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Abstract: This paper presents a numerical comparison of viscoelastic shear-thinning fluid flow
using a generalized Oldroyd-B model and Johnson–Segalman model under various settings. Results
for the standard shear-thinning generalization of Oldroyd-B model are used as a reference for
comparison with those obtained for the same flow cases using Johnson–Segalman model that has
specific adjustment of convected derivative to assure shear-thinning behavior. The modeling strategy
is first briefly described, pointing out the main differences between the generalized Oldroyd-B model
(using the Cross model for shear-thinning viscosity) and the Johnson–Segalman model operating in
shear-thinning regime. Then, both models are used for blood flow simulation in an idealized stenosed
axisymmetric vessel under different flow rates for various model parameters. The simulations are
performed using an in-house numerical code based on finite-volume discretization. The obtained
results are mutually compared and discussed in detail, focusing on the qualitative assessment of the
most distinct flow field differences. It is shown that despite all models sharing the same asymptotic
viscosities, the behavior of the Johnson–Segalman model can be (depending on flow regime) quite
different from the predictions of the generalized Oldroyd-B model.

Keywords: viscoelastic fluid; shear-thinning viscosity; Johnson–Segalman model; generalized Oldroyd-B
model

1. Introduction

Many fluids of practical interest exhibit a complex behavior that cannot be predicted
using mathematical models employing the classical Newtonian rheological laws. Phe-
nomena such as shear-thinning/thickening, yield stress, stress relaxation or viscoelastic
behavior are quite commonly observed in real fluids, but fail to be properly represented
using classical Newtonian fluids models. A wide class of so-called non-Newtonain models
was developed and used to capture specific fluid properties and flow behavior. A compre-
hensive overview and discussion of complex fluid rheology and corresponding models
can be found for example in classical books [1–3] or in papers [4,5]. From the plethora of
non-Newtonian fluids properties we will only remind and discuss two, the shear-thinning
and viscoelasticity, that are relevant within the scope of this paper.

The shear-thinning behavior is typically captured by a specific sub-class of the so
called generalized Newtonian models. In classical Newtonian models the stress tensor
is directly proportional (by a constant coefficient named viscosity) to the fluid rate of
strain tensor (which is nothing but symmetric part of velocity gradient). The generalized
Newtonian models follow this concept, but allow the proportionality coefficient (viscosity)
to be variable, typically depending on some relevant physical quantities, most importantly
the invariants of the rate of strain tensor. Classical representative of this class of generalized
Newtonian models is the well known power law viscosity model. The shear-thinning
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models then form a special sub-class where the apparent shear viscosity decays with
increasing shear rate. Such kind of non-linear viscosity behavior is typical for many fluids
in biomedicine (blood for example), food processing (ketchup, cream) or industry (some
paints). The variable apparent viscosity is thus used and understood as a bulk parameter
characterizing the complex microstructure and local response of the fluid.

Some effects in fluids, such as extrudate swell, rod climbing or Weissenberg effect, that
are observed experimentally (see the monograph [6]), cannot be explained or predicted
using Newtonian models (not even generalized Newtonian models). The reason is that in
these situations the stress tensor is no more directly proportional to the rate of strain tensor.
Instead, the fluid exhibits a complex viscoelastic behavior, merging the viscous and elastic
response to applied strain history. Many suitable models have been developed to properly
capture and predict the behavior of viscoelastic fluids. Various rate type or integral models
are described, e.g., in [4,7,8]. The simplest from viscoelastic fluid rate type models are the
Maxwell and Oldroyd type models [9]. They have fixed (constant) coefficients and besides
of the standard viscous effects they can also describe the stress relaxation. Such viscoelastic
behavior is again quite common in food industry, polymer processing (polymer injection
molding) or biomedicine (synovial fluids or blood).

In many fluids several non-Newtonian properties (such as shear-thinning and vis-
coelasticity) are observed simultaneously, being more or less prominent at different flow
regimes. This is typical for example in the so called polymeric fluids or in blood. Whole
blood exhibits complex rheological behavior, namely shear-thinning viscosity ([10–12]) and
deformation dependent viscoelastic behavior, at low shear rates, e.g., [13], or normal stress
differences [14].

A number of nonlinear constitutive equations of differential and rate type have been
considered in the literature to model blood in the vascular system as a shear-thinning
and viscoelastic fluid, but none of them captures its complex behavior in a single frame-
work. For example, the empirical five-constant generalization of the Oldroyd-B model
introduced by Yeleswarapu et al. in [15] has been obtained by fitting experimental data
to one-dimensional flow. In that model the constant viscosity in the Oldroyd-B model is
replaced by a generalized Newtonian viscosity involving a logarithmic function. However,
the original Newtonian constant viscosity can also be replaced by other, even simpler
generalized Newtonian models to capture the shear-thinning behavior of blood. Such vari-
able viscosity generalization has been adopted by several authors, including our studies
(e.g., [16–18]) leading to the generalized Oldroyd-B model with shear-thinning viscosity
given by the Cross model with appropriate physiological parameters, as specified below in
this paper (Section 3). These generalized Oldroyd-B models however have some limitations.
For example, the relaxation times in Oldroyd type models (even generalized) do not depend
on the shear rate, which in many cases does not agree with experimental observations and
more complex models have been developed for such fluids (see, e.g., [19–21] and references
cited therein).

The approach used in this paper is different from what is typically adopted when a
shear-thinning viscoelastic model is needed. In generalized Oldroyd-B models the standard
Oldroyd-B model (predicting constant viscosity) is considered just replacing the model
constant viscosity coefficient by a shear rate dependent function (with shear-thinning or
shear-thickening behavior).

The procedure we have have used to obtain the shear-thinning behavior in viscoelastic
fluids is based on a well known fact that if in the Johnson–Segalman model family the
convected derivative is chosen other than upper- or lower-convected, i.e., for the choice of
parameter a ∈ (−1; 1), the model will exhibit the shear-thinning behavior, despite keeping
constant all the model parameters.

Our aim in this paper is to present a preliminary numerical study of the rate type
shear-thinning viscoelastic Johnson–Segalman model in order to better understand its
behavior in some practically relevant situation—the blood flow in stenosed vessel. The
obtained results are compared to those from generalized Oldroyd-B model, where the shear
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dependent Cross viscosity function is artificially introduced to capture the shear-thinning
characteristic. As already mentioned, this model has been used for blood flow simulations
in some of our previous works [16,17,22].

A smooth idealized stenosed blood vessel geometry is used in the numerical simula-
tions, for a finite volume discretization along with an explicit Runge–Kutta time marching
scheme, applied to both the Johnson–Segalman and the generalized Oldroyd-B models, at
three different flow rates (Reynolds number less than 100). A range of the convected deriva-
tive parameter a ∈ (−1; 1) is explored, namely a = −0.9,−0.8,−0.7 (leading to different
levels of shear-thinning), knowing that the constitutive equation with a = −1 corresponds
to the Oldroyd-B model with constant viscosity. Numerical results have been obtained to
illustrate and provide comparative analysis of the flow dynamics on the generated flow
patterns of the pressure, axial velocity and radial velocity for both models in different
flow regimes.

2. The Mathematical Model

The equations for the balance of linear momentum and conservation of mass (or
incompressibility condition) for isothermal flow are given by:

ρ
du
dt

= divT−∇p (1)

div u = 0 (2)

where u is the velocity field, ρ is the constant density of the fluid, p is an isotropic pressure,
d/dt = ∂/∂t + u · ∇ denotes the material time derivative and T is the extra-stress (or
deviatoric stress) tensor that should be defined by a specific constitutive equation relating
the state of stress to the kinematic variables, namely the rate of deformation of fluid
elements. It accounts for differences in behavior from a purely inviscid incompressible fluid
to the simple viscous Newtonian model where T = 2µD, µ being the dynamic viscosity
and D the rate of deformation tensor, defined as the symmetric part of the velocity gradient
D = (∇u +∇uT)/2. Replacing this expression of D in the previous system, we obtain the
classical Navier–Stokes equations for an incompressible viscous fluid.

This work is concerned with the general class of nonlinear rate-type viscoelastic
models, of Oldroyd type also called Johnson–Segalman model with a constitutive relation
for T defined by:

T+ λ1
δT

δt
= 2µ

(
D+ λ2

δD

δt

)
(3)

Here the parameter λ1 is the relaxation time, the material coefficient λ2 is the retarda-
tion time, with 0 ≤ λ2 < λ1 and µ is the dynamical viscosity. The operator δ·

δt stands for
the so-called convected derivative, which is a generalization of the time-derivative chosen
so that the principle of frame indifference is verified, meaning that the model is objective
under a superposed rigid body motion and the resulting second order tensor is symmetric.
Different choices of the convected derivative lead to different models including, e.g., the
classical Oldroyd A and B models, as detailed below.

The Johnson–Segalman model can be derived from the simplest rate-type viscoelastic
Maxwell model (see, e.g., [23]) with an additional viscosity

T+ λ1
δT

δt
= 2µD (4)

Simple mechanical models can be used to illustrate the typical behavior of viscoelastic
materials, where a dashpot (piston moving inside a cylinder filled with a liquid) represents
a viscous (Newtonian) fluid and a spring stands for an elastic (Hookean) solid. These
elements can be connected in series or in parallel and combined to represent several
deformation-stress models to analyze the behavior of different viscoelastic materials [24].
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The combination of the Newtonian model and the Maxwell model joined in parallel shown
in Figure 1 represents the mechanical analogue of the Johnson–Segalman model (3).

= +s e

e

s

s

e

s= = e

τ ττ
µ

µ
τ

τ

G

τ

γ γ

τ

γ

Figure 1. Mechanical analogue for the Johnson–Segalman model.

In the Johnson–Segalman model the viscosity µ is defined as µ = µs + µe where µs
and µe are the solvent and the elastic viscosity coefficients. Moreover, parameters λ1 and
λ2 are such that:

λ1 =
µe

G
λ2 = λ1

µs

µs + µe
(5)

where G is the elastic modulus.
In the mechanical analogue scheme shown in Figure 1 we identify two branches. The

upper one with dashpot (viscosity µs) corresponds to the Newtonian solvent fluid behavior
and the lower one with dashpot (viscosity µe) and spring (elastic modulus G) in serial
combination, corresponds to the viscoelastic Maxwell fluid. The total stress τ = τs + τe is
decomposed into the Newtonian solvent contribution τs and its viscoelastic complement
τe. Additionally, γ = γs = γe corresponds to the rate of deformation tensor. Finally, the
extra-stress tensor in Equation (3) is decomposed into its Newtonian Ts and elastic Te parts,
where Te satisfies a constitutive equation of Maxwell type (4) and we get the following
relations:

T = Ts +Te (6)

with

Ts = 2µsD (7)

Te + λ1
δTe

δt
= 2µeD (8)

Convected Derivatives

The general expression of the objective three-parametric family of convected deriva-
tives of any tensor M is given by:(

δM

δt

)
abc

=
dM
dt
−WM+MW+ a(DM+MD) + b(D : M)I+ c(D trM) (9)

where W represents the anti-symmetric part of the velocity gradient and I is the identity
matrix. In this expression the a, b and c are real parameters, usually with b = 0 and c = 0.
Different choices of reference frames suitably fixed to the body yield different objective
derivatives. Some of the most frequently used derivatives listed in Table 1 presented below,
where L = 2D.
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Table 1. Commonly used convected derivatives.

Name Notation Definition Parameter a

Lower-convected M
M

dM
dt + LTM+ML 1

Upper-convected O
M

dM
dt − LM−MLT −1

Co-rotational (Jaumann)
◦
M

dM
dt −WM+MW 0

The one-parametric family of convected derivatives can be written as:(
δM

δt

)
a
=

dM
dt
−WM+MW+ a(DM+MD) a ∈ [−1; 1] (10)

This is sometimes named as a Gordon–Schowalter derivative with parameter a = ξ− 1
where ξ is called slip parameter.

The special cases a = 1 and a = −1 correspond to the classical lower-convected
Oldroyd-A and upper-convected Oldroyd-B models, respectively. Usually attention is not
focused on the Oldroyd-A models because their viscometric functions do not match the
behavior of real fluids.

The Johnson–Segalman model (3) forms a subset of the 8-constant Oldroyd models
developed and analyzed in [23]. Roughly speaking this subset could be obtained from the
full model (9) by taking the convected derivative in the form (10).

The convected derivative is defined (for any tensor M) by:

δM

δt
=
◦
M +a(DM+MD) a ∈ [−1; 1] (11)

The formula written above (11) is identical to (10) where the definition of the co-

rotational derivative
◦
M from Table 1 was used. Using this notation the Johnson–Segalman

model [25,26] can be rewritten as follows:

T+ λ1
◦
T +aλ1(DT+TD) = 2µ

(
D+ λ2

◦
D +2aλ2D

2
)

(12)

3. The Shear-Thinning Viscosity Behavior of the Johnson–Segalman Model

The classical Oldroyd-A and Oldroyd-B models do not predict the viscosity shear-
thinning effect. However models based on the Oldroyd-B constitutive equations are quite
often used to build generalized models for shear-thinning fluids.The shear-rate dependent
apparent viscosity is introduced by generalizing Oldroyd model, where the constant
viscosity µ is replaced by a suitable shear-rate dependent viscosity function µ(γ̇). This is
the classical way of construction of shear-thinning viscoelastic models. The general concept
used by most of them is based on viscosity functions of the following form

µ(γ̇) = µ∞ + (µ0 − µ∞)F(γ̇) (13)

Here µ0 and µ∞ are the asymptotic viscosity values for low and high shear rates. The
appropriate transition between these values is carried out by the shear-rate dependent
function F(γ̇). This function should satisfy the following natural limit conditions:

lim
γ̇→0+

F(γ̇) = 1 & lim
γ̇→∞

F(γ̇) = 0
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There are many possible choices for such a function F(γ̇). One of the most frequently
used is the generalized Cross formula used in the following model:

µ(γ̇) = µ∞ +
µ0 − µ∞(

1 + (λγ̇)b
)a (14)

Model adjustable parameters should be obtained by calibration against suitable ex-
perimental data set. The following parameters have been used for blood flow simulations
based on this model in ([27]):

µ0 = 1.6 · 10−1Pa· s µ∞ = 3.6 · 10−3Pa· s
a = 1.23, b = 0.64s λ = 8.2s

This is of course just one of many possible models being used to describe the shear-
thinning viscosity of blood. Other choices can for example be found in the book [28],
namely in the chapter [29].

Here we propose another approach which allows to take into account the shear-thinning
behavior of the fluid, without introducing any artificially generalized viscosity coefficient.

While for a = −1 (Oldroyd-B model) and for a = 1 (Oldroyd-A model) the viscosity is
constant, as mentioned above, it is possible to show that any choice of parameter a ∈ (−1; 1)
leads to shear-thinning viscoelastic models. This can be simply obtained by reduction of
the general expression developed for the 8-constant Oldroyd model in [23]. For the model
in the form (12) we get the apparent simple-shear viscosity:

µ̃(γ̇) =
µ(γ̇)

µ
=

1 +
(

λ2
λ1

)
[1− a2]λ2

1γ̇2

1 + [1− a2]λ2
1γ̇2

. (15)

In a similar way we obtain the first and second normal stress coefficients Ψ1 and Ψ2

Ψ1 = 2λ1µ

[
µ̃(γ̇)−

(
λ2

λ1

)]
(16)

Ψ2 = −(1 + a)λ1µ

[
µ̃(γ̇)−

(
λ2

λ1

)]
= − (1 + a)

2
Ψ1. (17)

From Formula (15) for the apparent viscosity we conclude that it contains 3 parameters
λ1, a and

(
λ2
λ1

)
. It is easy to see, that for a2 = 1 the apparent viscosity is constant, while

for any other admissible value a ∈ (−1; 1) the µ̃(γ̇) will monotonically decrease with
growing γ̇. This behavior can be observed from Figure 2 where the apparent viscosity µ̃(γ̇)
is defined for λ2/λ1 = 1/100.

The limit values of µ̃(γ̇) are:

lim
γ̇→0

µ̃(γ̇) = 1 and lim
γ̇→∞

µ̃(γ̇) =
λ2

λ1
(18)

This can be rewritten using (5) and the decomposition µ = µs + µe, leading to the
asymptotic dimensional viscosities µ0 and µ∞ given by:

µ0 = µ = µs + µe and µ∞ = µ
λ2

λ1
= µ

µs

µs + µe
= µs (19)



Fluids 2022, 7, 36 7 of 24

 0.1
 1

 10
 100 -1

-0.5
 0

 0.5
 1

 0.01

 0.1

 1

λ  γ
1

.

µ(γ)~ .

a

Figure 2. Viscosity dependence on shear-rate γ̇ and convected derivative parameter a.

From this result it is easy to understand the role of parameter α = λ2
λ1

. Setting λ2 = 0
we obtain the convected Maxwell model which leads to zero limit viscosity µ∞ = 0. This is
fixed by taking α ∈ (0; 1) which allows to set properly the high shear rate limit viscosity.
This behavior is shown in Figure 3, where µ̃(γ̇) is plotted for the co-rotational model with
a = 0 (Table 1).
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Figure 3. Viscosity dependence on shear-rate γ̇ and parameter α.

The role of parameters λ1 and a is slightly more difficult to identify. In Formula (15)
these parameters appear together in the term

(
[1− a2]λ2

1
)
. The appropriate value of this

product could be obtained by fitting the expression (15) against some simple-shear viscosity
data. The graph of this joint parameter

(
[1− a2]λ2

1
)

depending on single arguments a and
λ1 is shown in Figure 4.
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Figure 4. Dependence of
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as a function of a and λ1.

Contours of this function are presented in the following Figure 5.
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Figure 5. Contours of
(
[1− a2]λ2

1
)

as a function of a and λ1.

The separate values of λ1 and a could only be obtained from some additional visco-
metric data fitting. One possibility is to use the normal stress difference coefficients Ψ1 and
Ψ2 to quantify both λ1 and a. For example, from known µ0 and µ∞ the relaxation time λ1
can be obtained as:

lim
γ̇→0

Ψ1 = 2λ1µ

[
1−

(
λ2

λ1

)]
= 2λ1(µ0 − µ∞) (20)

In Formula (15) for the apparent simple-shear viscosity, the parameter λ1 acts as a
scaling factor for the argument γ̇. The effect of varying λ1 on µ̃(γ̇) is shown in Figure 6.
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Figure 6. Viscosity dependence on shear-rate γ̇ and parameter λ1 (fixed a = 0).

The shear-thinning effect leads to a reduction of the apparent elastic (or polymeric)
viscosity. Due to this fact, there is an important difference between the classical charac-
teristic Weissenberg number of the solved problem and the local, effective value for this
number. Thus, it seems to be meaningful to generalize and “localize” the definition of the
Weissenberg number to account for the shear-thinning behavior. The possible re-definition
could be the following:

We =
λ1U

L
= λ1

U
L
≈ We(γ̇) = λ1γ̇ (21)

Here the local shear rate is assumed together with the generalized λ1(γ̇) taking into
account the shear dependency of the elastic component of the viscosity. The apparent
viscosity based on Formula (15) could be rewritten in the dimensional form:

µ(γ̇) = µ∞ +
µ0 − µ∞

1 + [1− a2]λ2
1γ̇2

(22)

where the second term represents the apparent elastic viscosity µe, i.e.,

µe(γ̇) =
µ0 − µ∞

1 + [1− a2]λ2
1γ̇2

=
µe0

1 + [1− a2]λ2
1γ̇2

(23)

Using this generalized elastic viscosity and relations (5), the local Weissenberg number
can be computed as:

We(γ̇) = λ1(γ̇)γ̇ =
µe(γ̇)

G
=

µ0 − µ∞

G
γ̇

1 + [1− a2]λ2
1γ̇2

(24)

This leads to the following generalized local Weissenberg number for the proposed
class of shear-thinning models:

We(γ̇) =
λ1γ̇

1 + [1− a2]λ2
1γ̇2

=
We0

1 + [1− a2]We2
0

(25)

In the last expression we have used the low shear limit Weissenberg number definition
We0 = λ1γ̇. The difference between We(γ̇) and We0 is that the former one takes into
account the shear-thinning, while the later one does not. Due to the shear-thinning viscosity,
the local Weissenberg number becomes a nonlinear function of the shear-rate γ̇. The
shear-thinning induced deviation of the Weissenberg number from the classical linear
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dependency can be observed in Figures 7 and 8 for different values of the convected
derivative parameter a.
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Figure 7. Effective (shear-thinning) Weissenberg number as a function of the shear rate.

In terms of the ratio between the “shear-dependent” Weissenberg number We(γ̇) and
its constant viscosity counterpart We0 it is even more obvious, as observed in Figure 8.
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Figure 8. Shear-thinning index of the Weissenberg number as a function of the shear rate.

It could easily be shown from (25) that for the Oldroyd-B and Oldroyd-A models,
which have no shear-thinning viscosity, the original We(γ̇) = λ1γ̇ is recovered. The
low-shear limit Weissenberg number leads exactly to the same original linear behavior.

One of the important consequences of the local shear-thinning re-definition of the
Weissenberg number is the existence of its local extrema. This is in contrast with the
classical, constant viscosity point of view, where the Weissenberg number is a linear (and
therefore monotone) function of the shear rate. Based on (25) it could easily be shown that
the maximum is attained at:

[λ1γ̇]max = [We0 ]max =
1√

1− a2
(26)

and consequently the effective Weissenberg number value is given by

We([λ1γ̇]max) =
1
2

1√
1− a2

=
1
2
[λ1γ̇]max (27)
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4. Numerical Tests

The numerical solution of the above described model is based on a finite-volume semi-
discretization in space on structured grids and an explicit Runge–Kutta time integration
scheme. Steady solution is searched by a time-marching approach, i.e., the unsteady
governing system is solved with steady boundary conditions and stationary solution is
recovered when t −→ ∞. Details of the numerical method can be found in our previous
works [16–18].

4.1. Computational Geometry and Mesh

In this study, we follow the experimental set-up introduced in [27]. The first com-
putational domain represents a non-symmetric cosine-shaped vessel stenosis shown in
Figure 9.

D D 2.5D

DD/2

5D

D/2

U0

Figure 9. Computational domain.

The vessel is three-dimensional, rotationally symmetric with maximum diameter
D = 6.2 mm which reduces to its one half in the stenosed region. This leads to a 4:1
cross-sectional area reduction and thus to a significant local flow acceleration. The effect of
viscoelasticity in this region will be studied in detail.

We have used structured, wall fitted mesh with hexahedral cells. Multiblock mesh
structure was adopted to avoid high distortion of cells. Figure 10 shows the actual grid
used in all presented simulations.

Figure 10. Computational mesh—multiblock structure and refinement.

The grid had 16× 48 + 12× 12 = 912 cells in each crossection (z = const), where the
smallest (near wall) cell size was set to 1% of the vessel radius, i.e., ∆x = 0.01D/2. From
this smallest scale the cells are gradually (an smoothly) increased towards the inner grid
block surrounding the channel axis. In the axial direction 143 cells were used, from which
80 equispaced cells were placed in the channel contraction. This fine cells in the stenosis
are again gradually enlarged towards the channel inlet and outlet. This grid provided
consistent results for all presented cases and further refinement did not led to any visible
changes with respect to presented simulations.
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4.2. Model Parameters
4.2.1. The Generalized Oldroyd-B Model

The basic set of parameters for the generalized (shear-thinning) Oldroyd-B model was
taken from [27] and previously used in some of our studies [16–18]. The shear-thinning
viscosity is given by the Cross model (14):

µ(γ̇) = µ∞ +
µ0 − µ∞(

1 + (λγ̇)b
)a

with the following parameters suitable for blood flow simulations [27]:

µ0 = 1.6 · 10−1 Pa· s µ∞ = 3.6 · 10−3Pa· s
a = 1.23, b = 0.64 s λ = 8.2 s

The data for the viscoelastic part of the model are taken from the same paper [27],
where:

µe = 4.0 · 10−4 Pa· s µs = 3.6 · 10−3 Pa· s
λ1 = 0.06 s λ2 = 0.054 s

µ0 = µ = µs + µe ρ = 1050 kg·m−3

This generalized Oldroyd-B model is hereafter denoted as GOB model.

4.2.2. The Johnson–Segalman Model

Based on these parameters, the shear-thinning Johnson–Segalman model was adjusted.
Namely the viscosities µ0 and µ∞ were preserved together with the retardation time scale
λ2. Using the viscosity relations (19) we get the appropriate solvent and elastic viscosity µs
and µe, respectively

µs = µ
λ2

λ1
= µ

µs

µs + µe
= µ∞ ; µe = µ− µs = µ0 − µ∞ (28)

leading to the relaxation time λ1 given by:

µs = µ
λ2

λ1
=⇒ µs

µ
=

µ∞

µ0
=

λ2

λ1
=⇒ λ1 = λ2

µ0

µ∞
(29)

This setting will guarantee that the asymptotic shear viscosity of the Johnson–Segalman
model is the same as for the standard GOB model. The only remaining parameter
a ∈ (−1; 1) in the Gordon–Schowalter convected derivative will be independently ad-
justed to assess its effect on the model predictions. Values will be chosen close to the
Oldroyd-B model (upper convected derivative), which means close to a = −1.

5. Numerical Results

In this paper, only some initial simulation results are presented to demonstrate the
qualitative comparison and agreement of the widely used shear-thinning generalized
Oldroyd-B model and the proposed Johnson–Segalman model in the shear-thinning regime
with |a| < 1. The standard GOB model is used to obtain reference flow fields in the
axisymmetric stenosis for three different flow rates Q = 0.5, 1.0, 2.0 cm3/s. The resulting
fields of axial velocity, radial velocity and pressure are compared (for the same flow rates)
with those obtained using Johnson–Segalman model with a set of parameters a equal to
a = −0.9,−0.8,−0.7.

5.1. Generalized Oldroyd-B Model—Reference Results

The flow in the axisymmetric stenosis with circular cross-section is simulated for three
different flow regimes. In this section, the simulation results are grouped together according
to the flow rate. The contour fields are shown in the longitudinal axial cut, showing
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always the pressure, axial velocity and radial velocity fields, including the corresponding
color scales. For each one of the flow rates different color scales were chosen to better
capture the individual flow features. Scales were kept dimensional, since simple non-
dimensional scaling based, e.g., on flow rates are not optimal due to strongly nonlinear
viscosity behavior.

In all presented simulations the pressure is set to zero at the outlet (right) boundary,
therefore the maximum is reached at the inlet (left) boundary. The density of pressure con-
tour lines in the stenosed region indicates high local pressure gradient leading to significant
flow acceleration visible in the axial velocity contours (central part of the stenosed region).
The radial velocity field is axially anti-symmetric, showing the appropriate flow tendency
towards the axis or the wall, following the same behavior of the nearest wall geometry.

Comparing the profiles of the velocity fields in Figure 11 for Q = 0.5 cm3/s with
results obtained for higher flow rates shown in Figures 12 and 13 reveals that for lower flow
rates the velocity profiles become smoother, with more rounded contour lines downstream
the stenosis, due to lower flow separation and recirculation. This is caused by the effect
of shear-thinning behavior, where for lower shear rates (i.e., lower flow rates) the shear
dependent viscosity provides higher values, closer to µ0. In a straight tube (non-stenosed
vessel) the zero shear rate is always achieved at the central axis and its value increases
towards the wall (see, e.g., [18,22,30]). The viscosity thus behaves accordingly, exhibiting
its maximum at the axis, dropping significantly towards the wall. Of course, as demon-
strated in [22], the behavior is more complex in non-trivial geometries with significant flow
acceleration/deceleration or streamlines curvature.

Figure 11. Flow rate Q = 0.5 cm3/s—Pressure, axial and radial velocity contours (from the top).
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Figure 12. Flow rate Q = 1.0 cm3/s — Pressure, axial and radial velocity contours (from the top).

Figure 13. Flow rate Q = 2.0 cm3/s—Pressure, axial and radial velocity contours (from the top).

The profiles of the velocity fields in Figures 11–13, have shown the expected behavior,
including their steadiness and axial symmetry. Of course the behavior of many other
mechanical quantities, such as viscosity, shear rate, stress tensor components, pressure drop
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or wall shear stress could be represented for these test cases. However, the shown fields are
quite representative, in view of the basic qualitative comparison designed for this paper.

5.2. Johnson–Segalman Model—Comparison

The same setup as used for the GOB model, with parabolic velocity profile at the inlet
(left) boundary and fixed (zero) pressure at the outlet (right) boundary was also used in
the numerical simulations with the Johnson–Segalman model. In this section, the contour
fields are primarily grouped according to flow variables and then by flow rates.

The main goal is to compare the results obtained using the Johnson–Segalman shear-
thinning model with those obtained using the standard reference GOB model. Therefore
in the figures presented below we always group the results from the GOB model with
the corresponding predictions of the Johnson–Segalman model obtained by setting the
parameter a to a = −0.9,−0.8,−0.7.

5.2.1. Axial Velocity

For the considered stenosed vessel test case, the axial velocity is the dominant and
most interesting flow quantity. The velocity fields can be directly compared to identify
some of the most relevant differences between models predictions. The inlet velocity profile
is exactly the same for all models. It is the standard (second order) parabolic profile with
maximum velocity in the center, respecting the no-slip velocity condition on the wall. It
corresponds to the fully developed velocity profile of a constant viscosity Poiseuille flow of
both Newtonian and Oldroyd-B (non-generalized) model. For shear thinning models the
velocity profile becomes more flat in the center with steep decay just very close to the wall.
Such behavior can be observed when comparing the inlet and outlet profiles in Figure 14,
where the outlet velocity profiles are evidently more flat (due to shear-thinning) in the
center compared to constant viscosity profiles prescribed at the inlet.

This clearly shows the shear-thinning behavior of the Johnson–Segalman model for
|a| < 1. For the smallest flow rate Q = 0.5 cm3/s shown in Figure 14 the velocity fields
downstream the stenosis differ substantially from the GOB model. For the value a = −0.7
the Johnson–Segalman model seems to provide the most similar results compared to
reference GOB solution, but it’s still quite far. The viscoelastic extra stress probably plays a
more important role at this flow rate.

The situation is visibly improved at higher flow rates as it can be observed in Figure 15
for Q = 1.0 cm3/s and Figure 16 for Q = 2.0 cm3/s. At these flow rates the differences
between the reference GOB model solution and the Johnson–Segalman model solution
can be minimized by choosing a suitable value of parameter a. The optimal value seems
to be close to a = −0.8 for Q = 1.0 cm3/s (see Figure 15) and closer to a = −0.9 for
Q = 2.0 cm3/s (see Figure 16).

Overall, the axial velocity field comparison shows the expected shear-thinning behav-
ior. However, the model regulation just by the single parameter a seems to be insufficient
and optimal values may be dependent on the shear rate (flow rate).

For the generalized Oldroyd-B model (GOB), at higher flow rates (Q = 1.0 cm3/s
and Q = 2.0 cm3/s) a rather large flow separation and recirculation region appears in the
expanding part of the stenosis. The zone of reversal flow (where axial velocity is negative)
is marked by purple color in Figure 17, showing the extent of the reversal flow predicted
by considered models at two higher flow rates (color scale is omitted as it is identical to
Figures 15 and 16).
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Figure 14. Axial velocity at flow rate Q = 0.5 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).

Figure 15. Axial velocity at flow rate Q = 1.0 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).
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Figure 16. Axial velocity at flow rate Q = 2.0 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).

Q = 1.0 cm3/s Q = 2.0 cm3/s

Figure 17. Axial velocity and recirculating flow—GOB (top figure) and Johnson–Segalman models
for a = −0.9, a = −0.8, a = −0.7 (from the top). Reversal flow is marked by purple color.

Evidently the setting of parameter a has significant impact on the size of the recircula-
tion zone. This should be considered when looking for the optimal value of a in specific
fluid simulations. It should be kept in mind that in all simulations the asymptotic viscosities
µ0 and µ∞ are set identically, so the different extent of the recirculation zone cannot easily
be explained using the apparent viscosity. Here probably the differences in first and second
normal stress differences Ψ1, Ψ2 can come to play as they depend on the parameter a
(see (16) and (17)).
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5.2.2. Radial Velocity

Concerning the radial velocity, the model change effects are more delicate and less
important. For the lowest flow rate Q = 0.5 cm3/s the radial velocity fields comparison
shown in Figure 18 confirms significant differences of the Johnson–Segalman model predic-
tions with respect to the GOB model reference results. The major ones appear downstream
the stenosis near the wall, with a tendency to vanish far from the flow separation and
recirculation away from the stenosed region.

Figure 18. Radial velocity at flow rate Q = 0.5 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).

As for the axial velocity, the radial velocity fields also become nearly analogous to
the reference GOB model solutions obtained at higher flow rates. The Figures 19 and 20
indicate that a suitable choice of the parameter a in the Johnson–Segalman model can
lead to an almost identical velocity field as the one obtained for the reference GOB model.
Not only the main axial flow patterns are practically equal, but also the secondary flows
represented by the radial velocity are very similar.
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Figure 19. Radial velocity at flow rate Q = 1.0 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).

Figure 20. Radial velocity at flow rate Q = 2.0 cm3/s—GOB (top figure) and Johnson–Segalman
models for a = −0.9, a = −0.8, a = −0.7 (from the top).
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5.2.3. Pressure Field

A direct comparison of the pressure fields between different models is more complex
and less useful. In viscoelastic fluid models, the role and interpretation of the quantity
denoted by p may be different compared to what we are used to in the Newtonian models.
Physically, pressure is defined as the spherical part of the complete stress tensor, so pressure
is proportional to the trace of the full stress tensor and appears as the Lagrange multiplier
arising from the incompressibility condition. In our (and in many other) viscoelastic
models, part of the physical pressure is contained in the variable (scalar field) p present in
the gradient term in the momentum equations. Another part of the physical pressure may
be hidden in the trace of the (viscoelastic) stress tensor, which is in general not traceless, in
contrast to the Newtonian viscous stress tensor. Therefore, the direct comparison of the
pressure fields p does not give the complete information about the physical pressure that
can be measured in the flow by appropriate investigations.

Thus, the pressure fields shown below in Figures 21–23, correspond just to the part
denoted by p in the momentum equations and therefore should be used and interpreted
with caution. All we can observe here from the pressure fields is that the general character
does not differ substantially from what we have seen for the reference GOB model solution.
Keeping the same pressure values at the outlet for all models, we can again observe the
maximum values being always achieved at the inlet. The pressure drop (pressure difference
between inlet and outlet) visibly changes, however again direct comparison is not possible,
because different part of the physical pressure is still hidden in the viscoelastic extra
stress tensor.

In any case it is obvious that the pressure fields p for the Johnson–Segalman and the
reference GOB solutions become closer at higher flow rates. This can again be attributed
to the shear-dependent response of the Johnson–Segalman model leading to extra stress
reduction due to shear -thinning. This is confirmed when comparing the results for given
flow rate depending on the choice of parameter a.

Figure 21. Pressure at flow rate Q = 0.5 cm3/s — GOB (top figure) and Johnson–Segalman models
for a = −0.9, a = −0.8, a = −0.7 (from the top).
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Figure 22. Pressure at flow rate Q = 1.0 cm3/s — GOB (top figure) and Johnson–Segalman models
for a = −0.9, a = −0.8, a = −0.7 (from the top).

Figure 23. Pressure at flow rate Q = 2.0 cm3/ — GOB (top figure) and Johnson–Segalman models
for a = −0.9, a = −0.8, a = −0.7 (from the top).
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6. Conclusions and Remarks

Although the Johnson–Segalman model is known for a long time, it’s very seldom used
in simulations of shear thinning viscoelastic fluids of practical interest. The overview of
basic properties we provide in this paper, together with some initial numerical simulations
are aimed at giving a deeper insight and motivation for a broader use of this simple
viscoelastic shear-thinning model. The case of blood flow simulation was chosen from
many possible examples of suitable applications of the Johnson–Segalman model in the
shear-thinning regime. This choice was mainly motivated by our previous experience with
other viscoelastic models for this kind of applications [16,22] or [18].

In this paper, we only show a small set of initial results, so we are still quite far
from fully understanding the model and its behavior. Nevertheless, already these initial
simulations have brought some important information as well as some open questions. The
main points are summarized below.

• The Johnson–Segalman model, using the Gordon–Schowalter family of convected
derivatives (with |a| 6= 1) naturally exhibits the shear-thinning behavior similar to
what is artificially introduced into the generalized Oldroyd-B model. This behavior
was documented analytically and confirmed in numerical simulations.

• It was shown how the Johnson–Segalman model parameters can be set and adjusted
to mimic the asymptotic behavior of the shear-thinning generalized Oldroyd-B model
(i.e., the viscosities µ0, µ∞). The shape of the viscosity-shear µ(γ̇) dependence for
the Johnson–Segalman model is given by (15) and (22). This means the model can
only be fine-tuned by choosing its few parameters, but its general behavior cannot
be dramatically altered. This might be seen as a disadvantage when compared to the
more standard generalized Oldroyd-B models, where the type of the viscosity-shear
rate dependence can be freely chosen and adjusted (even for shear-thickening fluids).

• The Johnson–Segalman model predictions seem to follow (at least at higher flow rates)
the reference solution obtained from the generalized Oldroyd-B model. It should be
kept in mind that numerical predictions of the two models are compared. Therefore,
from this purely numerical comparison we cannot assess which of the models is
better suited for blood (or any other fluid) flow simulations. For such decision the
model predictions must be compared to real fluid experimental data and the level of
agreement may differ from one fluid (or solved case) to another.

• The Johnson–Segalman model was used in this paper “as it is”, with no sophisticated
fitting of the shear-thinning part. Only the asymptotic viscosities were preserved
for both the GOB and Johnson–Segalman models as the key measurable physical
parameters of practical interest. Better agreement of results can probably be achieved
by fitting the complete viscosity curves of both models. Then some other, more optimal
choice of relaxation/retardation time λ1, λ2 and parameter a can lead to better mutual
agreement of the obtained results.

• Open remains the question of possible physical interpretation of the variation of the
parameter a in the convected derivative. As it was shown for |a| < 1 it is responsible
for the apparent viscosity shear-thinning behavior. However, it’s also worth noting
that the Johnson–Segalman model (for a 6= −1) predicts non-zero second normal stress
difference Ψ2 6= 0 (see (17), which is in contrast with the classical Oldroyd-B model
and all its trivial generalizations where Ψ2 = 0. It appears that the Johnson–Segalman
model might be a possible option in cases where the non-zero second normal stress
difference was experimentally observed.

Author Contributions: Conceptualization, T.B. and A.S.; methodology, T.B.; software, T.B.; validation,
T.B.; formal analysis, A.S.; investigation, A.S. and T.B.; resources, A.S.; data curation, T.B.; writing—
original draft preparation, T.B.; writing—review and editing, A.S.; visualization, T.B.; supervision,
A.S.; project administration, A.S.; funding acquisition, T.B. and A.S. All authors have read and agreed
to the published version of the manuscript.



Fluids 2022, 7, 36 23 of 24

Funding: The present work has been partly funded by the Czech Science Foundation under the grant
No. P201-19-04243S and by the Fundação para a Ciência e a Tecnologia-FCT (Portugal) under the
Projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/IST-ID.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics. In Encyclopedia of Physics; Springer: Berlin/Heidelberg,

Germany, 1965; Volume III/3.
2. Bird, R.; Armstrong, R.; Hassager, O. Dynamics of Polymeric Liquids; John Wiley & Sons: New York, NY, USA, 1987.
3. Schowalter, W. Mechanics of Non-Newtonian Fluids; Pergamon Press: New York, NY, USA, 1978.
4. Rajagopal, K. Mechanics of non-Newtonian fluids. In Recent Developments in Theoretical Fluid Mechanics; Galdi, G., Nečas, J., Eds.;
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