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Abstract: Vortex shedding behind an elastically mounted circular cylinder in the presence of group
focused waves propagating upstream was investigated using a classical approach (time series and
FFT) and nonclassical approach (complex 2D Morlet wavelets). Wavelet analysis emerged as a novel
solution in this regard. Our results include wave trains with different nonlinearities propagating
in different water depths and derived from three types of spectra (Pierson–Moskowitz, JONSWAP
(γ = 3.3 or γ = 7)). It was found that the generated wave trains could modify regimes of shedding
behind the cylinder, and subharmonic frequency lock-in could arise in particular situations. The
occurrence of a lock-in regime in the case of wave trains propagating in intermediate water locations
was shown experimentally even for small nonlinearities. Moreover, the application of time-localized
wavelet analysis was found to be a powerful approach. In fact, the frequency lock-in regime and its
duration could be readily identified from the wavelet-based energy and its corresponding ridges.

Keywords: vortex shedding; subharmonic synchronization; circular cylinder; group focused waves;
JONSWAP; Pierson–Moskowitz; wavelet analysis; ridges

1. Introduction

Vortex shedding behind cylindrical structures has been the focus of many experimental
and numerical studies over recent decades, given its practical importance in the maritime
industry [1–4]. When exposed to highly nonlinear perturbations, vortex shedding provides
modifications particularly in the wake around the cylinder. Therefore, these modifications
should be considered when evaluating vortex shedding’s disadvantages. The frequency
of vortex shedding fsh in the wake depends on the frequency of the perturbation fw. More
precisely, there is a fundamental synchronization region in which fsh is controlled by the
imposed perturbation, which is referred to as the vortex shedding lock-in regime [5,6]. This
regime may occur at frequencies of perturbation fw equal to fsh (harmonic lock-in), 2fsh
(subharmonic lock-in), or fsh/n with n = 2, 3, . . . (superharmonic lock-in) [7]. In the present
work, we only focused on subharmonic lock-in regime, i.e., fw~2fsh.

In the global context of climate change evolving the expansion of marine renewable
energy and the impacts of storminess on man-induced frames, cylindrical structures should
be designed to remain functional in increasingly intermediate and deep-water locations
during extreme events. For that reason, it is essential to study vortex shedding around the
cylinder in similar harsh environments. In previous studies, several physical mechanisms
have been suggested as causing the formation of extreme waves, including dispersive focus-
ing in shallow or intermediate water depth [8,9] and modulation instability in deep-water
depth, i.e., kh > 1.363, where k and h are the wavenumber and water depth, respectively [10].
In the present work, we have decided to limit our focus to extreme waves generated by the
spatiotemporal wave focusing as a consequence of the dispersive nature of water waves.
Dispersive focusing is traditionally used in laboratory modeling [11–13] to represent the
expected wave profile based on the NewWave theory [14], which describes the wave veloc-
ity components and the free surface elevation of a focused group of localized waves. The
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waves are superposed and brought into phase at one point, generating an extreme wave
event. The impact of wave trains on the structure of vortices behind the cylinder has not
yet been investigated. Therefore, we will study the features of frequency lock-in of vortex
shedding in the wake when the external forcing is due to wave trains.

The most widely used frequency analysis technique to detect the shedding frequency
in the wake of a cylinder is the Fast Fourier Transform (FFT) [7]. Given the rapidly changing
nature of extreme waves, the reliability of the forecast of extreme waves’ impact on the
wake behind the cylinder using FFT is low and hard to temporally expect. Consequently,
FFT does not reflect the accurate time localization of the subharmonic frequency lock-
in. In this work, we explore the capabilities of the complex wavelet convolution tool to
improve the localization of the subharmonic lock-in. The need to evaluate relatively long-
term and highly random phenomena using wavelet analysis is already found in a variety
of disciplines, such as plasma physics [15], health-related areas like neuroscience [16],
geophysics [17], or ocean wave analysis [18–20].

Observations of the shedding frequency fsh in the wake of an elastically mounted
cylinder subjected to wave trains are presented in this paper. Firstly, a spectral analysis was
used in order to investigate the spectral changes in the wake of the cylinder from random
wave trains with a wide range of water depth, nonlinearities, and spectra types. Secondly,
wavelet analysis was proposed as a tool to identify the temporal evolution of subharmonic
frequency lock-in based on the wavelet transform.

The remainder of this paper is organized as follows. Section 2 describes our exper-
imental set-up. Section 3 is devoted to our experimental results and observations. The
fourth and last sections present our conclusions and perspectives.

2. Materials and Methods

The tests were conducted at the Morphodynamique Continentale et Côtière de Caen,
France. The wave flume was 16 m long, 0.5 m wide, and filled with tap water to a depth of
h0 = 0.25 m (Figure 1). A piston-type wave maker was located at one end of the flume to
generate wave trains, and a foam absorber beach was at the other end. Two honeycombs of
about 20 cm were installed in the flume, as shown in Figure 1a, in order to reduce wave
reflection and to minimize the intensity of turbulent fluctuations generated by the pump.
Temporal variations of free surface elevation measured at x = 2 m from the wave maker,
were recorded by a wave gauge with a sampling rate of 100 Hz. These measurements were
used to identify input wave train parameters.

The experimental setup is shown in Figure 1. The rigid circular cylinder model,
situated at x = 7 m from the wave maker, was made from Plexiglas with diameter D = 0.04 m
and had an immersed length of L = 0.248 m. An acoustic doppler velocimeter (ADV), placed
at a distance d ~ D from the cylinder, was used to measure the longitudinal wave velocity
Vx upstream the structure. Wave trains propagated on the background of a steady current
U = 0.16 m/s, corresponding to a Reynolds number Re = UD

ν = 6400 (ν is the kinematic
viscosity) and a Froude number Fr = U√

gh0
= 0.1. The definition of the flow velocity and

the Reynolds and Froude numbers were the same as in Hans et al. (2016). The cylinder was
vertically clamped by its upper end to an elastic support, which was fixed on the flume’s
structure. The lower end of the cylinder was at approximately 2 mm (5% D) from the
flume’s floor (Figure 1b,c).

Focused wave trains were generated with a technique similar to that in [13]. The
resulting wave trains were derived from Pierson–Moskowitz, JONSWAP (γ = 3.3), and
JONSWAP (γ = 7) spectra. Figure 2 shows three sets of time series of Pierson–Moskowitz,
JONSWAP (γ = 3.3), and JONSWAP (γ = 7) wave trains and their corresponding dimen-
sionless frequency spectra.
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By adjusting the nonlinearity S0, breaking wave trains with different amplitudes were
generated. The focus point was set to x = 12 m > x = 7 m and therefore, all of the generated
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wave trains broke downstream the cylinder. The nonlinearity parameter S0 = kS0 ∑n
i = 1 ai,

also called local wave steepness, was the same as S0 in [13]. Here, kS0 was the characteristic
wavenumber, and ai was the amplitude of the ith wave component. The nonlinearity
parameter S0 was calculated at x = 2 m from the wave maker. The generated wave trains
propagated in intermediate water depth (0.9 < kwh0 < 2.04). Tables 1 to 3 present some key
parameters of the generated wave trains, which were categorized via their spectra, wave
nonlinearity S0, and the water depth kwh0. One hundred and twenty crest-focused wave
groups were generated in this study.

Table 1. Summary of the primary Pierson–Moskowitz wave train parameters. fw: peak wave
frequency; kw: wave number; S0: wave train nonlinearity.

fw (Hz) kwh0 S0 fw (H) kwh0 S0

Case 1

0.8

0.9 0.005 Case 11

1

1.2 0.001
Case 2 0.9 0.021 Case 12 1.2 0.005
Case 3 0.9 0.050 Case 13 1.2 0.012
Case 4 0.9 0.081 Case 14 1.2 0.021
Case 5 0.9 0.125 Case 15 1.2 0.034
Case 6 0.9 0.180 Case 16 1.2 0.050
Case 7 0.9 0.240 Case 17 1.2 0.067
Case 8 0.9 0.310 Case 18 1.2 0.088
Case 9 0.9 0.390 Case 19 1.2 0.110
Case 10 0.9 0.480 Case 20 1.2 0.140

fw (Hz) kwh0 S0 fw (H) kwh0 S0

Case 21

1.2

1.58 0.001 Case 31

1.4

2.04 0.001
Case 22 1.58 0.001 Case 32 2.04 0.001
Case 23 1.58 0.003 Case 33 2.04 0.001
Case 24 1.58 0.006 Case 34 2.04 0.001
Case 25 1.58 0.009 Case 35 2.04 0.002
Case 26 1.58 0.014 Case 36 2.04 0.004
Case 27 1.58 0.019 Case 37 2.04 0.005
Case 28 1.58 0.026 Case 38 2.04 0.007
Case 29 1.58 0.032 Case 39 2.04 0.009
Case 30 1.58 0.040 Case 40 2.04 0.012

Table 2. Summary of the primary JONSWP (γ = 3.3) wave parameters. fw: peak wave frequency; kw:
wave number; S0: wave train nonlinearity.

fw (Hz) kwh0 S0 fw (H) kwh0 S0

Case 41

0.8

0.9 0.010 Case 51

1

1.2 0.002
Case 42 0.9 0.036 Case 52 1.2 0.011
Case 43 0.9 0.080 Case 53 1.2 0.024
Case 44 0.9 0.140 Case 54 1.2 0.041
Case 45 0.9 0.220 Case 55 1.2 0.065
Case 46 0.9 0.313 Case 56 1.2 0.093
Case 47 0.9 0.412 Case 57 1.2 0.124
Case 48 0.9 0.514 Case 58 1.2 0.159
Case 49 0.9 0.624 Case 59 1.2 0.199
Case 50 0.9 0.734 Case 60 1.2 0.244
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Table 2. Cont.

fw (Hz) kwh0 S0 fw (H) kwh0 S0

Case 61

1.2

1.58 0.001 Case 71

1.4

2.04 0.001
Case 62 1.58 0.003 Case 72 2.04 0.001
Case 63 1.58 0.008 Case 73 2.04 0.001
Case 64 1.58 0.013 Case 74 2.04 0.002
Case 65 1.58 0.020 Case 75 2.04 0.003
Case 66 1.58 0.030 Case 76 2.04 0.004
Case 67 1.58 0.041 Case 77 2.04 0.006
Case 68 1.58 0.054 Case 78 2.04 0.008
Case 69 1.58 0.070 Case 79 2.04 0.010
Case 70 1.58 0.088 Case 80 2.04 0.012

Table 3. Summary of the primary JONSWP (γ = 7) wave parameters. fw: peak wave frequency; kw:
wave number; S0: wave train nonlinearity.

fw (Hz) kwh0 S0 fw (Hz) kwh0 S0

Case 81

0.8

0.9 0.014 Case 91

1

1.2 0.003
Case 82 0.9 0.058 Case 92 1.2 0.014
Case 83 0.9 0.125 Case 93 1.2 0.035
Case 84 0.9 0.218 Case 94 1.2 0.066
Case 85 0.9 0.332 Case 95 1.2 0.102
Case 86 0.9 0.457 Case 96 1.2 0.144
Case 87 0.9 0.584 Case 97 1.2 0.191
Case 88 0.9 0.715 Case 98 1.2 0.247
Case 89 0.9 0.853 Case 99 1.2 0.312
Case 90 0.9 0.944 Case 100 1.2 0.381

fw (Hz) kwh0 S0 fw (Hz) kwh0 S0

Case 101

1.2

1.58 0.001 Case 111

1.4

2.04 0.001
Case 102 1.58 0.005 Case 112 2.04 0.001
Case 103 1.58 0.011 Case 113 2.04 0.002
Case 104 1.58 0.020 Case 114 2.04 0.004
Case 105 1.58 0.034 Case 115 2.04 0.006
Case 106 1.58 0.053 Case 116 2.04 0.008
Case 107 1.58 0.073 Case 117 2.04 0.011
Case 108 1.58 0.096 Case 118 2.04 0.015
Case 109 1.58 0.120 Case 119 2.04 0.018
Case 110 1.58 0.144 Case 120 2.04 0.022

3. Results and Discussions
3.1. Fourier Analysis

The longitudinal velocity Vx measured downstream the cylinder and FFT analysis
were used in order to obtain the velocity energy spectrum S (Vx(t)) = 2 |F(Vx(t))|2.
Here, F was the Fourier transform of the flow velocity Vx. The sampling time for ADV
measurements was truncated to 187.5 s, corresponding to 37,500 points. The lower and the
upper cut-off frequencies were set, respectively, to 0.5 Hz and 2fw. Outside this frequency
range, the spectral energy was very low (less than 2% of the total energy) and could be
neglected. The data for this paper are available in the Supplementary Materials.

Figure 3 exhibits a typical set of velocity spectra for twelve wave trains having approx-
imately the same nonlinearity S0, derived from the three spectra and propagating in four
different water depths. For each spectrum, the amplitude was normalized by the maximum
of the spectral energy, and the shedding frequency fsh was normalized by the wave train
peak frequency fw. The ratio fsh/fw and the spectrum width were used as indicators for
detecting the subharmonic synchronization regime. In Hans et al. (2016), a spectral width
of less than 3% of fsh/fw = 0.5 was used, in the case of regular waves, as a criterion by which



Fluids 2022, 7, 4 6 of 16

it is possible to know if the frequency lock-in occurred or not. In this study, the presence of a
subharmonic-like regime was characterized by fsh/fw = 0.5 and a spectrum width ∆f = 10%
of fsh/fw = 0.5, in which more than 90% of the total energy was present.
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varying the water depth kwh0.

As the water depth increased, decreasing shedding frequency was featured, and the
energy accumulation near f = fw/2 was evident. The existence of the subharmonic-like
regime narrowed the high and low amplitude range of the velocity spectra. The shedding
frequency and the wave peak frequency subsynchronized at kwh0 > 2.04, while the FFT
spectra of the ADV signal were broad-banded with peak frequencies higher than fsh/fw = 0.5
in shallower water depths kwh0 < 2.04.

The dominant frequency of longitudinal velocity fluctuations in the wake fsh measured
for all the studied wave trains is summarized in Figure 4. One can observe that the wave
nonlinearity S0 and the spectrum type had no noticeable impact on the behavior of the
shedding frequency evolution versus the steepness.
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3.2. Wavelet Analysis

The spectral method used in the last section did not take into account signals whose
constituent frequencies varied over time. Consequently, we needed a tool that has high
resolution in the frequency and time domain, allowing us to identify at which frequencies
the signal oscillated, and most importantly, at which time they occurred [21]. To efficiently
and accurately detect frequency lock-in in the wake of the cylinder, the wavelet transform
was proposed. Among all tests, the experimental results of six representative cases are
provided in Table 4. It is important to note that similar results were obtained for the
remaining wave trains.

Table 4. Selected wave trains; JS: JONSWAP and PM: Pierson–Moskowitz.

Cases Spectrum fw kwh0 S0 Lock-In

2 PM 0.8 0.9 0.021 Absence
35 PM 1.4 2.04 0.002 Presence
46 JS (3.3) 0.8 0.9 0.313 Absence
72 JS (3.3) 1.4 2.04 0.001 Presence
90 JS (7) 0.8 0.9 0.944 Absence

111 JS (7) 1.4 2.04 0.001 Presence

The continuous wavelet transform WT (a,τ) of the ADV temporal signal Vx (t) was
defined as a convolution integral of Vx (t) with dilated and scaled versions of a so-called
mother wavelet ψ ∗a,τ [22,23]:

WT (a, τ) =
∫ +∞

−∞
Vx (t) ψ ∗a,τ dt (1)

The asterisk indicates the complex conjugate, and ψa,τ represents the so-called mother
wavelet function dilated by a factor τ and scaled by a factor a. Informally, Vx(t) × ψa,τ
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represents the energy of the ADV temporal signal around time t in the frequency band
centered at 2i. Hence, scales can be written as fractional powers of two [23]:

ai = a02iδ, i = 1, 2, 3 . . . M (2)

M =
1
δ

log2

(
N∆t
a0

)
(3)

where a0 = 0.01 is the smallest resolvable scale, M denotes the largest scale, and δ is the
scale factor. The increase of the scale a is equivalent to moving the frequency content of
the mother wavelet towards lower frequencies. However, the decrease of a is equivalent
to moving its frequency content towards higher frequencies. We opted for a scale factor
δ = 0.005, giving a total of 380 frequencies. The time sampling and the number of points
were, respectively, ∆t = 0.005 s and N = 37,500.

The wavelet transform WT (a,τ) can be displayed on a 2D frequency versus time
color plot, with the colors representing the magnitudes of WT (a,τ). Abrupt changes in the
temporal signal affect the values of WT (a,τ) at all scales and can be easily detected. As
our wavelet transform was complex-valued, it could be expressed in terms of the modulus
|WT (a,τ)|, which can be interpreted as the wavelet energy spectrum (i.e., scalogram). The
magnitude of WT (a,τ) characterizes the occurrence and the intensity of the counterpart
time scale at given time t. Consequently, the energy density of the signal Vx (t) in the time
scale plan could be estimated by:

E(a, τ) = |WT (a, τ)|2 (4)

Wavelet analysis offers a large choice in the form of mother wavelets to represent
the temporal signal as compared to cosines and sines used in the Fast Fourier Transform
(FFT) and Short-Time Fourier Transform (STFT). The wavelet-based energy of the Mexican
hat [24], Daubechies [25], Shannon [26], and Morlet [20,21,27] mother wavelets for the time
series of the velocity signal Vx resulting from the propagation of a JONSWAP (γ = 7) wave
train (Case 120) are presented in Figure 5. The shapes of E (a,τ) were qualitatively similar
when using different mother wavelets. Compared to the Morlet wavelet, more irregularities
in E (a,τ) based on the Mexican hat, Daubechies, and Shannon mother wavelets were found,
and smoothing operations may be needed to investigate frequencies present in the wavelet
spectrum. Consequently, the Morlet mother wavelet was selected to be the most suitable for
our purpose. The complex Morlet wavelet, also called the Gabor wavelet, can be interpreted
as a sine wave tapered by a Gaussian window:

ψ(t) =
1√
πν0

e−
t2
ν0 ej2πω0t (5)

where ν0 is the bandwidth and ω0 is the center frequency. A wider Morlet provides a weak
temporal precision but good spectral precision, and vice versa for a narrower Morlet [28].
Obviously, the wavelet energy of the signal in the time scale plan was calculated for
wavelets with different center frequencies ω0 (namely 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and
6). For the signal decomposition, the maximum of the wavelet energy was used as an
indicator for selecting the optimal center frequency ω0 [29]. When ω0 = 3 for most of the
studied wave signals, the maximum of energy was obtained. Thus, the number three is
the optimum frequency of the mother wavelet for signal decomposition. Concerning the
bandwidth ν0, it was fixed to 1 for real-time requirement and simplicity.
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Additionally, it can be useful to plot local maxima in the two-dimensional represen-
tation of wavelet information. These maxima, also called wavelet ridges, represent those
locations in the time-frequency plan and are useful for pinpointing important frequencies
at a given time t [21,28]. In addition to the energy wavelet density E (a,τ), to simplify its
visualization, the dynamics of the local maxima (i.e., the time evolution of the wavelet
ridges) can be calculated as follows:

∂E (a, τ)

∂a
= 0 (6)
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Figure 6 exhibits a simple illustration of the wavelet-based spectrum of the longitudinal
velocity Vx in the presence of a sine wave with a frequency f = 1.35 Hz. Hans et al. [7]
demonstrated that this wave belongs to the subharmonic lock-in region. Figure 6b shows a
noticeable energetic band centered at fsh/fw = 0.5, which means that the subharmonic lock-in
was continuously present. Figure 6c shows that the associated wavelet ridges were almost
constant, i.e., dE~0, and deviated marginally from 0.5 to 0.5 ± 0.01 during the sinusoidal
wave propagation. In other words, the effect of this sinusoidal wave on the vortex street
led to the appearance of oscillations in the wake with a peak at half the frequency fw/2,
and a finite width of the wavelet spectral peak. For that reason, it was necessary to use
a criterion by which one could determine if the subharmonic frequency lock-in occurred
or not. As a criterion, we chose the width of the wavelet spectral peak. Only if the width
of the wavelet spectral peak was less than 5% of fsh/fw = 0.5, this regime was defined as a
subharmonic frequency lock-in.
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Generally, Figures 7–12 show that the complex Morlet power spectrum was found
to highlight distinctive signatures in the presence and in the absence of the subharmonic
frequency lock-in phenomenon. Figures 7–9 show the time series of the ADV of three wave
trains in the presence of subharmonic synchronization, their wavelet energy E (a,τ), and
their associated temporal evolution of the wavelet ridges. The respective patterns and
graphs looked very similar. The first notable signature in the wavelet pattern was a strip
of the domains aligned near fsh/fw = 0.5. This strip was formed by six domains that were
red-yellow-shaded, and corresponded well to the trace path of the wave train.



Fluids 2022, 7, 4 11 of 16Fluids 2022, 7, x FOR PEER REVIEW 11 of 16 
 

 
Figure 7. (a) The temporal evolution of the velocity Vx in the presence of a Pierson–Moskowitz wave 
train (Case 35), (b) temporal evolution of the wavelet spectrum energy E (a,τ), (c) temporal evolution 
of the wavelet ridges (presence of frequency lock-in). The color bar indicates the wavelet energy. 

 
Figure 8. (a) The temporal evolution of the velocity Vx in the presence of a JONSWAP (γ = 3.3) wave 
train (Case 72), (b) temporal evolution of the wavelet spectrum energy E (a,τ), (c) temporal evolution 
of the wavelet ridges (presence of frequency lock-in). The color bar indicates the wavelet energy. 

The second feature of the wavelet pattern was a large blue-colored domain, which 
could be distinguished above and under the red-yellow-shaded domains. These large blue 
domains indicated that the implication of frequencies f < 0.45 fw and f > 0.55 fw was less 
important. This means that the energy was mainly concentrated on the map zone, in 
which the frequency was 0.45 fw ≤ f ≤ 0.55 fw. The third feature of the wavelet pattern seen 

Figure 7. (a) The temporal evolution of the velocity Vx in the presence of a Pierson–Moskowitz wave
train (Case 35), (b) temporal evolution of the wavelet spectrum energy E (a,τ), (c) temporal evolution
of the wavelet ridges (presence of frequency lock-in). The color bar indicates the wavelet energy.

Fluids 2022, 7, x FOR PEER REVIEW 11 of 16 
 

 
Figure 7. (a) The temporal evolution of the velocity Vx in the presence of a Pierson–Moskowitz wave 
train (Case 35), (b) temporal evolution of the wavelet spectrum energy E (a,τ), (c) temporal evolution 
of the wavelet ridges (presence of frequency lock-in). The color bar indicates the wavelet energy. 

 
Figure 8. (a) The temporal evolution of the velocity Vx in the presence of a JONSWAP (γ = 3.3) wave 
train (Case 72), (b) temporal evolution of the wavelet spectrum energy E (a,τ), (c) temporal evolution 
of the wavelet ridges (presence of frequency lock-in). The color bar indicates the wavelet energy. 

The second feature of the wavelet pattern was a large blue-colored domain, which 
could be distinguished above and under the red-yellow-shaded domains. These large blue 
domains indicated that the implication of frequencies f < 0.45 fw and f > 0.55 fw was less 
important. This means that the energy was mainly concentrated on the map zone, in 
which the frequency was 0.45 fw ≤ f ≤ 0.55 fw. The third feature of the wavelet pattern seen 
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The second feature of the wavelet pattern was a large blue-colored domain, which
could be distinguished above and under the red-yellow-shaded domains. These large
blue domains indicated that the implication of frequencies f < 0.45 fw and f > 0.55 fw was
less important. This means that the energy was mainly concentrated on the map zone, in
which the frequency was 0.45 fw ≤ f ≤ 0.55 fw. The third feature of the wavelet pattern
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seen in Figures 7–9 was a narrower strip of the aligned domains near fsh/fw = 0.5 in the
case of narrower wave train spectra. In other words, this strip was narrower in the case
of a JONSWAP (γ = 7) wave train when compared to that of a Pierson–Moskowitz wave
train. Thus, the wave train spectrum could be a reason why the strip of the domains near
fsh/fw = 0.5 was narrow or wide. Moreover, wavelet ridges plots illustrated the presence
of several zero slope regions following the passage of the wave train. Consequently, we
could distinguish easily the duration of the subharmonic frequency lock-in phenomenon
using wavelet ridges plots. It was also noted that in the case of narrow wave train spectra
compared to wide wave train spectra, the wavelet ridges’ temporal evolution contained
less irregularities.

Figures 10–12 show the time series of the ADV of three wave trains in the absence
of subharmonic synchronization, their wavelet energy E (a,τ), and their wavelet ridges’
temporal evolution. The respective patterns and graphs in the absence of subharmonic
synchronization looked very similar. The existence of a wide strip of red-yellow-colored
domains allowed us to assume the existence of several implicated frequencies 0.2fw ≤
f ≤ 1.5fw. Over time, additional several frequencies were involved in the wake of the
cylinder, and chaotic frequency components appeared. In the absence of subharmonic
synchronization, the shedding frequency was irregular in space, and vortex shedding did
not occur periodically in time. The temporal evolution of the wavelet ridges demonstrated
that local maxima varied randomly between 0 and 1.5 over time.

4. Conclusions

This paper discusses an experimental study of vortex shedding behind an elastically
mounted cylinder in a water flow and in the presence of random wave trains propagating
upstream. In the experiments, wave trains were generated via dispersive focusing technique
in a two-dimensional wave flume. We investigated one hundred and twenty wave trains
derived from Pierson–Moskowitz and JONSWAP (γ = 3.3 or γ = 7) spectra propagating in
intermediate water depth. The experimental conditions were selected based on the wave
nonlinearity S0, the water depth kwh0, and the spectrum type.

The velocity measurements downstream the cylinder were used to examine the shed-
ding frequency. Spectral evolution of the longitudinal velocity Vx was examined first. The
shedding frequency fsh and the spectral bandwidth were investigated as the nonlinear-
ity and the water depth increased. The spectral bandwidth of the longitudinal velocity
Vx decreased when the water depth increased. For water depth kwh0 > 2.04, the spec-
tral peak reached fw/2, and more than 90% of the spectral energy was inside the range
0.45 < fsh/fw < 0.55. Hence, we could conclude the presence of a synchronization-like
regime for water depth kwh0 > 2.04.

The Fourier transform has the assumption of a stationary signal, which means that
features of the signal remain constant over time. However, nonstationarities are very
important in the case of abrupt changes associated with extreme waves. The assessment
over time of the variation of the shedding frequency behind the cylinder assists in easily
identifying the subharmonic lock-in and its source. In order to accurately characterize
the modes arising in the wake, the wavelet spectrum of the longitudinal velocity Vx was
studied. Morlet wavelet was chosen as a mother wavelet given its large similarity with the
ADV temporal signals.

From the experimental results, it was found that the wavelet energy and the associated
ridges of the sampled data could clearly and precisely display locations of each singularity.
In the presence of the subharmonic synchronization regime, the dominant frequency
components lied in the range 0.45 fw < fsh < 0.55 fw.

Here, the wavelet technique was proven to be useful in identifying the frequency
components of a physical system and its multiscale dynamics controlled by a nonstationary
behaviour related to the extreme events. In similar contexts, Turki et al. [30,31] have used
the spectral wavelet analysis to investigate the dynamics of storms from intermonthly to
interannual scales. They found that the extreme energy spectrum at short scales should
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be largely modulated to increase its impact at larger scales. It will be interesting to test
the wavelet technique and the criterion by which one could determine if the subharmonic
frequency lock-in occurs or not in the presence of rogue waves in field measurements. This
could be achieved using the control procedure employed by [32] to record rogue wave
signals and in the presence of a circular cylinder. A full investigation of this multi-timescale
dynamics needs a coupling between different approaches of physical (use of experiments
in laboratory), numerical (use of mathematical models), and stochastic (use of spectral
techniques) which can be an important step to improve our understanding the extreme
dynamics in coastal zones. It would also be interesting to investigate these findings in the
presence of the cavitation phenomenon [33,34].

This study strengthens the utility of spectral approaches in detecting features that
stay hidden in a classical Fourier analysis. Nevertheless, in order to expand results found
in this study, efforts should be made by investigating shallower water conditions and
higher nonlinearities with the presence of breaking. Finally, an inherent disadvantage of
the dispersive focusing mechanism is scaling the results to full scale. Therefore, it will be
interesting to compare our findings to field measurements.
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