small area left or right to the leader with an average distance of about
1.35 L. The stable in-line area is concentrated in a small area about 0.25 L behind the leader.

In the side-by-side swimming, the follower will gradually catch up with the leader
until it enters the stable side-by-side area. A detailed analysis shows that both the active
control and passive self-organization play an important role in this process. The active
control works for maintaining the speed and orientation of the swimmers in case they
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collide or depart from each other. The passive self-organization works for emerging a stable
schooling configuration. This result also shows that the side-by-side swimming is 2-DoF
stable even though it is 3-DoF unstable. It means that less control effort is required for
the fish to remain in the side-by-side formation since it only needs to actively adjust its
orientation, and the relative position will be automatically decided by the self-organization.

In the in-line swimming, the follower is drawn to the close wake area of the leader.
A passive balance mechanism is identified, in which the wake vortices periodically pull the
follower out of and into the wake flow. However, the stable in-line swimming only exists
in specific relative positions as the mechanism relies on the ability of the vortices to draw
back the follower. We noted that if an active control could serve to pull back the follower to
the wake flow, more stable formations can be acquired.

This research promotes our understanding of the hydrodynamic mechanism under-
lying the fish schooling, especially how the active control and passive self-organization
combine to form stable schooling configurations. However, as a preliminary work, many
important features of the real fish swimming are not considered, making it difficult to
draw a direct conclusion about the real fish behavior. Ongoing work aims to make the
simulation more realistic by introducing more real fish features. To be specific, the following
aspects will be explored in the future: (1) the multi-agent deep reinforcement learning
will be introduced to develop a more robust and subtle control policy, in which the fishes
learn to respond to not only their own environmental states but also the actions of other
individuals; (2) a structure solver will be considered to reveal the active and passive energy
harvesting mechanism; (3) control based on the lateral line system (using hydrodynamic
information as sensory input) will be covered; and (4) three-dimensional models will be
investigated. Compared to the two-dimensional cases, more degrees of freedom need to be
dealt with, including the translation and rotation in three different directions. In addition,
the coordinate control of the tail and the pectoral and dorsal fins should also be considered
in order to balance the three-dimensional forces and torques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/luids7010041/s1, Video S1: single smart swimmer with initial orientation angle § = 0°;
Video S2: single smart swimmer with initial orientation angle 6 =°; Video S3: first case in Section
3.2 with active control - two smart side-by-side swimmers with initial relative orientation angle
66 = 0° and initial relative position ér/L = (0.4,0.4); Video S4: first case in Section 3.2 without active
control - two free swimmers with initial relative orientation angle 66 = 0° and initial relative position
dr/L = (0.4,0.4); Video S5: second case in Section 3.2 with active control - two smart side-by-side
swimmers with initial relative orientation angle 66 = 0° and initial relative position ér/L = (1.0,0.8);
Video S6: second case in Section 3.2 without active control - two free swimmers with initial relative
orientation angle 0 = 0° and initial relative position ér/L = (1.0,0.8); Video S7: third case in Section
3.2 with active control - two smart in-line swimmers with initial relative orientation anglesf = 0°
and initial relative position ér/L = (1.6,0.0); Video S8: third case in Section 3.2 without active
control - two free swimmers with initial relative orientation angle 66 = 0° and initial relative position
ér/L = (1.6,0.0).
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The following abbreviations are used in this manuscript:

DoF degree of freedom

DRL deep reinforcement learning
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FSI fluid—structure interaction
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LBM lattice Boltzmann method

DRQN deep recurrent Q-network

LSTM-RNN  long-short-term-memory recurrent neural network
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